
2748 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 7, JULY 2009

Broadcast Gossip Algorithms for Consensus
Tuncer Can Aysal, Member, IEEE, Mehmet Ercan Yildiz, Student Member, IEEE, Anand D. Sarwate, Member, IEEE,

and Anna Scaglione, Senior Member, IEEE

Abstract—Motivated by applications to wireless sensor, peer-to-
peer, and ad hoc networks, we study distributed broadcasting algo-
rithms for exchanging information and computing in an arbitrarily
connected network of nodes. Specifically, we study a broadcasting-
based gossiping algorithm to compute the (possibly weighted) av-
erage of the initial measurements of the nodes at every node in the
network. We show that the broadcast gossip algorithm converges al-
most surely to a consensus. We prove that the random consensus
value is, in expectation, the average of initial node measurements
and that it can be made arbitrarily close to this value in mean
squared error sense, under a balanced connectivity model and by
trading off convergence speed with accuracy of the computation.
We provide theoretical and numerical results on the mean square
error performance, on the convergence rate and study the effect
of the “mixing parameter” on the convergence rate of the broad-
cast gossip algorithm. The results indicate that the mean squared
error strictly decreases through iterations until the consensus is
achieved. Finally, we assess and compare the communication cost
of the broadcast gossip algorithm to achieve a given distance to con-
sensus through theoretical and numerical results.

Index Terms—Broadcasting, distributed average consensus,
gossip algorithms, sensor networks.

I. INTRODUCTION

A
fundamental problem in decentralized networked sys-

tems is that of having nodes reach a state of agreement

[3]–[9]. Distributed agreement is a fundamental problem in ad

hoc network applications, including distributed consensus and

synchronization problems [6]–[8], [10], distributed coordina-

tion of mobile autonomous agents [4], [5], and distributed data

fusion in sensor networks [3], [9], [11]. It is also a central topic

for load balancing (with divisible tasks) in parallel computers

[12]. Vicsek et al. provided a variety of simulation results

which demonstrate that the simple distributed algorithms allow
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all nodes to eventually agree on a parameter [6]. The work in

[13] provided the theoretical explanation for behavior observed

in these reported simulation studies. This paper focuses on a

prototypical example of agreement in asynchronous networked

systems, namely, the randomized average consensus problem

in a wireless broadcast communication network.

A. Related Work

Gossip-based algorithms to achieve consensus over a set of

agents were initially introduced by Tsitsiklis [14] and have re-

cently received renewed attention from several other researchers

[3]–[5], [15]–[20]. Randomized average consensus gossiping

is an asynchronous protocol where a node chosen uniformly

at random wakes up, contacts a neighbor randomly within its

connectivity radius, and exchanges a state variable to produce

a computation update. If each update results in a pairwise av-

erage of their values, the operation preserves both the total sum,

and hence also the mean, of the node values. In [15], it was

shown that this algorithm converges to a consensus if the graph

is strongly connected on the average. Because the transmitting

node must send a packet to the chosen neighbor and then wait

for the neighbor’s packet, this scheme is vulnerable to packet

collisions and yields a communication complexity (measured

by number of radio transmissions to drive the estimation error

to within , for any ) on the order of over

random geometric graphs [15].

The geographic gossip algorithm proposed in [21] combines

gossip with geographic routing to improve the convergence rate

of random gossiping. Similar to the standard gossip algorithm,

a node randomly wakes up, chooses a node randomly in the

whole network, rather than in its neighborhood, and performs

a pairwise averaging with this node. Geographic gossiping in-

creases the diversity of every pairwise averaging operation. The

authors show that the communication complexity is in the order

of , which is an improvement with respect

to the standard gossiping algorithm. More recently, a variety of

the algorithm that “averages around the way” has been shown

to converge in transmissions [22]. Moreover, we

note that we assume that the messages involve real numbers;

the effects of message quantization in gossip and consensus al-

gorithms, is an active area of research [17], [19], [20], [23]–[27].

B. Primary Motivations

Geographic-type gossiping improves upon the convergence

speed of the standard gossip by increasing the diversity of pair-

wise exchanges. However, the problem of packet loss is exac-

erbated by the requirement that messages must be sent on long

routes, creating congestion issues. Moreover, it does not miti-

gate the major bottleneck associated with the fact that the mes-

sages between two peers need to be routed and exchanged to
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perform two updates. Finally, successfully setting up a two-way

route exacerbates the problem by requiring information about

the location of the nodes in the network.

The wireless medium has the advantage of being inherently

broadcast and, at the cost of one transmission, one can reach sev-

eral terminals. Our objective in this paper is to analyze a broad-

casting-based gossip algorithm that enables all nodes in range

to perform an update by exploiting the wireless medium, and

thereby avoiding the need of complex routing and problematic

pairwise exchange operations.

C. Summary of Main Contributions

To overcome the drawbacks of the standard packet based

gossip algorithms, we study a broadcast based gossiping algo-

rithm for wireless sensor networks. In the studied algorithm, a

node in the network wakes up uniformly at random according

to the asynchronous time model and broadcasts its value. This

value is successfully received by the nodes in the predefined

radius of the broadcasting node, i.e., connectivity radius. The

nodes that have received the broadcasted value update their

own state value and the remaining nodes sustain their value.

It is shown here that by iterating this procedure, this type of

gossiping algorithm is capable of achieving consensus over the

network with probability one. We also show that the random

consensus value is, in expectation, equal to the desired value,

i.e., the average of initial node measurements. Because the sum

of the node state values is not preserved at each iteration, the

broadcast gossiping algorithm converges to a value that is in

the neighborhood of the desired average.

The question that motivates this paper is investigating if it

is possible to avoid the partner selection process altogether,

analyzing a broadcast communication protocol where each

random transmission triggers an update by all nodes within

range, without a mechanism of reply in place to maintain the

network average [1]. Fagnani and Zampieri have concurrently

studied the convergence to consensus characteristics of general

randomized algorithms which do not necessarily converge to

the initial average (such as asymmetric gossip, broadcast gossip

and packet-drop gossip) [28]. In particular, the authors have

shown that random consensus algorithms in general achieve

probabilistic consensus, and discussed their mean squared

error characteristics (Proposition 4.4 and Corollary 3.2). Thus,

Lemma 2 and Theorem 1 of this paper are special cases of

the general results given in [28]. However, the study of this

paper focuses on aspects specific to broadcast consensus over

wireless sensor networks, and expands on our preliminary

studies [1], [2]. In this paper, we provide an in depth study

of broadcast gossip algorithms’ speed of convergence and

mean squared error characteristics. Our results also address the

choice of the mixing parameter and its effect on both the mean

square error and the convergence rate, which provides insight

for implementation.

More specifically, we provide theoretical and simulation re-

sults on the mean square error and communication cost perfor-

mance of the broadcast gossip algorithm. Moreover, we study

the effect of the so called mixing parameter on the convergence

rate and limiting mean square error through theoretical results

and numerical experiments. In addition, we derive the optimal

mixing parameter when approached from the convergence rate

perspective. Although the convergence time of our algorithm

is commensurate with the standard pairwise gossip algorithms,

we present simulations showing that for more modest network

sizes our algorithm converges to consensus faster than other al-

gorithms based on pairwise averages or routing.

D. Paper Organization

The remainder of this paper is organized as follows. Section II

introduces the average consensus problem and the graph and

time models adopted in this paper. The studied broadcast gossip

algorithm is introduced in Section III and its convergence char-

acteristics are studied in Section IV. In Section V, we derive

the optimal mixing parameter considering the worst-case con-

vergence rate and analyze the effects of various network param-

eters on the optimal value. The MSE characterization and com-

munication complexity analysis are given in Section VI along

with the convergence rate expression. Finally, we conclude with

some discussion and future directions in Section VII.

II. GRAPH AND TIME MODELS

In the following, we briefly discuss the graph and time models

adopted in this paper. Then, we describe briefly the distributed

average consensus problem.

A. Graph Model

We model our wireless sensor network as a random geometric

graph , where the sensor locations are chosen uni-

formly and independently in a unit square area, and each pair

of nodes is connected if their Euclidean distance is smaller than

some transmission radius named connectivity radius [29]. For

our analysis, we assume that a communication within this trans-

mission radius always succeeds. It is well known that in order

to have a fully connected network asymptotically while mini-

mizing interference, the connectivity radius has to scale like

[15], [29]. The -node topology of

is represented by the adjacency matrix , where for

, if nodes and are in their neighborhood,

and , otherwise. Moreover, we define

and as a diagonal matrix with

entries . Finally, the Laplacian of a graph is defined as

.

B. Time Model

We use the asynchronous time model, which is well matched

to the distributed nature of sensor networks [15], [21]. In this

model, each sensor node is assumed to have a clock which ticks

independently according to a rate Poisson process. Conse-

quently, the inter-tick times are exponentially distributed and

independent across nodes and over time. This process is equiva-

lent to a single clock whose ticking times form a Poisson process

of rate . Let be the arrival times of this global process. In

expectation, there are approximately clock ticks per unit of

absolute time but we will always measure time in number of

ticks of this (virtual) global clock. We therefore think of time

as discretized with the interval corresponds to the th

timeslot. We can adjust time units relative to the communication
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time so that only one broadcast event occurs in the network at

each time slot with high probability.

C. Average Consensus

At time slot , each node has an es-

timate of the global average, and we use to denote

the -vector of these estimates. The ultimate goal is to use the

minimal amount of communication to drive the estimate

as close as possible to the average vector , where is the

vector of all 1’s and

(1)

Because our algorithms are randomized, the quantity for

is a random vector even though we assume is

deterministic.

III. BROADCAST BASED GOSSIPING

Informally, the asynchronous broadcast gossip algorithm is

described as follows. Suppose node ’s clock is the th that

ticked. Then, node broadcasts its own state value which is

received by all neighboring nodes within distance from it.

Once the broadcasted value is received, the neighboring nodes

set their values equal to the (weighted) average of their current

value and the value broadcasted by the node . Formally, node

activates and the following events occur:

• node broadcasts wirelessly its current state value, ;

• the broadcasted value is successfully received by the nodes

that are within the radius ;

• all nodes in the set of node ’s neighbors receive the

broadcasted value , and update their state values ac-

cording to the following equation:

(2)

with denoting the mixing parameter;

• the remaining nodes in the network, including , update

their state values as

(3)

This procedure takes place at every clock tick.

Let denote the vector of values at the end of the th

ticking event. Then

(4)

where the random matrix , with probability is (as-

suming that the th clock ticks)

elsewhere

(5)

where denotes the weight matrix corresponding to the case

where node ’s clock ticks.

The following lemma discusses two important properties of

the weight matrices.

Lemma 1: The weight matrices

satisfy the following:

i) is a right eigenvector of all , i.e., ;

ii) is not a left eigenvector of any , i.e.,

.

Proof: Let us consider the first claim. It suffices to show

that all rows of all matrices sum to unity. We have

(6)

where is the indicator function. Thus, the proof of first item

is complete.

We now turn to the second claim. Note that

for (7)

Since is chosen to make the graph connected, we have

, which implies that . This in turn

shows that for all there exists at least one column, namely the

column, with sum different than one, which implies that

for all .

The above Lemma reveals that for some is a fixed

point of the broadcasting gossip algorithm, so

for all . If the algorithm converges to a consensus, the network

will not leave the consensus state. However, it also shows that

the sum (and therefore the average) of the vector of node values

is not preserved at each step.

Suppose node is transmitting at time . It is easy to check

that the discrepancy between the sum at the next and current

time-slots is nonzero whenever .

Suppose, that is closer to the maximum of its neighbors

than the minimum, or

. Then the sum difference between time-slots is

bounded:

(8)

Clearly, the difference between the states sum at consecutive

iterations is small if the node state values are close to each other.

Let us denote the mean of i.i.d. as . The

following lemma gives some properties of the average weight

matrix that would prove useful for the remainder of the paper.

Of note is that the following is a specific case of the general

weight matrix given [28].

Lemma 2: The average weight matrix is given by

(9)

and, for all , satisfies the following equation:

(10)

where denotes the spectral radius of its argument and

.
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Proof: See Appendix A.

The Lemma shows that, unlike the individual weight ma-

trices, is both a left and right eigenvector of the average weight

matrix. Moreover, the spectral radius of the weight matrix is less

than unity, a property that will prove to be useful throughout the

rest of the paper.

IV. CONVERGENCE OF BROADCAST GOSSIPING

In this section, we will study the convergence of the asyn-

chronous broadcast gossip algorithms considering a slightly

more general setting, where the consensus algorithm is gov-

erned by a product of identically distributed random matrices

with the only restriction that each matrix is stochastic but not

doubly stochastic. Of note is that the almost sure convergence

result shown in this section, i.e., Theorem 1, is focused on and

specific to broadcast gossip algorithms and is a special cases of

the almost sure convergence result presented in [28].

A. Convergence in the Expectation

We consider the convergence in expectation of the broad-

casting gossip algorithm. The next result reveals that, although

the sum is not preserved per iteration, it is preserved in expec-

tation. We consider the initial state as deterministic, and hence

all expectations are averaging the mixing matrices only.

Proposition 1: The limiting random vector obtained through

broadcast gossip iterations (if it exists) is, in expectation, equal

to the average of initial node measurements, i.e.

(11)

Proof: By the Lebesgue dominated convergence theorem

[30], we have

(12)

Moreover, since the matrices are independent and identi-

cally distributed (i.i.d.), we have

(13)

Thus it suffices to prove that .

From [31], we know that this statement will hold if

, and . Since Lemma 2 indicates

that these conditions are satisfied, the proof is complete.

The proposition indicates that the expectation of the limiting

random vector of the broadcasting gossip algorithm, given a cer-

tain initial state vector, is equal to the vector whose entries are

equal to average of the initial states.

B. Convergence in the Second Moment

To study the convergence of the algorithm, we analyze the

convergence of the vector defined as the vector of devia-

tions of the components of from their average at the th

iteration. This can be expressed in component form as

, or as

(14)

Let denote the th largest eigenvalue of a matrix . In

the following, we present a sufficient condition guaranteeing the

convergence of the expectation of the deviation vector norm to

zero.

Lemma 3: The expectation of the norm of the deviation vector

of the broadcast gossip, i.e., , converges to zero if

(15)

where denotes the identity matrix.

Proof: Utilizing the properties of matrices, we find

that the deviation vector obeys the following recursion with

probability one:

(16)

Note that this iteration is different from the one tracking the

distance to initial node measurements average in gossip-based

algorithms which preserve the sum, and this difference impacts

all our proof methodologies.

Let so that .

Now, taking the expected norm of given and using

the fact that for , yields

(17)

(18)

where the last line follows from the fact that all ma-

trices are symmetric and the Rayleigh-Ritz theorem [32]. Then,

repeatedly conditioning and using the linear iteration obtained

above, we have

(19)

Thus, now one can see that if

. Algebraic manipulations reduce this

sufficient condition to the one stated in the Lemma.

It is important to emphasize that the Lemma 3 gives a

sufficient condition for any consensus protocol that does not

preserve network sum. Moreover, note that the condition

is different than the con-

vergence condition obtained for the standard pairwise gossip

algorithms where one only need to have

to ensure the second-order convergence to the initial node

measurements average [15], [21]. Note, however, that the suf-

ficiency condition derived for the broadcast gossip algorithms

reduces to the one for average-preserving gossip algorithms

when .

In the following, we show that the broadcasting gossip algo-

rithm satisfies the sufficiency condition required to achieve con-

sensus in the second moment.

Proposition 2: The broadcast gossip algorithms satisfies the

fact that .

Proof: First, note that the eigenvalue of interest is

the maximum eigenvalue of the expectation over posi-

tive semidefinite matrices since

. This indicates that

. Moreover, let
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and , and observe

the following

(20)

where the above follows from the variational definition of eigen-

values (note that is a symmetric matrix). Recall that

for which is the

eigenvector corresponding to the unit eigenvalue. Of note is that

for all , we have

which implies that Since

for all (note that the expectation is taken

over positive semidefinite matrices). Thus, the task reduces to

show that for , we still have . For ,

(20) reduces to

(21)

where the last inequality follows from the fact that

since all entries of the matrix is nonnegative (note that

the expectation is taken over nonnegative entry matrices). Thus,

for all ,

indicating that , Which, in

turn, yields .

C. Almost Sure Convergence to Consensus

Given the results of Sections IV-A and IV-B, we are now in

the position of stating our main result.

Theorem 1: The broadcast gossip algorithm converges to a

consensus almost surely. That is

(22)

for some random variable where

(23)

Proof: See Appendix B.

The theorem indicates that the broadcasting gossip al-

gorithms achieve consensus with probability one, and the

consensus value is, in expectation, equal to the desired value,

i.e., average of initial nodes’ measurements.

V. OPTIMAL MIXING PARAMETER

The sufficient condition in Lemma 3 depends on

, which is the rate of conver-

gence of an upper bound for the mean square deviation.

Minimizing this parameter is a meaningful criterion of opti-

mality when trying to approach convergence rapidly. In this

section, we derive the optimal mixing parameter defined in

(2) by minimizing with respect

to the mixing parameter in the broadcast gossip algorithm. At

the same time, this allows us to study the effect of the graph

connectivity and network size on the optimal mixing parameter.

The following Lemma gives formulae which will be useful in

the remaining analysis of the broadcast gossip algorithm.

Lemma 4: The following two formulas hold:

i) let , then

(24)

ii) let , then

(25)

where is the diagonal matrix of node

degrees.

Proof: See Appendix C.

Note that and

recall that gives the worst-case convergence char-

acteristic of the broadcast gossip algorithms, Lemma 3. Now,

consider the matrix which, after using Lemma 4, re-

duces to

(26)

First note that the vector is an eigenvector of with

eigenvalue 0. The vector corresponds to the only nonzero

eigenvalue of the matrix and the only zero eigenvalue for the

Laplacian matrix . Therefore the eigenvectors of

are exactly the eigenvectors of , and the th

eigenvalue of for is

(27)

Thus, the eigenvalue of interest can now be written as

(28)

where denotes the Laplacian matrix of the graph. Of

note is that is referred to as the algebraic connectivity

of the graph [33].

In the following, we investigate the effect of the mixing

parameter on the eigenvalue of interest which, as seen by

Lemma 3, bounds the rate of convergence of the broadcast

gossip algorithms.

Corollary 1: Let us introduce to show the

dependency of the eigenvalue of interest to the mixing parameter

. Then the following statements hold:

i) is convex in .

ii) The optimal mixing parameter, minimizing a worst-case

convergence rate, is given by

(29)
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Proof: Let us first consider convexity of
of w.r.t. to . One can show that the first and second derivatives
of are given by

(30)

and

(31)

respectively. Recall that is convex in if
for . Moreover, the

eigenvalues of the Laplacian are nonnegative indicating that
and . Then, from (31),

it is easy to see that, if
. But recall that .

Consider next the second claim of the Corollary. The optimal
is clearly given by

(32)

which, since is convex, is simply found by
setting (30) to zero and solving it for .

Interestingly, the above Corollary indicates that the optimal
mixing parameter depends on the graph for finite . For large

we have the following result, whose proof is trivial.
Corollary 2: For graphs such that for

some function , with , the optimal
mixing parameter is given by

(33)

Hence, for large enough and standard radius connec-
tivity considerations for random geometric graphs (e.g.,

and ), the
eigenvalue increases as increases.
Therefore the worst-case convergence rate, characterized by

, decreases. In words, values that are closer to
yield a faster worst-case convergence rate compared to the

values closer to its boundaries, i.e., zero and one.
In the following, we investigate the effect of the graph Lapla-

cian on the optimal mixing parameter.
Corollary 3: Let us introduce to denote the de-

pendency of the optimal on the graph Laplacian. Then,
is monotonically decreasing function of .

Proof: The proof simply follows by analyzing the first
derivative of the optimal mixing parameter w.r.t. the pa-
rameter of interest, denoted as , and
showing that for

.
Thus, the above Corollary indicates that, as the graph connec-

tivity increases, i.e., the eigenvalues of the Laplacian increases,
the optimal mixing parameter tends to zero. This result matches
the intuition. In fact, in a fully connected graph clearly
would result in a consensus at the first iteration.

VI. PERFORMANCE ANALYSIS OF BROADCAST

GOSSIP ALGORITHMS

While broadcast gossip algorithms do no preserve the net-

work sum, they do compute a linear combination of the network

states. We can define as error the deviation of the states from the

average of the initial states and use the mean square error as a

metric to evaluate the algorithm performance. Even though the

average displacement does not give the complete probabilistic

picture but lends insight to the average MSE performance of the

algorithm. Probabilistic concentration results on a general class

of such random consensus algorithms can be found in [28] and

some results reported here to make the paper self-contained can

be derived as special cases.

This section is dedicated to the derivation of the mean-square

error performance of the broadcast gossip algorithm and to

studying the mixing parameter effect on the mean-square error

performance as well as the convergence. In particular, we prove

an upper bound on the discrete time (or equivalently, number of

clock ticks) required to get within of the consensus , .

We also derive an upper bound on the limiting mean-square

error performance. Finally, we examine the communication

complexity of the broadcast gossip algorithms to achieve a

certain distance to consensus.

A. Mean Square Error

Since, in general, the broadcast gossip algorithm does

not converge to the initial node measurements average

, it is of interest to consider the distance of

the consensus value to . In the remaining, we use

(34)

to denote the difference between the state vector at time step

and the average of initial node measurements.

Lemma 5: Let denote the mean square error at

time step . The following two statements hold:

i) the mean square error iteration obeys a recursion given as

(35)

ii) if such that almost surely, then

(36)

Proof: See Appendix D.

The above Lemma reveals that the mean square error (MSE)

conditioned on the current state is a strictly decreasing func-

tion of time and the strict inequality becomes equality when the

nodes converge to consensus. In the following, we consider the

limiting MSE behavior of the broadcast gossip algorithms.

Proposition 3: The limiting MSE of the broadcast gossip al-

gorithms is upper bounded by

(37)

Proof: See Appendix E.
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As in the worst-case convergence-rate case, it is of interest to

characterize the effect of the mixing parameter on the lim-

iting MSE performance. This is considered in the following

Corollary.

Corollary 4: Let be the upper-bound on the limiting

MSE of the broadcast gossip iterations, given in Proposition 3,

as a function of the mixing parameter . Then, the following

statements hold:

i) the boundary cases, i.e., and , are given by

(38)

and

(39)

respectively;

ii) is a monotonically decreasing function of ;

iii) , for , is given by

(40)

where

(41)

Proof: See Appendix F.

The Corollary indicates that the limiting MSE performance of

the broadcast gossip algorithm decreases when is increasing.

This is due to the fact that as approaches zero, the broad-

casting nodes create a local dominance shifting a multitude of

nodes away from the desired mean, whereas, for values closer

to unity, the nodes receiving the broadcasted value adjust their

own state only slightly, thereby changing minimally the network

mean.

B. Communication Cost to Achieve Consensus

Generalizing the analysis done for standard sum preserving

gossip-based averaging algorithms, we define the –converging

time in the following.

Definition 1: Given , the -converging time is the ear-

liest time at which the vector is close to the normalized

initial deviation with probability greater than :

(42)

where denotes the norm of its argument.

Before we move on to the main result of this section, we

need the following Lemma giving the order of the eigenvalue

of interest.

Lemma 6: For the broadcast gossip algorithm,

(43)

Proof: See Appendix G.

Unfortunately, the upper and lower bounds do not coin-

cide—they differ (ignoring logarithmic terms) by a factor.

It may be possible to tighten the upper bound by exploiting the

fact that for a communication radius slightly larger than the

threshold the random geometric graph is regular in an order

sense with degree [22]. However, we do not pursue

this here.

Given the convergence rate definition, we have the following

rate of convergence to a consensus for the broadcast based av-

erage consensus.

Proposition 4: The -converging time of the asynchronous

broadcast gossip algorithms is bounded by

(44)

where

(45)

Proof: At this stage of development, we just have to put the

pieces together. Given the Definition 1 and the results of [15],

using the Markov inequality and noting that:

(46)

Now, we have upper and lower bounds on of the form ,

so

(47)

Substituting the bounds in Lemma 6 yields the result.

Moreover, note that if we set in the above equa-

tion, then we obtain . Since the

number of transmissions per iteration is one in the broadcast

gossip algorithms, this result matches also the communication

complexity.1 One can observe that broadcast gossip algorithms

improve upon randomized gossip algorithms ( ),

but appears to be worse than the geographic gossip which has

communication complexity in the order of . As

we will see very shortly through numerical examples, broadcast

gossip significantly outperforms both algorithms for practical

network sizes. This is interesting, because it illustrates how the

constraint of maintaining the sum of the states constant does

come with some performance penalty as well.

C. Performance Analysis: Numerical Examples

In the following, as in [34], we compare the number of radio

transmissions to achieve a certain distance from consensus of

broadcast gossiping. We choose , since this value is

the optimal value in terms of convergence speed and provides

1Note that larger connectivity radius implies, at the expense of larger broad-
casting power, smaller � � �� �� � ����� and, in turn, better conver-
gence rate.
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Fig. 1. Number of radio transmissions required to achieve a given distance (per
node variance) from the consensus for � � ������������ with initial node
values uniformly distributed.

a tradeoff for the MSE. To simulate the random geometric

graph, we consider nodes that are uniformly distributed over

a unit square. Their initial values are initialized as uniformly

distributed random values with unit variance and zero mean.

The connectivity radius is chosen as . Of

note is that each iteration requires one, two and the number

of hops many radio transmissions, respectively, for broadcast,

standard and geographic gossiping.

Fig. 2. Number of radio transmissions required to achieve a given distance (per
node variance) from the consensus for � � ������������ with initial node
values zero except one in a single node.

The plots show the standard gossip algorithm [15], ge-
ographic gossip algorithm [34], and the broadcast gossip
algorithm. Fig. 1(a)–1(c) depict per-node variance versus the
number of radio transmissions for different network sizes (each
data point is an ensemble average of 25 trials). Recall that the
transmissions per iterations of randomized, geographic and
broadcast gossip algorithms are, respectively equal to two, to
the number of hops and to one. The simulation results suggest
that broadcast gossiping reaches consensus faster than both
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Fig. 3. The MSE performance of the randomized, geographic and broadcast
gossip algorithms with respect to the number of radio transmissions for � �
������������ with initial node values uniformly distributed.

competing protocols for an equal communication cost (cost that
does not account for the extra complexity of routing two ways in
geographic gossiping protocol). Indeed, this comparison is not
entirely fair since the methods in [15] and [34] do meet an extra
constraint; the comparison is useful since it highlights the non
negligible penalty in speed that results from the extra constraint
of maintaining the sum of states constant.

In Fig. 2(a)–2(c), we initialize the node values with zero ex-
cept one in a single node following [34]. This is a field where

Fig. 4. The MSE and Variance performances of the broadcast gossip algorithms
with respect to � for � � ��� with initial node values uniformly distributed.

computing the average over the network is a harder task than the
one considered before as in the previous case all the nodes are
somewhat closer to the average. However, in this case, the infor-
mation of the node containing the spike value needs to diffuse
over the whole network. The network simulation setup is the
same as above. The plot again illustrate the faster diffusion of
consensus in broadcast gossiping compared to geographic and
randomized gossiping protocols.

Next, we consider the MSE performance of the broadcast
gossip algorithm versus the number of iterations and compare
them to those of randomized and geographic gossip algorithms.
Recall that the MSE of randomized and geographic gossip al-
gorithms is zero in the limit, whereas the MSE of the broadcast
algorithm saturates to a non-zero value as the algorithm con-
verges to a consensus. The random geometric graph is simulated
exactly as specified for the previous comparisons.

Fig. 3(a)–3(c) depict the MSE performance of the random-
ized, geographic and broadcast gossip algorithms versus the
number of radio transmissions (two, number of hops many and
one per iteration for randomized, geographic and broadcast
gossip) for , respectively. An interesting
observation is that, for a reasonable number of radio transmis-
sions, the MSE performance of the broadcast gossip algorithm
is better than the randomized and geographic algorithms.
However, as the number of radio transmissions increase, the
randomized and geographic gossip, outperforms the broad-
casting one, as they tend to zero whereas the performance of
the broadcast gossip saturates to a nonzero value. Of note is
that the crossover point where the randomized and geographic
gossip starts to outperform the broadcast gossip increases with
increasing number of nodes in the network.

These simulations results corroborate the theoretical analysis
since they indicate that the MSE strictly decreases as long as
consensus is not achieved. They also show that the faster con-
vergence of broadcast gossip can be exploited to approximate
quickly the desired average. In applications that are severely
constrained in communication cost broadcast consensus may
represent a good practical alternative to the competing methods
that preserve the sum of the states.

In Fig. 4, we simulate the MSE and the speed of convergence

performances of the algorithm with respect to the parameter

for . Of note is that the simulation results are normal-

ized by the largest corresponding output. Parallel to our theo-

retical findings in Corollary 4, the MSE of the algorithm mono-
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tonically decreases with increasing . Moreover, as Corollary 1

suggests, we observe that per-node variance is convex in , i.e.,

the mixing parameter.2 On the other hand, the theory suggests

that the optimal mixing parameter (although smaller then) is

in the neighborhood of 0.5 where the simulation results indicate

that the optimal is around 0.3. We note that the theoretical

results correspond to the optimization of an upper bound, there-

fore the value of the practical optimal may differ from the

theoretical one presented here.

VII. CONCLUDING REMARKS

In this work we used the inherent broadcast nature of the wire-

less medium to present a simple “one-way” protocol that has

good performance in simulations of networks with a modest

number of nodes. The protocol simplifies the implementation

of random gossiping compared to methods that require a pair-

wise node exchange. We presented the conditions on the weights

matrices that would guarantee convergence to a consensus, and

showed that the broadcast gossip algorithm achieves consensus

with probability one. Moreover, the random consensus value is,

in expectation, equal to the average of the initial node states. Al-

though the network sum is not preserved at each broadcasting

time-slot, we provided theoretical and simulation results on the

mean square error performance in approximating such average.

Finally, we presented theoretical and numerical examples eval-

uating and comparing the communication cost of gossiping al-

gorithms required to achieve a given distance to consensus.

Even though the broadcast gossip algorithm shows promise

in terms of convergence rate and MSE performance, the ap-

propriate distributed averaging algorithm, e.g., randomized,

geographic or broadcast, with the appropriate tuning param-

eters, depends ultimately on the application at hand which

determines the relative importance of the implementation

simplicity, convergence rate, MSE performance, or cap on

the number of radio transmissions. Networks operating under

adverse conditions may be prone to packet losses, node failures,

and other events that may render pairwise exchange protocols

and long-haul routing infeasible. Our analysis and method

becomes particularly useful in these situations.

APPENDIX A
EXPECTED BROADCAST WEIGHT MATRIX

First we note that

(48)

Then, by (5), we have

elsewhere.

(49)

2It is of interest to note that similar tradeoff between the convergence rate and
MSE performance (larger (smaller) convergence rate yields a larger (smaller)
MSE) is also observed in the agreement problems with transmission noise case
[35].

Therefore (9) follows. Note that (9) is the representation of the
weight matrix in terms of graph Laplacian , i.e.,
where and . Since

for all , satisfies the conditions given
in (10).

APPENDIX B
ALMOST SURE CONVERGENCE OF BROADCAST

GOSSIP ALGORITHMS

At this stage of development, we just need to put the pieces
together. First, we introduce a Lemma concerning convergence
of random sequences that will prove useful to prove the above
theorem.

Lemma 7 [36]: Consider a sequence of nonnegative
random variables with . Let

(50)

where . Then, almost surely converges to zero,
i.e.

(51)

We have almost sure convergence if
, for some since [7]

(52)

However, given , we have, as can be seen in the proof of
Lemma 3, that

(53)

From the proof of Lemma 3 and Proposition 2, we know that

(54)

where . Thus, using the
Lemma regarding the convergence of nonnegative random se-
quences, we have that , com-
pleting the proof.

APPENDIX C
PROPERTIES OF HIGHER-ORDER MATRICES

Let be the degree of node . From the per-node
weight matrices, we obtain

otherwise.

(55)



2758 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 7, JULY 2009

where denotes the weight matrix corresponding to the case
where node ’s clock ticks. Therefore, the average is

otherwise.

(56)

Then, (24) follows. As we noted before, (24) is the represen-
tation of in terms of graph Laplacian . Since

for all , satisfies the properties
given in (10).

Turning now to , we first calculate

.

(57)

Then we find

or

or

or .

(58)

Now we can take expectations. For each pair we can
calculate the expectation over . Note that is the number
of paths of length 2 from to or alternatively the number of

which are in the neighborhood of and . Consider first the
case where .

• There are values for for which .
• There are values for which and

exactly one of and is in if and are not adjacent.
There are values if and are
adjacent.

• Note that once and once. Of the last two
alternatives in (58), we have the former if and the
latter if .

• If and are not adjacent, there are
values of for which . If they are

adjacent, there are such values
Then we have for that

(59)

The matrix above has the following values on the diagonal:

(60)

If then for 1 value of we have , for values
of we have , and for values of we have

. Thus on the diagonal we should have

(61)

(62)

So we must add the correction term to (59) to get
the correct matrix

(63)

APPENDIX D
CONVERGENCE OF THE MEAN SQUARE ERROR

It is easy to see that , yielding the
following recursion for the second moment:

(64)

(65)

(66)

where we utilize the eigendecomposition of and
define . Given , we can find , so we have
the following:

(67)

(68)

(69)

(70)

(71)

(72)

where the last line follows from the facts that

due to unitary decomposition and
due to the

relation . This concludes the proof of the first
item.

Let us now consider the second item. Note that is a para-
contracting matrix with respect to norm since its symmetric
and all its eigenvalues are in . Thus, we have

(73)
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Thus, if we can show that if and only if
for some , we are done. If , then,

(74)

where we used the facts that and .

Now, if , then . Thus,
. Since

(75)

we are done. Therefore, the proof of the second item is complete.

APPENDIX E
LIMITING MEAN SQUARE ERROR

One can check that the following holds:

(76)

Substituting the above into the claim (i) of Lemma 5, we obtain

(77)

To upper bound the above, we need to lower bound
term. Utilizing the Jensen’s inequality, we have

(78)

(79)

(80)

where the last line follows from Lemma 2. Moreover, utilizing
the properties of , the above reduces to

(81)

(82)

(83)

(84)

Note that is symmetric since and are symmetric.
Thus, utilizing the unitary eigendecomposition,

, and defining , we obtain the following:

(85)

(86)

(87)

We need the following lemma before we continue the proof.
Lemma 8: All the eigenvalues of except zero are

lower bounded by , i.e.,

(88)

for all .
Proof: Note that the vector is an eigenvector of

with eigenvalue 0. The vector

corresponds to the only nonzero eigenvalue of the matrix and
the only zero eigenvalue for the Laplacian matrix . Therefore
the eigenvectors of are exactly the eigenvectors of ,
and the th eigenvalue of for is:

(89)

where the inequality follows from the fact that . Thus,
the proof is complete.

Since by the above lemma,
and by construction, the above reduces
to

(90)

(91)

(92)

(93)

Substituting (93) into (77) yields

(94)

Repeatedly utilizing the above, we obtain

(95)

(96)

where the second line uses the geometric series. Now, taking the
limit of the above as tends to infinity, we obtain the result of
the proposition.

APPENDIX F
CHARACTERIZATION OF LIMITING MSE PERFORMANCE

Let us first solve for the boundary cases. We consider the
case since simply follows by replacing in

the expression (as is clear in the remainder of the proof).
Thus, we have

(97)

(98)
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(99)

where the second line follows from the facts that
and

(see Appendix G) and the last line follows from
expanding the square. Of note is that follows straight
from (99) by replacing with zero. Note that for , the
limit of interest reduces to, after substituting in the limit
expression, the expression stated in the Corollary.

Consider next the monotonicity of the upper-bound w.r.t. the
mixing parameter. To prove this claim, we simply show that

for . Differentiating w.r.t.
and focusing on the numerator of the expression

(since denominator is always positive and does not effect the
sign), after tedious algebraic steps, gives

(100)

where denotes the sign operator. Since for
non-superconnected graphs, it is easy to see that

for .
The last claim simply follows by substituting the optimal

mixing parameter expression into the upper bound expression.

APPENDIX G
CHARACTERIZATION OF LARGEST EIGENVALUE

We begin by recalling the relation between the eigenvalue of
interest and the eigenvalues of the graph Laplacian. We would
like to calculate the eigenvalue . The matrix

is given by

(101)

First note that the vector is an eigenvector of with
eigenvalue 0. The vector corresponds to the only nonzero
eigenvalue of the matrix and the only zero eigenvalue for the
Laplacian matrix . Therefore the eigenvectors of

are exactly the eigenvectors of , and the th
eigenvalue for is:

(102)

Thus to characterize we must characterize the
second-smallest eigenvalue of the Laplacian matrix . The
number is sometimes called the algebraic connec-
tivity of the graph.

An upper bound on will yield a lower bound on the
largest eigenvalue of . A result of Alon and Milman
[33, Theorem 2.7] shows that is upper bounded by the
following function of the diameter of the graph:

(103)

If the communication radius is chosen large enough, for the
random geometric graph with standard connectivity assump-
tions, (see [22]). The diameter can be found
as the number of hops to get from one corner to the diagonally
opposite corner, so it is . Thus the whole bound
is

(104)

This gives the bound

(105)

To upper bound we need a nontrivial lower
bound on . A result of Mohar [37] gives this lower
bound in terms of the diameter of the graph. Mohar’s lower
bound is

(106)

Therefore

(107)

and

(108)
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