
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023
145

PAPER
Broadcast with Tree Selection from Multiple Spanning Trees
on an Overlay Network

Takeshi KANEKO†∗, Nonmember and Kazuyuki SHUDO†a), Member

SUMMARY On an overlay network where a number of nodes work
autonomously in a decentralized way, the efficiency of broadcasts has a
significant impact on the performance of distributed systems built on the
network. While a broadcast method using a spanning tree produces a small
number ofmessages, the routing path lengths are prone to be relatively large.
Moreover, when multiple nodes can be source nodes, inefficient broadcasts
often occur because the efficient tree topology differs for each node. To
address this problem, we propose a novel protocol in which a source node
selects an efficient tree from multiple spanning trees when broadcasting.
Our method shortens routing paths while maintaining a small number of
messages. We examined path lengths and the number of messages for
broadcasts on various topologies. As a result, especially for a random
graph, our proposed method shortened path lengths by approximately 28%
comparedwith amethod using a spanning tree, with almost the same number
of messages.
key words: broadcast, overlay network, path length, Plumtree, spanning
tree

1. Introduction

An overlay network is an application-level logical network
built on an existing network such as the Internet. It is applied
to various distributed systems: e.g. distributed key/value
stores [1], video streaming [2], and online games [3]. In
recent years, application to the fields of IoT and blockchain
is also expected [4].

On an overlay network where a number of nodes work
autonomously in a decentralized way, the large-scale dis-
tributed system requests frequent information exchange with
low latency to achieve high scalability and high reliability.
Therefore, the efficiency of broadcasts has a significant im-
pact on the performance of the distributed system.

A variety of methods to realize efficient broadcasts have
been proposed [5]. In particular, while tree-based methods
using a spanning tree built on the network produce a small
number of messages, the routing path lengths are prone to
be larger than those of flooding and gossip-based methods.
Moreover, when multiple nodes share a single spanning tree
and issue broadcasts on it, inefficient broadcasts often occur
because the appropriate topology of the tree differs for each
node.

To address this problem, we propose a novel protocol

Manuscript received January 24, 2022.
Manuscript revised April 20, 2022.
Manuscript publicized August 16, 2022.
†The authors are with the School of Computing, Tokyo Institute

of Technology, Tokyo, 152-8552 Japan.
∗Presently, with Yahoo Japan Corporation.

a) E-mail: shudo@media.kyoto-u.ac.jp
DOI: 10.1587/transcom.2022EBP3007

in which a source node selects an efficient tree frommultiple
spanning trees when broadcasting. This method reduces
the frequency of inefficient broadcasts for multiple source
nodes, even if most participating nodes can be source nodes.
It thereby shortens routing path lengths while maintaining
the advantage of tree-based methods, which is producing
a small number of messages. We adopt Plumtree [6] as
the spanning tree construction protocol though the proposed
tree selection does not depend on a specific tree construction
protocol.

This paper is an extended version of our previous work
[7]. This paper presents experiments conducted using Torus
Grid Graph; the results are given in Fig. 9, Fig. 10 and
Fig. 11 in Sect. 6.2. Pseudocode for data propagation, tree
repair and optimization, and membership management are
also added as Algorithm 4, Algorithm 5 and Algorithm 6 in
Sect. 4.3. An analysis of the proposed method shown in
Sect. 5 is also part of the difference.

The remainder of this paper is organized as follows.
Section 2 presents the relatedwork on broadcasts using span-
ning trees. Section 3 defines notations used in this paper.
Section 4 presents the proposed method in detail. Section 6
presents the evaluation experiments for the proposed method
and the results. Finally, Sect. 7 presents the conclusion of
this study.

2. Related Work

In a gossip-based broadcast [8], each node randomly selects
f nodes from the network for a system parameter f called
fanout, and sends messages to them. While this provides
high scalability and high reliability, it has the disadvantage
of producing a large number of messages. In a tree-based
broadcast, a spanning tree is built on the network and each
node sends messages on the tree topology. While this main-
tains a small number of messages, it provides low fault tol-
erance and low reliability.

2.1 Plumtree

Leitao et al. proposed a broadcast method called Plumtree
[6], which combines a gossip protocol and a tree-based pro-
tocol. This achieves both a small number of messages and
high reliability. In addition, the routing path lengths of each
broadcast are relatively small for multiple source nodes due
to the optimization process of the tree topology. However, as
with other tree-based broadcasts, the lengths are still prone to

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

146
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023

be larger than those of flooding because broadcast messages
are sent only on a single spanning tree topology.

2.2 Methods Using Multiple Spanning Trees

SplitStream [9] and Chunkyspread [10] are multicast meth-
ods that construct multiple spanning trees on a network.
Because the purpose is streaming, the content is divided into
some strips and they are sent with all trees simultaneously;
the load is thereby balanced for each tree. On the other hand,
the proposed method selects an appropriate tree instead of
multiple trees and shortens the routing paths. SplitStream
also differs from the proposed method in that it constructs
spanning trees on a structured overlay Pastry [11], rather than
an unstructured overlay. On a structured overlay, a tree is
constructed by unicast routing supported by the overlay. Par-
ticipating nodes route to a specific ID and the resulted paths
constitute a tree [12]. In contrast, an unstructured overlay
does not support unicast routing. A tree is constructed by
flooding. A source node floods a tree construction message
to all the nodes. A receiver establishes a tree branch to the
sender when it receives the message for the first time. There-
after the receiver ignores the message from other senders [6].

Thicket [13] is a multicast method that constructs and
manages multiple spanning trees on an unstructured overlay.
Aswith other existingmethods, the purpose of usingmultiple
spanning trees is load balancing. On the other hand, the
proposed method selects one tree from multiple spanning
trees when broadcasting to shorten the routing paths. It is
possible to partially apply the proposed method to Thicket
because the idea for the tree selection is simple.

2.3 Mobile ad hoc Network

There have been techniques constructing a tree for multicast
and broadcast in mobile ad hoc networks (MANETs) [14],
[15]. Utilizing multiple trees simultaneously also have been
considered for communication quality such as bandwidth
[16], [17].

Costs to consider forMANETs and overlay networks are
different. In MANET, a node can send a message to all the
near nodes at once. But in an overlay network, a node has to
send a message to each neighbor node individually. Because
of it, the number of messages is an important measure of
cost in an overlay network. Our goal is to achieve better
performance while keeping the cost on par with a single
tree.

2.4 IP Multicast

IP multicast protocols construct a distribution tree of routers
for each multicast group, represented by a IP multicast ad-
dress. All existing IP multicast routing protocols construct
a single distribution tree for a multicast group while the pro-
posed method utilizes multiple trees for a single receiver
group. There is little room for utilizing multiple trees be-
cause a network structure of routers is fixed and then the

network has almost no degrees of freedom in a tree topol-
ogy. Moreover, IP multicast has ever hardly been deployed
and then overlay network based techniques such as the pro-
posed method have been exploited.

3. Notation

This section defines notations used in this paper.
An undirected graph G is represented by a pair (V,E),

where V denotes a set of vertices and E denotes a set of
edges. We define the following for G = (V,E):

• adjG : V 3 v 7→ (the set of all neighbors of v) ∈ 2V
• degG : V 3 v 7→ |adjG(v)| ∈ N
• distG : V × V 3 (u, v) 7→

(the distance between u and v) ∈ N ∪ {∞}

– Especially, ∀v ∈ V,distG(v, v) = 0.

An undirected rooted tree T is represented by a triple
(V,F,r); where V denotes a set of vertices, F denotes a
set of edges, and r denotes the root node. It can also be re-
garded simply as an undirected graph T = (V,F). We define
the following for T = (V,F,r):

• parentT : V − { r } 3 v 7→ (the parent of v) ∈ V
• childrenT : V 3 v 7→

(the set of all children of v) ∈ 2V
• subtreeT : V 3 v 7→ (the rooted subtree induced by v)
• heightT B max { distT (r, v) | v ∈ V } ∈ N

4. Proposed Method

In the proposed method, multiple spanning trees are con-
structed on an overlay network (Sect. 4.1), and a source node
selects an appropriate tree from them (Sect. 4.2) and issues
a broadcast (Sect. 4.3).

Each spanning tree is embedded in an unstructured over-
lay network managed by a peer sampling service [18], [19].
A spanning tree is maintained along the Plumtree proto-
col [6]. In Plumtree, a node has two types of neighbors in
eagerPushPeers and lazyPushPeers sets. EagerPushPeers
include neighbors along tree edges and lazyPushPeers in-
clude other neighbors. A broadcast is basically performed
over a tree, that is, forwarding to eagerPushPeers. A node
sometimes forwards a notification of arrival of a message to
lazyPushPeers. The notified node starts repairing a tree if
it has not received the message along the tree. Tree con-
struction is as follows. A node has all its neighbors in its
eagerPushPeers at the start of the construction. The initial
tree is lengthy and there are multiple paths to a single node.
If a node receives the same message from multiple neigh-
bors, the node replies a PRUNE message to the sender and
both the sending and receiving nodes move each other from
eagerPushPeers to lazyPushPeers.

Since messages for each broadcast are sent on a single
tree, the number of messages is approximately Θ(n) for a
stable overlay network where n denotes the number of par-
ticipating nodes.

KANEKO and SHUDO: BROADCAST WITH TREE SELECTION FROMMULTIPLE SPANNING TREES ON AN OVERLAY NETWORK
147

Fig. 1 An example of tree selection from multiple spanning trees for a source node s.

Fig. 2 Tree construction.

Moreover, our aim is to minimize the maximum path
length from the source node to each node for each broadcast
by the following process:

1. Suppose that a finite number of spanning trees
T1 = (V,F1),T2 = (V,F2), . . . ,Tk = (V,Fk) are managed
on a graph G = (V,E)† of the network topology.

2. A source node s ∈ V selects the tree Tλ (λ ∈

{ 1,2, . . . , k }) that minimizes

height(V ,Fλ ,s) = max
{

distTλ (s, v)
�� v ∈ V

}
, (1)

which is the maximum path length of each simple path
whose one end is the node s on Tλ.

Figure 1 shows an example of tree selection. In this ex-
ample, the network manages three spanning trees T1, T2, and
T3, the source node is a node s, and then height(V ,F1 ,s)

= 3,
height(V ,F2 ,s)

= 4, and height(V ,F3 ,s)
= 4. Since T1 mini-

mizes (1), the source node s selects T1 from them.
Note that, however, since each node does not have global

information on the network, it selects a tree based on a value
estimated only from information it knows rather than the
exact value of (1).

†Strictly speaking, an overlay network with a peer sampling
service forms a topology of a directed graph. However, for sim-
plicity, the network topology is regarded as an undirected graph
in this paper because each managed spanning tree behaves like an
undirected graph.

Algorithm 1: Fields and Initialization in a Node
vcurrent
1 data structure Tree
2 field eagerPushPeers : Set 〈Node〉
3 field lazyPushPeers : Set 〈Node〉
4 field distFor : Map〈Node, Int〉
5 field parent : Node

6 upon receiving 〈Init〉 then
7 peers← getPeers()
8 trees← new Map〈Int, Tree〉
9 receivedMsgs← new Map〈Int,Message〉
10 missing← ∅

4.1 Tree Construction

The proposed method constructs multiple spanning trees on
the network at the beginning of the protocol. The number
of trees, a positive integer k, is a system parameter deter-
mined before running the protocol. We randomly select k
start nodes from the network†† and construct a spanning tree
for each start node based on the delivery tree by flooding.
The constructed k trees are not uniform. Each k tree is effi-
††For example, we can sample some start nodes by doing a

random walk from a node and selecting nodes on every certain
number of hops. However, because sampling with a simple random
walk is biased by the degree of each node, if it is preferred to
sample nodes with a uniform distribution, e.g., we should use a
random walk using Metropolis-Hastings algorithm [20].

148
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023

Algorithm 2: Tree Construction in a Node vcurrent
1 upon receiving 〈ConstructTree, treeId〉 from vsender then
2 if treeId < trees.keys() then
3 t ← new Tree
4 trees[treeId] ← t
5 t .eagerPushPeers← peers
6 t .parent← vsender
7 for vadj ∈ t .eagerPushPeers do
8 if vadj = vsender then
9 continue

10 send 〈ConstructTree, treeId〉 to vadj

11 else
12 send 〈UpdateDistTowardRoot, treeId,∞〉 to vsender

13 upon receiving
〈UpdateDistTowardRoot, treeId, distForSender〉 from vsender
then

14 t ← trees[treeId]
15 if distForSender < ∞ then
16 t .distFor[vsender] ← distForSender
17 else
18 t .eagerPushPeers← t .eagerPushPeers − {vsender }
19 t .lazyPushPeers← t .lazyPushPeers ∪ {vsender }

20 if t .eagerPushPeers − { t .parent } = t .distFor.keys() then
21 if t .parent = vcurrent then

// when vcurrent is the root node of t
22 send 〈UpdateDistTowardLeaves, treeId, 0〉 to

vcurrent
23 else
24 maxDist←

getMaxDistExceptOne(t .distFor, t .parent)
25 send

〈UpdateDistTowardRoot, treeId,maxDist + 1〉
to t .parent

26 upon receiving
〈UpdateDistTowardLeaves, treeId, distForSender〉 from
vsender then

27 t ← trees[treeId]
28 if vsender , vcurrent then
29 t .distFor[t .sender] ← distForSender

30 for vadj ∈ t .eagerPushPeers do
31 if vadj = vsender then
32 continue

33 maxDist← getMaxDistExceptOne(t .distFor, vadj)
34 send

〈UpdateDistTowardLeaves, treeId,maxDist + 1〉
to vadj

35 function getMaxDistExceptOne(distFor, vexcepted)
36 maxDist← 0
37 for (vadj , d) ∈ distFor do
38 if vadj = vexcepted then
39 continue

40 maxDist← max{maxDist, d}

41 return maxDist

cient for the corresponding k start node because a spanning
tree construction protocol including Plumtree constructs an
efficient tree for the start node.

Algorithm 1 and Algorithm 2 are pseudocodes on ini-
tialization and spanning tree construction, respectively. For

simplicity, the latter pseudocode assumes that no messages
are lost and no nodes join or leave during the construction of
a spanning tree. In practice, it is necessary to address such
situations by using timeout timers.

Figure 2 illustrates the tree construction process de-
scribed in Algorithm 2. Figure 2(a) shows construction of
spanning trees corresponding to ConstructTree, Fig. 2(b)
shows propagation of distance information into the root node
corresponding to UpdateDistTowardRoot, and Fig. 2(c)
shows propagation of distance information to all the leaf
nodes corresponding to UpdateDistTowardLeaves.

Each start node vstart constructs a new spanning tree
by issuing an event 〈ConstructTree, treeIdnew〉 (line 1 in
Algorithm 2) to itself vstart. Herein, we generate treeIdnew,
the ID corresponding to the tree to be constructed, e.g., by a
pseudorandom number to avoid duplicate IDs.

When each node vcurrent receives an event
〈ConstructTree, treeId〉, if it does not have the corre-
sponding tree data, then it generates a new tree t and initial-
izes t .eagerPushPeers with its neighbor nodes and sends the
same event 〈ConstructTree, treeId〉 to each of the nodes.
If it has the corresponding tree data, then it sends an event
〈UpdateDistTowardRoot, treeId,∞〉 (line 13 in Algorithm
2) to the sender to indicate that vcurrent has already received
the event for the treeId. The sender that receives it excludes
vcurrent from t .eagerPushPeers. Through these processes,
if each node is considered to have an edge with each node
in t .eagerPushPeers, a spanning tree forms on the network
where the start node vstart is the root node.

A node that sent an event 〈ConstructTree, treeId〉
to its neighbor nodes, after receiving an event
〈UpdateDistTowardRoot, treeId,distForSender〉 from
each of them, sends an event 〈UpdateDistTowardRoot,
treeId,maxDist + 1〉 to the parent node t.parent where
maxDist is

maxDist

=max
©«
{ 0 } ∪{
t .distFor[v] |
v ∈ t .eagerPushPeers − { t .parent }

}ª®®¬ .
(2)

In general, the following holds for any node v ∈ V of a rooted
tree T = (V,F, vstart):

heightsubtreeT (v)

=max

(
{ 0 } ∪{

heightsubtreeT (u) + 1
�� u ∈ childrenT (v)

}) . (3)

Thus, this process means computing the height of the tree
by dynamic programming through the propagation of “dis-
tance” information into the root node vstart. Therefore, Each
t .distFor[vadj] represents (heightsubtreeT (vadj)

+ 1).
After completing the propagation of “distance” infor-

mation into the root node, “distance” information prop-
agates into leaf nodes such that each node sends an
event 〈UpdateDistTowardLeaves, treeId,distForSender〉

KANEKO and SHUDO: BROADCAST WITH TREE SELECTION FROMMULTIPLE SPANNING TREES ON AN OVERLAY NETWORK
149

Algorithm 3: A Broadcast with Tree Selection in
a Node vcurrent
1 upon receiving 〈Broadcast,msg〉 from vsender then
2 msgId← hash(msg ‖ vcurrent)
3 treeId← selectTree()
4 send 〈Gossip,msg,msgId, treeId, 0, 0〉 to vcurrent

5 function selectTree()
6 minTreeId←∞
7 minDist←∞
8 for (treeId, t) ∈ trees do
9 distToEnd← max ({ 0 } ∪ t .distFor.values())

10 if distToEnd < minDist then
11 minDist← distToEnd
12 minTreeId← treeId

13 return minTreeId

(line 26 in Algorithm 2) to each of the children. When com-
pleting the propagation into leaf nodes, each t .distFor(vadj)
represents (heightsubtree(V ,F , vcurrent)(vadj)

+ 1).
Through the above processes, a spanning tree is con-

structed on the overlay network. In a one-and-a-half round-
trip broadcast by the start node vstart, every t .distFor is com-
puted by dynamic programming with piggyback of the “dis-
tance” information.

4.2 Tree Selection

A source node vcurrent broadcasts by issuing an event
〈Broadcast,msg〉 (line 1 in Algorithm 3) for a message
body msg to itself vcurrent. Here, it selects a tree from trees
and makes each node send messages on the tree.

Algorithm 3 is a pseudocode on the tree selection. A
function selectTree returns the ID of the tree t in trees
such that (4) is minimum.

max
(
{ 0 } ∪

{
distFor[vadj]

�� vadj ∈ t.eagerPushPeers
})
(4)

If t represents a rooted tree (V,F, vcurrent), distFor[vadj] rep-
resents (heightsubtree(V ,F , vcurrent)(vadj)

+ 1). Thus, (4) represents

max

(
{ 0 } ∪

{
heightsubtree(V ,F , vcurrent)(v)

+ 1 |

v ∈ adj(V ,F ,vcurrent)(vcurrent)

})
=height(V ,F ,vcurrent).

(5)

This is equivalent to (1) where vcurrent = s. Therefore, this
process intuitively means tree selection minimizing the max-
imum path length for the broadcast.

In practice, tree selection does not always minimize the
maximum path length because the selection is based on local
information and the network topology is dynamic. How the
values t.distFor are updated is important for improving the
accuracy of the tree selection.

4.3 Message Propagation and Value Update

Message propagation and topology management during a
broadcast mostly follow the Plumtree protocol for a tree
determined by the tree selection algorithm. Algorithm 4 is a
pseudocode on the message propagation, and Algorithm 5 is
a pseudocode on the topologymanagement and optimization.
A node starts broadcasting by sending a Gossip message to
itself.

Each tree t has two sets of neighbor nodes
t .eagerPushPeers and t .lazyPushPeers (lines 2 and 3 in Al-
gorithm 1) because a tree is maintained in the Plumtree
protocol. The two sets are subject to eager push and lazy
push for, respectively. Eager push is a protocol where a node
sends the message body msg directly to the neighbor nodes.
Lazy push is a protocol where a node sends the message ID
msgId first, and sends msg only when it receives a request
from a receiving node of msgId. The former is used for fast
message propagation on the tree, while the latter is used to
guarantee the reliability of broadcasts and recover the tree
topology.

To support dynamics of the network for tree selection,
each node updates the values of t .distFor (line 4 in Algo-
rithm 1) through the message propagation with piggybacked
“distance” information. Since the data size of the piggyback
is very small, the additional cost of the communication is
insignificant.

The more frequent broadcasts are, the faster the values
of distFor follow the exact values for the dynamic network,
and the more accurate tree selection becomes. On the other
hand, themore the network changes, themore there is a delay
in following the values, and the less accurate tree selection
becomes. If the frequency of broadcast is too low and the
distFor values likely become too stale, it is worth considering
to update distFor values by sending a message to all the k
trees periodically.

Finally, Algorithm 6 is a pseudocode on joining and
leaving of nodes. NeighborUp (line 7) and NeighborDown
(line 1) are events issued by a peer sampling service and up-
date information for neighbor nodes. Moreover, the protocol
also locally computes the values of t .distFor.

5. Analysis

This section provides an analysis of the proposed method in
cost, scalability and robustness.

5.1 Cost

The memory space required on a node is increased by k in
case the number of tree is k, that is a system parameter. The
size of data structure Node (in Algorithm 1) would be tens of
bytes and the size of data structure Treewould be hundreds of
bytes. The space they consume is increased by the proposed
method by k times. In the following experiments (Sect. 6), k
is 10 and then the space overhead would be several kilobytes.

150
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023

Algorithm 4: Data Propagation in a Node vcurrent

1 upon receiving
〈Gossip,msg,msgId, treeId, round, distForSender〉 from
vsender then

2 t ← trees[treeId]
3 if msgId < receivedMsgs.keys() then
4 trigger a event with msg
5 receivedMsgs[msgId] ← msg
6 if ∃(id, _, _, _) ∈ missing s.t. id = msgId then
7 cancelTimer(msgId)

8 if vsender , vcurrent then
9 t .eagerPushPeers←

t .eagerPushPeers ∪ {vsender }
10 t .lazyPushPeers← t .lazyPushPeers − {vsender }
11 t .distFor[vsender] ← distForSender

12 execEagerPush(msg,msgId, treeId, round, vsender)
13 execLazyPush(msg,msgId, treeId, round, vsender)
14 optimizeTree(msgId, round, vsender)

15 else
16 t .eagerPushPeers← t .eagerPushPeers − {vsender }
17 t .lazyPushPeers← t .lazyPushPeers ∪ {vsender }
18 delete t .distFor[vsender]
19 send 〈Prune, treeId〉 to vsender

20 upon receiving 〈Prune, treeId〉 from vsender then
21 t ← trees[treeId]
22 t .eagerPushPeers← t .eagerPushPeers − {vsender }
23 t .lazyPushPeers← t .lazyPushPeers ∪ {vsender }
24 delete t .distFor[vsender]

25 function execEagerPush(msg,msgId, treeId, round, vsender)
26 t ← trees[treeId]
27 for vadj ∈ t .eagerPushPeers do
28 if vadj = vsender then
29 continue

30 maxDist← getMaxDistExceptOne(t .distFor, vadj)
31 send

〈Gossip,msg,msgId, treeId, round + 1,maxDist + 1〉
to vadj

32 function execLazyPush(msg,msgId, treeId, round, vsender)
33 t ← trees[treeId]
34 for vadj ∈ t .lazyPushPeers do
35 if vadj = vsender then
36 continue

37 maxDist← getMaxDistExceptOne(t .distFor, vadj)
38 lazyQueue← lazyQueue ∪{(

〈Ihave,msgId, treeId, round+1,maxDist+1〉 ,
vadj

)}
39 dispatch()

40 function dispatch()
41 announcements← policy lazyQueue
42 for (data, vadj) ∈ announcements do
43 send data to vadj

44 lazyQueue← lazyQueue − announcements

The number of messages for tree construction
(Sect. 4.1) is also increased by k. If the base protocol re-
quires additional messages for topology maintenance, the
number of such messages is also increased by k. Note that
Plumtree does not require such additional messages.

Nevertheless, the number of messages for broadcast-

Algorithm 5: Tree Repair and Optimization in a
Node vcurrent
1 upon receiving 〈Ihave,msgId, treeId, round, distForSender〉

from vsender then
2 if msgId < receivedMsgs.keys() then
3 if ¬isActiveTimer(msgId) then
4 setupTimer(msgId, timeout)

5 missing← missing ∪
{ (msgId, treeId, vsender , round, distForSender) }

6 upon receiving 〈Timeup,msgId〉 then
// when a timer for msgId expires

7 (_, treeId, vmissing, round, _) ←
removeFirstAnnouncement(missing,msgId)

8 t ← trees[treeId]
9 maxDist← getMaxDistExceptOne(t .distFor, vmissing)
10 send 〈Graft,msgId, treeId, round,maxDist + 1〉 to

vmissing

11 upon receiving 〈Graft,msgId, treeId, round, distForSender〉
from vsender then

12 t ← trees[treeId]
13 t .eagerPushPeers← t .eagerPushPeers ∪ {vsender }
14 t .lazyPushPeers← t .lazyPushPeers − {vsender }
15 t .distFor[vsender] ← distForSender
16 if msgId ∈ receivedMsgs.keys() then
17 msg← receivedMsgs[msgId]
18 maxDist←

getMaxDistExceptOne(t .distFor, vsender)
19 send

〈Gossip,msg,msgId, treeId, round,maxDist + 1〉 to
vsender

20 function optimizeTree(msgId, round, vsender)
21 if ∃(id, treeId, vmissing, r , distForMissing) ∈

missing s.t. id = msgId then
22 if round − r ≥ threshold then
23 t ← trees[treeId]
24 t .eagerPushPeers←

t .eagerPushPeers ∪ {vmissing }
25 t .lazyPushPeers← t .lazyPushPeers − {vmissing }
26 t .distFor[vmissing] ← distForMissing
27 t .eagerPushPeers←

t .eagerPushPeers − {vsender }
28 t .lazyPushPeers← t .lazyPushPeers ∪ {vsender }
29 delete t .distFor[vsender]
30 maxDist←

getMaxDistExceptOne(t .distFor, vmissing)
31 send 〈Graft, null, treeId, round,maxDist + 1〉

to vmissing
32 send 〈Prune, treeId〉 to vsender

ing (Sect. 4.3) does not increase because a broadcast is per-
formed on a single tree after tree selection (Sect. 4.2) and all
the additional information for the proposed method such as
distance is piggybacked on the broadcasted messages.

Increases in memory space for tree management and
in the number of messages for tree construction and main-
tenance are linear to the number of trees, that is a small
constant, for example, 10.

KANEKO and SHUDO: BROADCAST WITH TREE SELECTION FROMMULTIPLE SPANNING TREES ON AN OVERLAY NETWORK
151

Algorithm 6: Membership Management in a
Node vcurrent
1 upon receiving 〈NeighborDown, vdown 〉 then
2 for (_, t) ∈ trees do
3 t .eagerPushPeers← t .eagerPushPeers − {vdown }
4 t .lazyPushPeers← t .lazyPushPeers − {vdown }
5 delete t .distFor[vdown]

6 missing← { (_, _, vsender , _) ∈ missing | vsender , vdown }

7 upon receiving
〈
NeighborUp, vup

〉
then

8 distSet← ∅
9 for (treeId, t) ∈ trees do
10 maxDist← getMaxDistExceptOne(t .distFor, vup)
11 distSet← distSet ∪ {(treeId,maxDist + 1)}

12 send 〈DistUpdate, distSet〉 to vup

13 upon receiving 〈DistUpdate, distSet〉 from vsender then
14 reverseDistSet← ∅
15 for (treeId, distForSender) ∈ distSet do
16 if treeId < trees.keys() then
17 trees[treeId] ← new Tree
18 trees[treeId].lazyPushPeers← peers

19 added← [vsender < t .eagerPushPeers]
20 t ← trees[treeId]
21 t .eagerPushPeers← t .eagerPushPeers ∪ {vsender }
22 t .lazyPushPeers← t .lazyPushPeers − {vsender }
23 t .distFor[vsender] ← distForSender
24 if added then
25 maxDist←

getMaxDistExceptOne(t .distFor, vsender)
26 reverseDistSet←

reverseDistSet ∪ {(treeId,maxDist + 1)}

27 if reverseDistSet , ∅ then
28 send 〈DistUpdate, reverseDistSet〉 to vsender

5.2 Scalability

Scalability along the number of node is completely deter-
mined by the single tree construction method on which we
base. In our case, it is Plumtree. The proposed method is
scalable to the same degree as Plumtree.

5.3 Robustness

Robustness is also determined by the single tree construction
method. In our case, it is Plumtree. The effect of node
failures to Plumtreewas evaluated in Sect. 4.3 of the Plumtree
paper [6]. In the proposed method, last delivery hop (LDH)
and reliability are just the same as Plumtree because the
proposedmethod utilizes a single tree for broadcast. Relative
message redundancy (RMR) can be k-fold but repair of a tree
requires only a few messages in Plumtree protocol. Healing
time is the same as Plumtree. Healing, i.e. tree repair, for
each k tree can occur at various times.

If a repair happens along the Plumtree protocol, distance
information (distFor in Algorithm 1) could be incorrect for
a while. It lowers efficiency of the proposed method until
the distance information is updated but broadcasting keeps
working.

5.4 Impact of the Number of Trees

The proposed method constructs k trees (Sect. 4.1). The k
affects the effect of the proposed method. Larger k is more
effective, but the effect of an increase by one of k diminishes
as k increases. In other words, smaller k yields large part of
the effect. An analysis follows.

There are |V | possible trees where |V | is the number of
nodes because all the node can be the root of a possible tree.
Note that the topologies of two possible trees are the same
except their root nodes. The proposed method constructs k
trees randomly selected from |V | possible trees. A broad-
cast enjoys the best tree from k trees by the tree selection
(Sect. 4.2). We can rank all the possible trees from the first
rank to the last, |V |-th rank though the order is partial order.
The expected value of the rank of the best tree in k trees is
|V |/k + 1. In case the number of nodes |V | is 10000, we
expect the 5000-th ranked tree where k = 1, the 3333-rd
ranked tree where k = 2, and the 909-th ranked tree where
k = 10. The expected rank number decreases monotonically
as k increases. The 10 as k is the parameter we adopt in our
experiments shown in Sect. 6.

We expect the 833-rd ranked tree where k = 11 by
increasing k by one from 10. How much better the 833-rd
is compared to the 909-th depends on the distribution of tree
heights of the possible |V | trees. It is still an open problem
to analyze such distribution in Plumtree, but only 10 trees
have already yielded large part of the effects. For example,
in Fig. 3 showing maximum path lengths on a random graph,
a single tree (k = 1) showed about 15, only 10 trees (k = 10)
showed about 11. Even 10000 trees (k = 10000) will show a
number no less than 6, that is the number flooding showed
and the lower limit.

6. Evaluation

We conducted experiments by simulating broadcasts on an
overlay network, andmeasured the path lengths and the num-
ber of messages. There is no need for advanced features
simulating physical networks that existing network simula-
tors provide. And then we developed a simple simulator by
ourselves. Thereby, we observed the effect of the proposed
method on them.

6.1 Experiment Settings

The simulating procedure for a combination of a method and
an overlay network is as follows:

1. We generate an overlay network G = (V,E), on which
spanning trees are built.

2. We construct spanning trees if a method requires them.
For example, multiple trees are built for the proposed
method, a single tree is built for Plumtree and no tree
is built for flooding. Number of trees for the proposed
method is 10 as stated below. The start node for tree

152
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023

construction vstart ∈ V is randomly determined.
3. Let the following procedure be 1 cycle, and we execute

1000 cycles.

a. We determine a source node vstart ∈ V randomly.
b. We issue a broadcast on the source node vstart.
c. We measure the path lengths and the number of

messages.
d. In Plumtree and the proposed method, we update

tree topologies by following each method. Note
that the Plumtree protocol changes the tree topol-
ogy as time goes by.

We use the following graphs as the overlay network, on
which spanning trees are built. The number of nodes for
each graph is |V | = 10000.

Random Graph
A random graph generated by Erdös-Rényi model [21].
In this experiment, we generate a graph of Γ10000,50000
where |V | = 10000 and |E | = 50000. Γn,N is a graph
generation model whose N edges are randomly selected
from

(n
2
)
node pairs for the fixed number of nodes n.

BA Model Graph
A graph generated by Barabási-Albert model [22]. The
model generates a scale-free graph. In this experiment,
|V | = 10000, and the number of edges added at each
step of the generation is 5. Thus, |E | ≈ 50000.

Torus Grid Graph
A m × n torus grid graph is a graph that adds edges be-
tween the leftmost nodes and the rightmost nodes and
between the topmost nodes and bottommost nodes to
a m × n grid graph. It is formally a isomorphic graph
to the graph G′ = (V ′,E ′) where V ′ = Z/mZ × Z/nZ
and E ′ = {{(i, j), (i, j + 1)} | i ∈ Z/mZ ∧ j ∈ Z/nZ} ∪
{{(i, j), (i + 1, j)} | i ∈ Z/mZ ∧ j ∈ Z/nZ}. In this ex-
periment, we use a 100 × 100 torus grid graph.

All nodes keep alive and the network topology is constant
during a simulation. Changes of participating nodes and
network are dealt with by Plumtree protocol [6] that the
proposed method utilizes.

We use the following broadcast methods for compari-
son.

Plumtree
A broadcast method following Plumtree protocol,
which manages a spanning tree on the network.

proposed
The proposed method, which manages multiple span-
ning trees and where each source node selects a span-
ning tree. The number of trees is 10.

ideal proposed
A node can select the best tree minimizing the max-
imum path length though the distance information
has not been updated timely. Plumtree updates the
tree topology along broadcasts and then the proposed
method updates the distance information. But it can
happen for the distance information updates not to fol-
low the topology updates timely. The number of trees

is 10.
multiple Plumtrees

A method that manages 10 Plumtrees and broadcasts
to all of them. The path length is the minimum path
length among all the trees. The number of messages is
approximately 10 times larger than Plumtree.

flooding
A broadcast method by flooding.

Since we assume that there are multiple source nodes for
broadcasts, we set the value threshold used in the topology
optimization of Plumtree protocol to 7. We set the com-
munication time between each node to be constant and the
value timeout in Algorithm 5 to five times the communica-
tion time. Note that concrete time length does not matter in
these experiments.

6.2 Experiment Result

Figure 3 and Fig. 4 show the transitions of the maximum
path lengths and the average path lengths of broadcasts for
Random Graph, respectively. The translucent lines repre-
sent the measured values, and the opaque lines represent the
moving average value for 50 cycles. The same representa-
tion is used in the following figures showing the transition
of path lengths. We use moving averages to facilitate com-
parison of the relative values for each broadcast method.
As a result of Fig. 3, the proposed method proposed re-
duces the maximum path length by approximately 28% com-
pared with Plumtree. However, it is not as short as that of
ideal proposed, which suggests that the update of values
distFor does not sufficiently follow the topology changes by
Plumtree protocol. In addition, the maximum path length of
ideal proposed is almost the same as that of multiple
Plumtrees. This suggests that the proposed method can
potentially achieve the same length as the maximum path
length when using multiple Plumtrees despite the number of
messages on using a single Plumtree if the values distFor
follows the topology changes. Furthermore, as a result of
Fig. 4, the magnitude relationship of the average path length
of each broadcast method tends to be almost the same as that
of the maximum path length.

Figure 5 shows the relation between the maximum path
length and the number of messages for Random Graph. We
plotted the results for 901–1000 simulation cycles. As a re-
sult, the numbers of messages of Plumtree, proposed, and
ideal proposed are approximately 10000 (≈ |V |), which
are much smaller than those of flooding and multiple
Plumtrees, and especially, are approximately 11% of that
of flooding. This is because, in the former, most messages
are sent on a single spanning tree and there are few duplicate
messages, while in the latter, many duplicate messages occur
due to the property of the methods. Therefore, the exper-
imental results for Random Graph show that the proposed
method shortens path lengths compared to Plumtree while
maintaining the small number of messages.

Figure 6 and Fig. 7 show the transitions of the maxi-

KANEKO and SHUDO: BROADCAST WITH TREE SELECTION FROMMULTIPLE SPANNING TREES ON AN OVERLAY NETWORK
153

Fig. 3 Maximum path length for Random Graph.

Fig. 4 Average path length for Random Graph.

Fig. 5 Relation between the maximum path length and the number of
messages for Random Graph.

mum path lengths and the average path lengths of broadcasts
for BA Model Graph, respectively. As a result of Fig. 6,
the proposed method proposed reduces the maximum path
length by approximately 7% compared to Plumtree. In ad-
dition, it achieves almost the same maximum path length as
that of ideal proposed, which suggests that the update of
values distFor significantly follows the topology changes by
Plumtree protocol for BA Model Graph.

Figure 8 shows the relation between the maximum path
length and the number of messages for BA Model Graph.

Fig. 6 Maximum path length for BA Model Graph.

Fig. 7 Average path length for BA Model Graph.

Fig. 8 Relation between the maximum path length and the number of
messages for BA Model Graph.

We plotted the results for 901–1000 simulation cycles. It
presents a similar result to Fig. 5 on the number of messages.

Figure 9 and Fig. 10 show the transitions of the maxi-
mum path lengths and the average path lengths of broadcasts
for Torus Grid Graph, respectively. As a result of Fig. 9,
the proposed method proposed reduces the maximum path
length by approximately 11% compared to Plumtree. Al-
though the results are similar to those for Random Graph,
the reduction ratio is inferior.

Figure 11 shows the relation between the maximum

154
IEICE TRANS. COMMUN., VOL.E106–B, NO.2 FEBRUARY 2023

Fig. 9 Maximum path length for Torus Grid Graph.

Fig. 10 Average path length for Torus Grid Graph.

Fig. 11 Relation between the maximum path length and the number of
messages for Torus Grid Graph.

path length and the number of messages for Torus Grid
Graph. We plotted the results for 901–1000 simulation cy-
cles. It presents a similar result to Fig. 5 on the number of
messages.

Table 1 summarizes the reduction ratio of maximum
path length by the proposed method compared to Plumtree.
How much the proposed method can contribute in the real
world application depends heavily on the overlay network.
The method contributes much if which spanning tree is effi-
cient depends heavily on each source node. In other words,

Table 1 Reduction ratio of maximum path length by proposed method
compared to Plumtree.

Overlay network Reduction ratio
Random Graph 28%
BA Model Graph 7%
Torus Grid Graph 11%

if every source node has its own efficient tree, the proposed
method contributes much. BA Model Graph is known as a
scale-free network, that provides a small diameter. Such a
network has hub nodes, that have a large number of neigh-
bors. The hub nodes should be part of a large number of
trees and they will reduce a variety of multiple spanning
trees. And then the proposed method contributes little on BA
Model Graph. Nevertheless, the proposed method could
contribute 7% even on a natively effective scale-free net-
work. It is natural for us to expect 7% or more of the
contribution in a real world application.

7. Conclusion

In this paper, we proposed a novel broadcast method. It
constructs multiple spanning trees on the overlay network,
and a source node selects an appropriate tree from them
when broadcasting. This reduces the frequency of inefficient
broadcasts for multiple source nodes. It thereby achieves
shortening routing path lengths while maintaining a small
number of messages.

The evaluation experiments show that the effect of the
proposed method on the path lengths is dependent on the
topology of the overlay network. For a random graph, the re-
duction ratio was approximately 28% compared to Plumtree.
Moreover, the number of messages was almost the same as
the number of nodes. This shows that the proposed method
shortens path lengths while maintaining the small number of
messages.

Acknowledgments

This work was supported by JSPSKAKENHIGrant Number
JP21H04872.

References

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, “Dynamo: Amazon’s highly available key-value store,” Proc.
Twenty-First ACMSIGOPS Symposium on Operating Systems Prin-
ciples, SOSP’07, New York, NY, USA, pp.205–220, ACM, 2007.

[2] N. Ramzan, H. Park, and E. Izquierdo, “Video streaming over P2P
networks: Challenges and opportunities,” Signal Processing: Image
Communication, vol.27, no.5, pp.401–411, May 2012.

[3] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively
multiplayer online games: A survey,” ACM Comput. Surv., vol.46,
no.1, pp.9:1–9:51, July 2013.

[4] A. Dorri, S.S. Kanhere, and R. Jurdak, “Towards an optimized
blockchain for IoT,” Proc. Second IEEE/ACM International Confer-
ence on Internet-of-Things Design and Implementation, IoTDI’17,
New York, NY, USA, pp.173–178, ACM, 2017.

http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1016/j.image.2012.02.004
http://dx.doi.org/10.1016/j.image.2012.02.004
http://dx.doi.org/10.1016/j.image.2012.02.004
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/2522968.2522977
http://dx.doi.org/10.1145/3054977.3055003
http://dx.doi.org/10.1145/3054977.3055003
http://dx.doi.org/10.1145/3054977.3055003
http://dx.doi.org/10.1145/3054977.3055003

KANEKO and SHUDO: BROADCAST WITH TREE SELECTION FROMMULTIPLE SPANNING TREES ON AN OVERLAY NETWORK
155

[5] P. Ruiz and P. Bouvry, “Survey on broadcast algorithms for mobile
ad hoc networks,” ACM Computing Surveys (CSUR), vol.48, no.1,
pp.8:1–8:35, July 2015.

[6] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,”
2007 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS 2007), pp.301–310, Oct. 2007.

[7] T. Kaneko andK. Shudo, “Broadcast with tree selection on an overlay
network,” Proc. ICOIN 2022, Jan. 2022.

[8] A. Kermarrec, L. Massoulie, and A.J. Ganesh, “Probabilistic reliable
dissemination in large-scale systems,” IEEE Trans. Parallel Distrib.
Syst., vol.14, no.3, pp.248–258, March 2003.

[9] M. Castro, P. Druschel, A.M.Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” ACM SIGOPS Operating Systems Review, vol.37,
no.5, pp.298–313, Oct. 2003.

[10] V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Het-
erogeneous unstructured tree-based peer-to-peer multicast,” Proc.
2006 IEEE International Conference on Network Protocols, pp.2–
11, Nov. 2006.

[11] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Middle-
ware 2001, R. Guerraoui, ed., Lecture Notes in Computer Science,
vol.2218, pp.329–350, Springer Berlin Heidelberg, 2001.

[12] M. Castro, P. Druschel, A. Kermarrec, and A.I.T. Rowstron, “Scribe:
A large-scale and decentralized application-level multicast infras-
tructure,” IEEE J. Sel. Areas Commun., vol.20, no.8, pp.1489–1499,
Oct. 2002.

[13] M. Ferreira, J. Leitão, and L. Rodrigues, “Thicket: A protocol for
building and maintaining multiple trees in a P2P overlay,” 2010 29th
IEEESymposiumonReliableDistributed Systems, pp.293–302, Oct.
2010.

[14] L. Junhai, X. Liu, and Y. Danxia, “Research on multicast routing
protocols for mobile ad-hoc networks,” Computer Networks, vol.52,
no.5, pp.988–997, April 2008.

[15] X. Li, T. Liu, Y. Liu, and Y. Tang, “Optimized multicast routing al-
gorithm based on tree structure in manets,” China Commun., vol.11,
no.2, pp.90–99, Feb. 2014.

[16] Y.H. Chen and E.H.K. Wu, “Bandwidth-satisfied multicast by multi-
ple trees and network coding in lossy manets,” IEEE Syst. J., vol.11,
no.2, pp.1116–1127, June 2017.

[17] H. Wu and X. Jia, “QoS multicast routing by using multiple
paths/trees in wireless ad hoc networks,” Ad Hoc Networks, vol.5,
no.5, pp.600–612, July 2007.

[18] M. Jelasity, S. Voulgaris, R. Guerraoui, A.M. Kermarrec, andM. van
Steen, “Gossip-based peer sampling,” ACM Trans. Comput. Syst.,
vol.25, no.3, pp.8–es, Aug. 2007.

[19] J. Leitao, J. Pereira, and L. Rodrigues, “HyParView: A mem-
bership protocol for reliable gossip-based broadcast,” 37th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pp.419–429, June 2007.

[20] M. Al Hasan, “Methods and applications of network sampling,” Op-
timization Challenges in Complex, Networked and Risky Systems,
INFORMS TutORials in Operations Research, ch. 5, pp.115–139,
INFORMS, Oct. 2016.

[21] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathe-
maticae, vol.6, no.26, pp.290–297, 1959.

[22] A.L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol.286, no.5439, pp.509–512, Oct. 1999.

Takeshi Kaneko received the B.S. andM.S.
degrees in information science from Tokyo In-
stitute of Technology, Tokyo, Japan, respectively
in 2019 and 2021. He is currently working with
Yahoo Japan Corporation. His research interests
include distributed systems.

Kazuyuki Shudo received the B.E. degree
in 1996, the M.E. degree in 1998, and the Ph.D.
degree in 2001 all in computer science from
Waseda University. He worked as a Research
Associate at the same university from 1998 to
2001. He later served as a Research Scientist
at National Institute of Advanced Industrial Sci-
ence and Technology. In 2006, he joined Uta-
goe Inc. as a Director, Chief Technology Officer.
From December 2008, he served as an Asso-
ciate Professor at Tokyo Institute of Technology.

Since April 2022, he currently serves as a Professor at Kyoto University.
His research interests include distributed computing, programming lan-
guage systems and information security. Dr. Shudo has received the best
paper award at SACSIS 2006, Information Processing Society Japan (IPSJ)
best paper award in 2006, the Super Creator certification by Japanese Min-
istry of Economy Trade and Industry (METI) and Information Technology
Promotion Agency (IPA) in 2007, IPSJ Yamashita SIG Research Award in
2008, Funai Prize for Science in 2010, The Young Scientists’ Prize, The
Commendation for Science and Technology by the Minister of Education,
Culture, Sports, and Technology in 2012, and IPSJ Nagao Special Re-
searcher Award in 2013. He is a member of IEEE, IEEE Computer Society,
IEEE Communications Society and ACM.

http://dx.doi.org/10.1145/2786005
http://dx.doi.org/10.1145/2786005
http://dx.doi.org/10.1145/2786005
http://dx.doi.org/10.1109/srds.2007.27
http://dx.doi.org/10.1109/srds.2007.27
http://dx.doi.org/10.1109/srds.2007.27
http://dx.doi.org/10.1109/icoin53446.2022.9687226
http://dx.doi.org/10.1109/icoin53446.2022.9687226
http://dx.doi.org/10.1109/tpds.2003.1189583
http://dx.doi.org/10.1109/tpds.2003.1189583
http://dx.doi.org/10.1109/tpds.2003.1189583
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1109/icnp.2006.320193
http://dx.doi.org/10.1109/icnp.2006.320193
http://dx.doi.org/10.1109/icnp.2006.320193
http://dx.doi.org/10.1109/icnp.2006.320193
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1007/3-540-45518-3_18
http://dx.doi.org/10.1109/jsac.2002.803069
http://dx.doi.org/10.1109/jsac.2002.803069
http://dx.doi.org/10.1109/jsac.2002.803069
http://dx.doi.org/10.1109/jsac.2002.803069
http://dx.doi.org/10.1109/srds.2010.19
http://dx.doi.org/10.1109/srds.2010.19
http://dx.doi.org/10.1109/srds.2010.19
http://dx.doi.org/10.1109/srds.2010.19
http://dx.doi.org/10.1016/j.comnet.2007.11.016
http://dx.doi.org/10.1016/j.comnet.2007.11.016
http://dx.doi.org/10.1016/j.comnet.2007.11.016
http://dx.doi.org/10.1109/cc.2014.6821741
http://dx.doi.org/10.1109/cc.2014.6821741
http://dx.doi.org/10.1109/cc.2014.6821741
http://dx.doi.org/10.1109/jsyst.2015.2406756
http://dx.doi.org/10.1109/jsyst.2015.2406756
http://dx.doi.org/10.1109/jsyst.2015.2406756
http://dx.doi.org/10.1016/j.adhoc.2006.04.001
http://dx.doi.org/10.1016/j.adhoc.2006.04.001
http://dx.doi.org/10.1016/j.adhoc.2006.04.001
http://dx.doi.org/10.1145/1275517.1275520
http://dx.doi.org/10.1145/1275517.1275520
http://dx.doi.org/10.1145/1275517.1275520
http://dx.doi.org/10.1109/dsn.2007.56
http://dx.doi.org/10.1109/dsn.2007.56
http://dx.doi.org/10.1109/dsn.2007.56
http://dx.doi.org/10.1109/dsn.2007.56
http://dx.doi.org/10.1287/educ.2016.0147
http://dx.doi.org/10.1287/educ.2016.0147
http://dx.doi.org/10.1287/educ.2016.0147
http://dx.doi.org/10.1287/educ.2016.0147
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509

