{: SCISPACE

formerly Typeset

@ Open access - Journal Article « DOI:10.1137/S0097539791197852
Broadcasting and Gossiping in de Bruijn Networks — Source link [4

Jean-Claude Bermond, Pierre Fraigniaud

Published on: 01 Feb 1994 - SIAM Journal on Computing (Society for Industrial and Applied Mathematics)

Topics: De Bruijn sequence, De Bruijn graph, Broadcasting (networking) and Spanning tree

Related papers:

« A survey of gossiping and broadcasting in communication networks

» Methods and problems of communication in usual networks

« Optimum broadcasting and personalized communication in hypercubes
» De Bruijn and Kautz networks : a competitor for the hypercube?

« Intensive hypercube communication. Prearranged communication in link-bound machines

Share thispaper: @ ¥ M ™

View more about this paper here: https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-
4opseejlyk

https://typeset.io/
https://www.doi.org/10.1137/S0097539791197852
https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk
https://typeset.io/authors/jean-claude-bermond-4pglbrjzd8
https://typeset.io/authors/pierre-fraigniaud-wmqfx9a253
https://typeset.io/journals/siam-journal-on-computing-3b0x8h83
https://typeset.io/topics/de-bruijn-sequence-jy5j4g1q
https://typeset.io/topics/de-bruijn-graph-3vlfwci6
https://typeset.io/topics/broadcasting-networking-1c77ojjw
https://typeset.io/topics/spanning-tree-zd2ftzqm
https://typeset.io/papers/a-survey-of-gossiping-and-broadcasting-in-communication-1wtwzvv6a4
https://typeset.io/papers/methods-and-problems-of-communication-in-usual-networks-kah4cxuozx
https://typeset.io/papers/optimum-broadcasting-and-personalized-communication-in-420yqv6qj1
https://typeset.io/papers/de-bruijn-and-kautz-networks-a-competitor-for-the-hypercube-3b0591v50b
https://typeset.io/papers/intensive-hypercube-communication-prearranged-communication-ty2q9xdf9x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk
https://twitter.com/intent/tweet?text=Broadcasting%20and%20Gossiping%20in%20de%20Bruijn%20Networks&url=https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk
https://typeset.io/papers/broadcasting-and-gossiping-in-de-bruijn-networks-4opseej1yk

\
\

HAL

open science

Broadcasting and Gossiping in de Bruijn Networks

Jean-Claude Bermond, Pierre Fraigniaud

» To cite this version:

Jean-Claude Bermond, Pierre Fraigniaud. Broadcasting and Gossiping in de Bruijn Networks. SIAM
Journal on Computing, Society for Industrial and Applied Mathematics, 1994, 23 (1), pp.212-225.

10.1137/S0097539791197852 . hal-03203473

HAL Id: hal-03203473
https://hal.archives-ouvertes.fr/hal-03203473

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr/hal-03203473
https://hal.archives-ouvertes.fr

BROADCASTING AND GOSSIPING IN DE BRUIJN NETWORKS
JEAN-CLAUDE BERMOND' AND PIERRE FRAIGNIAUD?

Abstract. Communication schemes based on store and forward routing, in which a processor can communicate
simultaneously with all its neighbors (in parallel) are considered. Moreover, thé authors assume that sending a
message of length L from a node to a neighbor takes time § + Lt. The authors give efficient broadcasting and
gossiping protocols for the de Bruijn networks. To do this, arc-disjoint spanning trees of small depth rooted at a
given vertex in de Bruijn digraphs are constructed. .

Key words. broadcasting, gossiping, interconnection networks, de Bruijn graphs, disjoint spanning trees

1. Introduction. In the design and use of parallel computers, different elements are im-
portant. Among them are the topology of the interconnection network and the communication
scheme. In this paper, we focus on communication problems. Important cases appearing in
parallel algorithms are

Broadcasting: send a message from a given vertex to all the vertices, also called OTA
(one-to-all).

Gossiping: send messages from all the vertices to all the other vertices, also called ATA
(all-to-all) or total exchange.

An important literature on graph theory concerning this problem assumes that the com-
munication cost is a constant and that only one port can be used by a processor at a given
time (see the survey [15]). Here we consider the store and forward model, in which a ver-
tex can simultaneously send and receive (eventually) different messages to and from all its
neighbors. Indeed, this communication possibility corresponds to existing parallel computers
(hypercubes and transputer-based machines). Moreover, the neighbor-to-neighbor communi-
cation time depends on a latency, or start-up time f, and on a data transfer time per element,
or propagation time t (% is the bandwidth of a link). Sending a message of length L to a
neighbor takes time T’ = g + Lt [20], [28], [31]. ‘

The hypothesis stating that processors are able to communicate simultaneously through
all their ports is well known [20], [28], [31]. Many parallel computers satisfy this hypothesis.
However, note that if the number of communication ports of a vertex is large, the start-up time
(and in a less significant way, the propagation time) may grow with the number of ports used
simultaneously [11]. We do not consider this problem in this paper. The reader is referred to
[12] for a survey of broadcasting algorithms under several hypotheses. Note also that there
exist other models of routing, such as circuit-switched or wormhole routing [8], [21]; however,
in the case of intensive communications such as broadcasting or gossiping, they do not seem
to offer any significative advantages over the store and forward model [30].

Clearly, the broadcasting and gossiping protocols depend on the topology of the intercon-
nection network. The choice of this topology is critical in the design of parallel computers.
Different goals can be pursued to increase the performance and minimize the cost. These goals
can be expressed in terms of the graph (or digraph) that represents the interconnection net-
work. The vertices of the graph correspond to processors, and the edges (or arcs) correspond
to communication links between processors.

7138, Centre National de la Recherche Scientifique, Bat.4, Avenue Albert Einstein, Sophia Antipolis, 06560
Valbonne, France. This author’s research was supported by the research program C3.

tLlP-IMAG, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 46, Allée d'Tialie,
69364 Lyon Cedex 07, France. This author’s research was supported by the research programs C3 and ANM, and by
the Direction des Recherches et Etudes Techniques. '

212

An important constraint claimed by many authors [7], [8], [17] is that very large-scale
integration (VLSI) computing systems are wire limited, which corresponds to a fixed small
degree in the associated graph. Furthermore, in the model of store and forward routing, the
total transmission time depends on the diameter, which should be as small as possible. Thus,
it is important to have graphs with a small diameter and a fixed degree. This is not the case
for the hypercube, since the degree and diameter increase as the logarithm of the number of
processors, or for the multidimensional meshes or torus, since they have diameters that are
too large.

Two well-known topologies are the Kautz and de Bruijn networks, which have many
interesting properties [6], [29]. In particular, these networks interconnect considerably more
processors than the usual topologies, and they have small diameters and small and fixed
degrees. Therefore the aim of this paper is to find efficient broadcasting and gossiping protocols
in the de Bruijn digraph. Classical broadcasting in de Bruijn digraphs using the assumption
of a constant communication time and the possibility of sending a message to at most one
neighbor at any time has been considered in [5], [16].

This paper is organized as follows. In §2 we recall some definitions about directed
graphs. In §3 we compute lower bounds and explain possible communication protocols for
broadcasting in a given network. We show that an efficient way uses the construction of arc-
disjoint spanning trees. Section 4 describes the de Bruijn graphs and digraphs and introduces
some notation. Section 5 proposes arc-disjoint spanning trees of the de Bruijn digraphs, which
can be used to perform asymptotically optimal broadcasting. In §6 a fast, greedy, gossiping
algorithm is given. Section 7 explains how to translate the proposed algorithms from the de
Bruijn digraphs to the undirected de Bruijn graphs. Finally, §8 concludes the paper.

2. Notation. A network of n processors is usually modeled by a graph or a digraph
G = (V, E) of order n. Three kinds of communication links are usually used.

1. Monodirectional links: messages canonly be transferred in one direction. The network
is modeled by a digraph.

2. Bidirectional half duplex links: such links can be used at a given time in at most one
direction. The network is modeled by a graph.

3. Bidirectional full duplex links: each link can be simultaneously used in both directions.
The network is modeled by a symmetric digraph.

In this paper we will consider digraphs only (symmetric or not), either corresponding to
networks with monodirectional links, or networks with bidirectional full duplex links. In a
digraph there is an arc from a node « to a node v only if u is able to send a message directly
fo v.

Let d(u, v) be the distance between the vertices # and v, that is, the length of a shortest
path from u to v. We will use ecc(u) to denote the eccentricity of the vertex u, that is,
max,ey d(u, v), and use D for the diameter of the digraph, that is, max,cy ecc(u). We will
use “shortest-paths spanning tree rooted at »” to denote breadth first search tree rooted at 7.
In such a tree, the path from » to any other vertex v is a shortest path. Note that the depth of
such a tree is ecc(r).

Let d*(u) (resp. d~ (1)) denote the out-degree (or in-degree) of the vertex u, that is, the
number of outgoing (or incoming) arcs from (or to) u. If the digraph is regular then all the
vertices have the same out- and in-degree d. Otherwise d;" = denotes the maximum out-degree
over all the vertices (similar definitions are derived ford_,,, d;in, andd_;). Letm (S, V-S)
be the number of arcs going from Sto V' — § and let c¢g(¥) = mingzypesm™ (S, V — 5).
¢g (r) can be regarded as the minimum number of arcs that must be deleted to make at least
one vertex not reachable from r. Another interpretation of cg(r) is that there exist cg(r)
arc-disjoint paths from » to any vertex of G. Moreover, cg (r) is the maximum number of

such paths that are arc disjoint (Menger’s theorem). Let A be the arc connectivity of ¢, that
is A = min,¢y cg(r). Note that d* (r) > cg(¥) = A.

Finally, we will use bg (#) to denote the minimum time of any broadcast initiated by a
vertex » of G, and use g for the minimum time of any gossiping on G.

3. Broadcasting in networks.

3.1. Lower bounds. Recall that the communication time to send a message of length L
from a node to a neighbor is of the form 8 + Lt. Following [20], [31], we can obtain two
different lower bounds by considering the total start-up time or the total data transfer time.
First the broadcasting time bg (r) is at least ecc(r) 8. Consider now a subset .S of V' containing
r such that m™ (S, ¥V — S) = ¢ (r), and let u be a vertex of /' — S. The total bandwidth of the
arcs between S and V' — S is ¢g(#)/t and therefore the minimum time to send the message
from r to u is at least (L /cq(r))t.

PROPOSITION 3.1. In a digraph G, the time to broadcast a message of length L from a
node r is at least max(ecc(r)fB, (L/cg(r))T).

For example, in a D-cube used in full duplex mode, cg(r) = d*(r) = d~(r) = D,
and ecc(r) = D. We obtain bp_cupe(¥) = max(Dg, %r), which is the bound proposed by
Johnsson and Ho in [20]. '

3.2. Communication protocols. There exist different ways to perform broadcasting
from an originator ». The efficiency of these protocols depends on the ratio —L‘?; The first
protocol simply uses a shortest-paths spanning tree. The broadcasting time is ecc(r)(8 + Lt)
because there exists at least one vertex at distance ecc(r) from #. If Lt < B, this time is of
the order Becc(r) approaching the lower bound and so we cannot do better.

In contrast, if Lt > B, this time is of the order Ltecc(r), which is far from the lower
bound Lt /cg(r). In case of long messages, we can improve the total time by cutting the
messages in smaller packets. A classical technique is pipelining. Suppose we cut the message
into % packets of length B and send the packets one after each other on a shortest-paths
spanning tree. The broadcasting time is ecc(r)(B + Bt) for the first packet to reach a farthest
node, plus (% — 1)(B + Brt) for the other 7";.— — 1 packets following the first one to reach a
farthest node. Hence the total time is (8 + Bt)(ecc(r) + % — 1). This time is optimized by
choosing Buin = +/LB/(ecc(r) — 1)z, its value being (WLt + f(ece(r) — DB). If Lt is
large compared with B, we have now a time of the order Lt. Thus we have earned a factor of
ecc(r), but are still far from the lower bound.

Another technique consists of finding p spanning trees rooted at » and pairwise arc
disjoint. We cut the message into blocks, each of size £, and send each block on a different
spanning tree. Suppose the maximum depth of the spanning trees is /, then the broadcasting
time is 2 (8 + £ 7). This technique has been used for networks such as hypercubes [20], folded
hypercubes [18], star graphs, and k-ary hypercubes [25]. See [12] for a survey. Moreover, we
can use the following theorem of graph theory by Edmonds [10] (see Lovész [24] for a short
proof).

THEOREM 3.2 (Edmonds). The maximum number of pairwise arc-disjoint spanning trees
rooted at a vertex r is equal to cg(r).

We can use these cg () spanning trees to obtain a broadcasting time 2 (B + (L /cg(r))T).
Here again, if Lt > B, we have a time of order (4L /cg(#))t saving a factor of cg (r) when
h is close to ecc(r).

Finally, we can combine the two techniques of pipelining and arc-disjoint spanning trees.
With packets of size B, we obtain atime /(84 Bt) so that the first packet reaches a farthest node
in the deepest spanning tree, plus (L /(cg(r) B) — 1)(B + Bt) for the other L /(cg(r)/B) — 1

packets following the first one to reach this farthest node. Hence the total time is (8 + Bz)(h +
L/(cG(r)B) — 1). An optimal choice of the size B of the packets gives a broadcasting time
(WLt/eg(r) + /h—1DB)*, '

THEOREM 3.3. If the maximum depth of cg(r) arc disjoint spanning trees rooted at a
vertex r is h, then there exists a protocol of broadcasting fmm ¥ whose time is (x/Lt[cc(r) +
Vh=1)B).

If Lt > B, we have atime of order Lt /cg(r), matching the lower bound. If f and Lt are
of the same order of magnitude, we have to balance the effects of the number of spanning trees
and the depth of these trees, respectively. Ideally we want to find many spanning trees (cg (r)
if possible) of maximum depth as small as possible. In the case of regular classical networks,
cg(r) = A =d and ecc(r) = D, and the best we can hope to find is d arc-disjoint spanning
trees with a depth of at most D + 1. Our aim will be to construct arc-disjoint spanning trees
of the de Bruijn networks. Note that for the two-dimensional torus, this problem has been
completely solved [26].

Let us finish this section with some remarks.

1. Instead of using arc-disjoint spanning trees, we could use time-disjoint diffusion trees
(meaning that at a given time, one arcis used in at most one diffusion tree). However,
these trees are more difficult to find and do not allow pipelining.

2. There exists algorithms for finding arc-disjoint spanning trees of any given digraph,
but the complexities of these algorithms are high, and there is no good bound on the
depth of the trees obtained. So it is interesting to give explicit constructions.

3. It is possible to do the same study for the half duplex communication mode. See
[14], [22], [27] for results on edge-disjoint spanning trees of an undirected graph.

4. de Bruijn digraphs. The de Bruijn digraph B(d, D) [9] is a digraph in which the

vertices are the words of length D on an alphabet of d letters (for instance {0, ...,d — 1}).
There is an arc from a vertex x = (x;,...,Xxp) to a vertex y if the D — 1 first letters of y
are equal to the D — 1 last letters of x. That is, there is an arc from x = (xy,...,xp) to all

the vertices (xa,...,xp, @), @ € {0,...,d — 1)}. Therefore, each node of B(d, D) has an
out and in degree d and it is easy to check that the diameter is D, and for every vertex » of
B(d, D), cg(r) = A = d — 1. The number of vertices is # = d?. Figure 1 shows B(2, D)
with D= 1,2, 3.

01

Cfﬁ>c\>£>

1 l

/ 00e” e ﬁm/m\‘. 111
C\/ N

Fic. 1. B(2, 1), B(2,2), and B(2, 3).

One can note that, for a fixed degree d, the number of vertices of these digraphs is of the
same asymptotic order as the directed Moore bound (which is equal to d? +dP~"' + ... +
d? +d + 1). Another important remark is that the degree and the diameter of these digraphs
are independent and adjustable parameters.

The corresponding undirected graphs U B(d, D) are built by omitting the direction of the
arcs.

Remark. 1If we do not consider the loops, all the vertices (¢, a, . .., @, «) of B(d, D) have
in- and out-degree d — 1. Many solutions are proposed in the literature [2] to modify the de
Bruijn graphs to make them regular, but we do not consider them in this paper. Indeed, links
can be added to nodes of degree strictly less than the maximum degree to communicate with
external devices such as front-end processors and peripherals.

In the following section, we use the notations x = (x, ..., xp) for a vertex of B(d, D)
and e = [xy,..., xp,«] for the arc (xy,...,xp) — (x1,...,xp,a). The capital letter W
will represent any sequence of letters, and || the length of this sequence.

5. Arc-disjoint spanning trees of the de Bruijn digraph. The main purpose of this
section is to construct for a given vertex » of a de Bruijn digraph a set of cg(r) = d — 1
arc-disjoint spanning trees all rooted at this vertex.

We will extensively use the shortest-paths spanning tree (or breadth first search tree).
The shortest directed path from a vertex x to a vertex y is obtained by determining the longest
sequence, common to the end of x and to the beginning of y. Suppose that this longest sequence
is of length D — & and of the form z;,...,zp_s and let x = (xy,..., X4, 2,..., 2zp_;) and
Y = (21y...sZp—ps V. -+, ¥i). Then the distance between x and y is A, and the unique
shortest path between x and y contains successively the vertices

0 _

X =X
x[= (12’----xlnzls---aZD—hs)’l)
() |
x‘ = (x.f+|1'--,xfhz]1---szD—fh J’h---u}’i), I <i < h
xt =y,

Figure 2 shows the two shortest-paths spanning trees rooted respectively at (000) and (111) in
B(2, 3). One can see that they are arc disjoint.

— » Shortest path tree rooted at (000)

011
021 > @ sl Shortest path tree rooted at (111)
/ \ -
000 ® 010 @ @ 101 ® 111
© g []
100 110

FIG. 2. Two shortest-paths spanning trees in B(2, 3).

PROPOSITION 5.1. The d shortest-paths spanning trees of the de Bruijn digraph, rooted
respectively at the vertices (¢, ...,a), ¢ =0, ...,d — 1, are pairwise arc disjoint.

Proof. Two arcs of different trees are of the form [, ..., a, W]and [B, ..., B, W3], with
|Wi| < D,i =1, 2. Hence, they are disjoint if @ # f.]

Thus, assuming that each of these nodes is connected to an external device, it is possible
to load data from the front end to the parallel multiprocessor using d arc-disjoint spanning
trees, with a bandwidth d/z. This is a main point: de Bruijn graphs ensure high bandwidth
between any external device and the multiprocessor. We show in the following how to ensure
high bandwidth communications within the network.

It is more difficult to find arc-disjoint spanning trees of small depth all rooted at the same
vertex in a de Bruijn digraph. It might be worth noting at this point that Imase et al. [19]
have built d — 1 arc-disjoint paths of length < D + 1 between any two nodes to study the
vulnerability of the de Bruijn digraph. Unfortunately, their construction cannot be used to find
arc-disjoint spanning trees rooted at the same vertex.

Finally, let us note that we cannot construct more than & — 1 arc-disjoint spanning trees
rooted at a given vertex due to the presence of loops at the vertices (o, ...,), 0 =0,...,d —
lcg(r) =A=d—-1). ‘

First we present a simple construction of d — 1 arc-disjoint spanning trees rooted at a
given vertex of the form (o, o, ..., o, @) witha € {0,...,d — 1}. Next we generalize this
construction.

PROPOSITION 5.2. For all € {0,...,d — 1}, there exist d — 1 arc-disjoint spanning
trees of optimal depth D + 1 rooted at vertex (o, a, ..., a,a) of B(d, D).

Proof. Leta € {0,...,d — 1}. Witheachv € {0,...,d — 1}, v # o we associate a tree

T, consisting of the arc from (¢, ..., ®) to (o, ..., &, v) and the shortest-paths spanning tree
rooted at (e, .. ., &, v) from which the vertex (o, . ..,) which is a leaf, is deleted. Let v # u,
and considerany arce, = [a, ..., o, v, W] from T, and any arce, = [, ..., &, u, W3] from

T, where 0 < |W;| < D, i = 1,2. The letters «, v, p are all distinct, thus e, # e, and T,
and 7, are arc disjoint.

It is easy to verify that the depth of these trees is D + 1. This is optimal since there is
only one path of length < D from (e, ..., «) to any vertex (x, ..., Xp), X1, # «. a

THEOREM 5.3. For any vertex u of B(d, D), there exist d — 1 arc-disjoint spanning trees
rooted at u of depth at most D2k 1, where k is the length of the second longest subsequence
of identical letters in u, that is, of depth at most D+ 2| 2] + 1.

Proof. Letu = (uy, ..., up) be agiven node of B(d, D). We construct d — 1 arc-disjoint
spanning trees rooted at u# in two steps. First we will use the shortest-paths trees rooted at
vertices at distance k + 1 from « where & depends on the form of #. Then, if an arc is common
to two trees, we will remove this arc from one tree and replace it with another arc that does
not appear elsewhere. During all these replacements we will keep the tree structure. We give
an example of two arc-disjoint spanning trees of B(3, 2) rooted at (1, 0).

1. Definition of k and «: Let us consider a longest subsequence of # consisting of
identical letters, and let « be this letter. Let & be the length of the second longest subsequence
of identical letters. For example, if # = (0,0,...,0,0),thena = Oand k = 0; if u =
(0,0,0,1,1,1),thena =0orlandk = 3;ifu =(0,0,0,1, 1, 2,2),thenae = 0and k = 2;
if u =(0,1,0,1,0,1),thena =0or 1and k = 1. Foru = (1,0), kK = 1 and we choose
o= 1)

2. Definitionof T,,v # « : Forallv € {0,...,d—1},v # a,webuildatree 7,. We start
with the shortest-path P, between u = (u,, ..., up) and the node (ug42,...,Up,V,..., V)
where the letter v is repeated k£ + 1 times, and we add the shortest-paths tree rooted at

(Ug+25 ..., Up,V,...,v). Then we delete from it all the vertices appearing in P, (exXcept
(4g42,...,up,v,...,v)) and the subtrees rooted at them, and we reattach these subtrees
directly to P,. Thus we have obtained a spanning tree 7T, rooted at u. In B(3,2), from
u = (1, 0) and our choice of & = 0, there are two paths P; and P;:

P =(1,00 — (0,1) — (1, 1),
@)
P, = (1,00 — (0,2) — (2,2),

and the two trees 7} and 75 are shown in Fig. 3 (7 is the black tree, and 75 is the grey tree).
They are not disjoint, since (1,0) —> (0, 2) belongs to both trees.

FiG. 3. Construction of two arc-disjoint spanning trees rooted at (10) in B(3, 2).

3. Definition of T,, v # « : Anarc of 7, is of the form

<k+1
e |
(a) 8y = | By onvs BB Visasy ¥ | if it belongs to P,
e e’
>1
k+1
(b) otherwise e, = | #;,...,up,v,...,v, W | where W is non-empty and i < D,

<k+1
iy ,
(c) ore,=|Vv,...,v, W | where W is non-empty.

=1

Let 1t # v and e, = e, where e, and e, are arcs of T, and T, respectively. Since i # v, e,
and e, cannot be both of type (a) or both of type (c). Suppose e, is of type (a) or (b), and e,
of type (b). Thene, = [u;,...,up,v,..., v, W] where W may be empty (and there may be
less than & + 1 consecutive letters v), and

k+1
f—j_ﬁ !
€y = | Wypanns BDa s owaidls W

where W’ is non-empty and j < D. If W is empty (type (a)), then, since u # v, there are
k + 1 consecutive letters p in the subword u;, ..., up, contradicting the definition of & as
pn # a. If W is non-empty, then we can suppose without loss of generality that j > i(i # j
since it # v). Thus, as before, there would be & + 1 consecutive letters w in the subword
uji, ..., up,acontradiction. Note that the same argument shows that e,, cannot be of type (c)
with k& + 1 letters u at the beginning.

Thus exactly one arc is of type (c) with not more than £ identical letters at the beginning.
Suppose without loss of generality thatitise, = [@, ..., u, W] (W is non-empty). Moreover,
this arc is also of type (a) or (b) in T, that is, of the form [u;, ..., up, v, ..., v, W'] (W' may
be empty), v #* p. We denote this kind of arc e,. Such an arc satisfies

e, =i, ..., u, W], W non-empty
(3)

= [uj,...,up, v, ..., v, W], W can be empty.

We will replace this arc in 7,, by the arc f; which is obtained from e, by replacing the first
occurrence of u by a.

Let us call 7}, the new graph obtained from 7}, by doing all the possible replacements.

In the example in Fig. 3, the arc [1, 0, 2] belongs to both 7| and 7,. This arc, denoted
ef, is of type (c) since it can be written [1, #] (an arc of T7) and of type (a) since it can be
written [u,, u3, 2] (an arc of 73). This arc is replaced in T} by the arc f,2 = [a, W] =0, 0, 2]
to build 7}, The other tree is not modified: T, = T5. One can check on Fig. 3 that 7| and T,
are arc disjoint. '

4. The T, u # a are arc disjoint: The arc f,, comes from the replacement of e, = e,
and so can be written

Sy =lo, ..., p, W1, W non-empty
4

= [, thix1yens g, V, ..., v, W], W can be empty.

First, let us show that f; # f;f for all u # p'. Necessarily, v # V', otherwise there would
be two arcs entering to the same node in 7, namely e, = [nX] and e:l, = [u' X] where
X = Wiy1,...,Up,v,...,v, W). We have

u:[a,u,-+|, BB Vs o5 o0 B W],
(5)

S =l ujpyy ... Jup, v, . v, W,

with at least one v and one v'. Without loss of generality, we can suppose that j > i (therefore
i+1 < D), W'is non-empty, otherwise ¥ would also be empty and this would imply v = v'.
Therefore f;f contains a subsequence of k + 1 letters v'. Thus ¢, #;1, ..., #p contains also
a subsequence of k + 1 letters v’ contradicting the definition of k (since « # v').

Finally, f, cannot be an arc of 7}, y # . Indeed, assume that f = e, :
(6) ﬁf=[a,u,—H,...,uD,v,...,v,W]
and
[[, ...,up,y,...,y](type (a))
or
(7) ey =1 luj,....,up,¥,...,¥, W] (type (b))

or

| %005 v W] (type (€)).

The arc e, cannot be of type (c) because y # a. If y # v, a similar argument shows that
there is a subsequence of £ + 1 letters ¥ or v in# = (uy, ..., up) contradicting the definition
of k. But y = v implies that the node (#;41,...,4p,V,...,v, W) is reached in T, by
the arc [o, #j41,...,%p, v, ..., v, W]. This is impossible since it is reached in T, by the arc
Gp= [0 Wiitis + o o s B By v Uy W]:eft,andu,- #asinceeﬁ — |1/ 2y |

5. The T !’L, W # « are connected: It suffices to show that the path in T‘i from the root
to the tail of the new arc [o, u;41, ..., up, v,..., v, W] is identical to the corresponding
path in 7,,. Suppose that some arc of this path has been modified. Then it must be of
the form [p, ..., pw, 0, Uy ..o ttp, v, ..., v, W"] (because the path must reach the tail of
[, 4iy1s .y tup, v, ..., v, W']), and it must also be of the form [u;,...,up,y,...,y, W"]
for some y # pu. .

If y # v, then a similar argument as before shows that there is a subsequence of & + 1
letters y or v in u = (uy, ..., up) contradicting the definition of k. So y = v, but it again
implies a contradiction with the definition of & by looking carefully at the positions of #; in
the two forms of the arc and noting that v # &, u; # «, and u; # v (recall that in fact u; =).

6. The depth of the T, is at most D + 2|_§J + 1: The path from the root to any vertex
in T, is of length at most £ 4+ 1 + D. In the replacement process, we might attach at most
one (by step 5) subtree of depth at most £ — 1. Indeed, the root of this subtree is the head
of an arc e, which is (by step 3) of the type (c) but cannot contain more than k& letters .
Altogether the total depth is at mostk +1+ D+ 1+ % — 1 = D 4 2k + 1. We always have
k<12]. O -

The proof of Theorem 5.3 is constructive and gives a method to construct arc-disjoint
spanning trees of B(d, D). With the notation of the proof, first find o and k. Next build the
d — 1 shortest-paths trees rooted at the d — 1 vertices (#442,..., Up, v, ..., V), v 5 o (Where
the letter v is repeated & + 1 times). Finally, correct the trees following the described rule.
Concerning the depth, note that k£ = L%J is a worst case that occurs with a small probability.
In general, & is much smaller than L%J, hence the depth of the arc-disjoint spanning trees
is much smaller than D + 2L-§j -+ 1. For instance, if the root is ¥ = (o, @, ..., &,), our
construction is the one given in Proposition 5.2 and we have a depth of D + 1.

COROLLARY 5.4. Let r be any node of B(d, D). There exists a protocol of broadcasting
from r whose time is at most (\/Lt/(d — 1) + ~/2DB)?.

For a large message, this time is of the same order as the lower bound given by Proposition
3.1,i.e., bp, py(r) = max(DB, Lt/(d — 1)1).

6. Gossiping in networks. First we consider a given digraph G = (V, E) of diameter
D and minimum in-degree d_. = min,ey d~ (1), and next we study the particular case of

the de Bruijn digraph. Gossiping is broadcasting from all the nodes. We assume that all the
messages are of the same length L.

6.1. General lower bounds. Since during any gossiping all the nodes must perform a
broadcast, the total start-up time is at least max,cy ecc(r)f = Df. Let u be any node of V
and § be a set of vertices not containing «. All the |S| messages initiated by the vertices in .S
must reach « through m* (S, ¥ — §) communication links, hence the total propagation time
is at least

[S|L
8 .
® 8 o ffs S, V=)

For instance, choosing S = V' — {u]} the total propagation time is at least

Tea;{((n —DL/d~)t = ((n—1)L/d_).

PROPOSITION 6.1. In a digraph G of minimum in-degree d_, and diameter D, the gos-
siping time is at least g > max(DB, ((n — 1)L/d_;,)7).

Note that we cannot obtain a lower bound by adding the two lower bounds (start-up and
propagation time) [13], [31].

According to the above reasoning and particularly to (8), a good gossiping algorithm
might proceed in D steps, ensuring that for any set of vertices S maximizing the ratio
|S|/m*(S, V — §), the messages crossing from S to ¥ — S use the m*(S,V — S) links
with a well-balanced load of the messages on the links. Johnsson and Ho [20] and MacKenzie
and Seidel [25] show that this is possible for hypercubes and star graphs, respectively. We
will show that this is also possible for the de Bruijn digraphs.

6.2. Gossiping in digraphs. We give below a simple greedy algorithm that appears to
reach an optimal propagation time in the de Bruijn digraph. More details concerning the
algorithm and its extensions can be found in [3], [4], [23]. We define the receiving phase as
follows: receive while data arrive through any link and while all the links have not transmitted
at least one message. With this convention, we describe following gossiping algorithm.

ALGORITHM (the algorithm is given for a processor u)
Stepi(l <i < D):
i. Form a message called New consisting of all the messages u has not already sent (at
step 1, New will consist of the message of u itself). Send New to all the out-neighbors
of u.
ii. Wait until you receive all the messages from your in-neighbors.

Note that to ensure that the algorithm works, # has to send a message at each phase i. If
u has not received any new messages at phase i — 1, it can send an empty message or a special
one.

The algorithm applied to the de Bruijn digraph is shown in Fig. 4. (The messages are
numbered with the name of the processor in decimal arithmetic.)

The following lemma shows that the algorithm realizes the total exchange of the messages
in D steps and will enable us to compute an upper bound of the gossiping time.

LEMMA 6.2. At step i, each processor p forwards all the messages from all processors p'
such that there exists a shortest path of length i — 1 from p'to p(d(p', p) =i —1).

Proof. Let us call P; the property “at step i, each processor p forwards all the messages
from all processors p' such that d(p', p) = i — 1.” We proceed by induction. P, is true.
Assume that P; is true for all j < i. During step i — 1, each processor ¢ sends to all its

» (011

o TR TN
p “100:% g X ‘/7

110
001 04 > 011
/ 04 V 1,5
Step2 000 2,6 o0 15 111
’ 6 15 v w /
\ 100 <— 3,7 110 .
001 &8 » 011
?V’ \2f 04,6 / Qims
3,7
13,57 0107 0246 113
Step3 000 w\137/ 15
\ e \ ‘/lf
13,57\ 100 -, 110

FIG. 4. Gossiping in B(2, 3).

neighbors all the messages from processors p’ such that d(p’,q) = i — 2 by the induction
hypothesis. Thus all the messages from processors p’ such that d(p’, p) < i — 1 have been
received by p at the end of step i — 1. During step i, p forwards messages from processors
p' such that d(p', p) = i — 1 since it had already forwarded those from processors p’ such
that d(p', p) < i — 1 by hypothesis. Thus P; is true. O

Letd_,, be the maximum in-degree of the considered network. From a processor p, there
are at most (d.,.)" processors p’ such that d(p’, p) = i; thus the maximum time of step i
of the greedy algorithm is less than 8 + (4,)~ Lt assuming that all messages are of same

max
length L. Hence:

D
TGreedy = Z (ﬁ + (d:;ax)i_ll'f)
i=l
)
(max)D =.]

Lz.
dn:ax

THEOREM 6.3. In any digraph G of diameter D and maximum in-degree d_,, , there exists
a protocol of gossiping whose running time is at most
= D
Dp + ——(’"f") Lt
dmax -
For short messages, the greedy algorithm runs in ® (D), which is optimal. But depending
on the considered network, the upper bound of the greedy algorithm cost can be far from the

lower bound of the time to gossip. However, we will show in the next section that, for the de
* Bruijn digraph, this upper bound is of the same order as the lower bound for large messages.

6.3. Gossiping in de Bruijn digraphs. For a de Bruijn digraph B(d, D),d_. =d — 1,
thus gg > (n — 1/d — 1)Lt. Moreover, d-.. = d and n = d?, thus the greedy algorithm
applied to the de Bruijn digraph has a complexity 7Geeqy < DB + (n — 1/d — 1)Lx.

COROLLARY 6.4. In the de Bruijn digraph B(d, D), there exists a protocol of gossiping
whose running time is at most D + (n — 1/d — 1) L.

For large messages, this protocol is of the same order as the lower bound. Moreover, for
any length of message, it is at most two times slower than an optimal algorithm since the lower
bound given by Proposition 6.1 is max (D8, ((n — 1)L /d — 1)t). Note that Fig. 4 shows that
there may exist a dissymmetry on the load of the arcs during each step of the greedy algorithm.
Moreover, note that there are small redundancies in the transmission of the data. Hence, it
may be possible to decrease the global cost by a small amount.

7. Case of undirected graphs. Designers prefer to construct networks based on undi-
rected graphs. Indeed, layouts of mono- and bidirectional links are of the same complexity.
If there is a link between v and v, then a message can be sent directly from # to v and from
v to u. Recall that if only one of these messages can be sent at any given time, it is a half
duplex mode of communication. Otherwise it is a full duplex. Here we are interested in the
full duplex communication mode and so it is better to think in terms of symmetric digraphs.
We can therefore apply the results above. We will now examine only what is happening for
the undirected de Bruijn graph U B(d, D).

A node u = (uy,...,up) € UB(,D) is linked with (u,...,up,a) and
({7787 § P tp—1). A very important point is that we do not remove any of the double bidi-
rectional links between nodes. For instance, (010) is linked twice in U B(2, 3) with (101) by
two bidirectional links. The maximum degree of U B(d, D) is 2d, but its minimum degree is
2d — 2. We will use U B*(d, D) to denote the symmetric digraph obtained from U B(d, D).

7.1. Broadcasting. Consider the set 7, of d — 1 arc-disjoint trees as constructed in §5.
They use the arcs of U B*(d, D) in only one direction. Moreover, we can consider another
family S, of d — 1 arc-disjoint spanning trees by using right shifts instead of left shifts.
Therefore, we have constructed a family of 2d — 2 arc-disjoint spanning trees of U B*(d, D)
of depth 4 at most 2D + 1. Thus using Theorem 3.3, we have:

COROLLARY 7.1. In any symmetric de Bruijn graph U B*(d, D) there exists a protocol
whose broadcasting time is at most (/Lt/2d — 2 + +/2Dt).

For large messages, this time is of the same order as the lower bound given by Proposition
3.1, i.e., bypra,py(¥) = max(DpB, (L/2d — 2)7).

7.2. Gossiping. We easily deduce from the greedy algorithm of §6 a greedy algorithm
for U B*(d, D). Each message is divided into two parts. One part is diffused using the original
gossiping (with left shifts), whereas the second part is diffused performing a similar gossiping
with right shifts. The complexity is then:

D
yq &
TGreedy = Z (ﬁ +d Izr)
i=I

d° —1 L
(10) = 1) 5
SR el
el
e B b i Ew

2d —2

COROLLARY 7.2. In the de Bruijn graph U B*(d, D), there exists protocol of gossiping
whose running time is at most DB + 21(’—;_—'21,1

As for B(d, D), for large messages this protocol is of the same order as the lower bound,
and for any length of messages it is at most two times slower than an optimal algorithm since

the lower bound given by Proposition 6.1 is gy g+, py = max(Dg, (;;l);‘ 7).

8. Conclusion. The de Bruijn digraphs (or undirected graphs) are a good family for
performing broadcasting or gossiping. Our broadcasting and gossiping algorithms have prop-
agation times that reach the optimal order for large messages. To do this, we have constructed
a family of arc-disjoint spanning trees. These trees have a small depth and are easy to construct
when the root is a vertex of the form (e, ..., «). This confirms the interest of using these
vertices as gates with the outside world. It will be interesting to improve the depth of the
spanning trees constructed in general. It remains to study the same problem for other families
such as Kautz digraphs or generalized de Bruijn or Kautz graphs. Finally, the general problem
of bounding the maximum depth of arc-disjoint spanning trees in general graphs is interesting
in itself and, as far as we know, algorithms for constructing arc-disjoint spanning trees of
minimum depth have not been yet proposed (this problem has been proved to be NP-complete
by Noga Alon; see sketch of his proof in [1]).

Acknowledgments. We are grateful to Joseph Peters and Dominique Sotteau for many
helpful discussions and remarks. :

REFERENCES

[1] J.-C. BERMOND AND P. FRAIGNIAUD, Broadcasting and NP-completeness, Graph Theory Notes of New York,
XXII (1992), pp. 8-14.

[2] J.-C. BErMOND, N. HoMOBONO, AND C. PEYRAT, Large fault-tolerant interconnection networks, Graphs and
Combinatorics, 5 (1989), pp. 107-123.

[3] J.-C. BERMOND AND J.-C. KONIG, General and efficient decentralised protocols 2, in International Workshop
on Parallel and Distributed Algorithms, Bonas (1988), Elsevier-North Holland, Amsterdam, 1989, pp.
199-210.

[4) I.-C.BERMOND, J.-C, KONIG, AND M. RAYNAL, General and efficient decentralised consensus protocols, Second
International Workshop on Distributed Algorithms, Amsterdam, 1987, Lecture Notes in Comput. Sci. 312,
New York, Springer-Verlag, 1988, pp. 41-56.

[5] J.-C. BERMOND AND C. PEYRAT, Broadcasting in de Bruijn networks, in Proceedings of the 19th Southeastern
Conference on Combinatorics, Graph Theory and Computing, Congr. Numer., 66 (1988), pp. 267-282.

, de Bruijn and Kautz networks: a competitor for the hypercube?, in Hypercube and Distributed Com-

puters, F. ANDRE AND J. VERIUS, eds., Elsevier-North Holland, Amsterdam, 1989, pp. 279-294.
[7]1 R. CYPHER, Theoretical aspects of VLSI pin limitations, TR 89-02-01, Dept. of Comput. Sci., University of
Washington, Seattle, 1989.
[8] W. DALLY aAND C. SEITZ, Deadlock-free message routing in multiprocessor interconnection networks, IEEE
Trans. Comput., c-36 (1987), pp. 547-553.
[9]1 N. pE BRUUN, A combinatorial problem, Koninklijke Nederlandse Academie van Wetenschappen Proc., A49
(1946), pp. 758-764.
[10] J. EDMONDS, Edge-disjoint branchings, combinatorial algorithms, in Combinatorial Algorithms. R. Rustin,
ed., Algorithmics Press, New York, 1972, pp. 91-96.
[L1] P.FRAIGNIAUD, Performance analysis of broadcasting in hypercubes withrestricted communication capabilities,
J. Parallel Dist. Comput., 16 (1992), pp. 15-26.
[12] P. FrRaIGNIAUD AND E. LAZARD, Methods and problems of communication in usual networks, Discrete Appl.
Math. (special issue on broadcasting), to appear.
[13] P. FRAIGNIAUD, S. MIGUET, AND Y. ROBERT, Scattering on a ring of processors, Parallel Comput., 13 (1990),
pp. 377-383.
[14] D. GusFIELD, Connectivity and edge-disjoint spanning trees, Inform. Proc. Lett., 16 (1983), pp. 87-89.
[15] S.T.HEeDETNIEMI, S. HEDETNIEMI, AND A, LIESTMAN, A survey of gossiping and broadcasting in communication
networks, Networks, 18 (1986), pp. 319-349.

(6]

[16]

[17]
(18]

[19]
(20]
(21]

[22]
[23]

[24]
[25]

[26]
(27]
[28]
[29]
(30]

(31]

M. HEYDEMANN, J. OPATRNY, AND D. SOTTEAU, Broadcasting and spanning trees in de Bruijn and Kautz
networks, Discrete Appl. Math. (to appear).

W. HiLLis, The Connection Machine, MIT Press, Cambridge, MA, 1985.

C. Ho, Full bandwidth communications on folded hypercubes, in Proceedings International Conference on
Parallel Processing, 1990.

M. IMASE, T. SONEOKA, AND K. OKADA, Fault-tolerant processor interconnection networks, Systems Comput.
Japan, 17 (1986), pp. 21-30.

S. JouNssoN AND C.-T. Ho, Optimum broadcasting and personalized communication in hypercubes, IEEE
Trans. Comput., 38 (1989), pp. 1249-1268.

P. KERMANI AND L. KLEINROCK, Virtual cut-through: a new computer communication switching technique,
Computers Networks, 3 (1979), pp. 267-286.

S. KUNDU, Bounds on the number of disjoint spanning trees, J. Combin. Theory, 17 (1974), pp. 199-203.

T. LAKSHMAN AND W. WEL, Efficient decentralized consensus protocol using specially structured communication
graphs, Technical Report Bellcore (submitted to IEEE Trans. Comput.), 1990.

L. LovAsz, On two minimax theorems in graph theory, J. Combin. Theory, Ser B, 21 (1976), pp. 96-103.

D. MACKENZIE AND S, SEIDEL, Broadcasting on three multiprocessor interconnection topologies, CS-TR-89-01,
Michigan Technical University, Houghton, 19809.

P. MicHALLON, D. TRYSTRAM, AND G. VILLARD, Optimal broadcasting algorithms on torus, Technical report
RR872-1-0192, LMC, INPG, Grenoble, 1992,

C. ST. J. A. NAsH-WILLIAMS, Edge-disjoint spanning trees of finite graphs, J. London Math. Sec., 36 (1961),
pp- 445-450.

Y. SAAD AND M. ScHULTZ, Data communication in parallel architectures, Parallel Comput., 11 (1989), pp.
131-150.

M. SAMATHAM AND D. PRADHAN, The de Bruijn multiprocessor network: a versatile parallel processing and
sorting network for VLSI, 1IEEE Trans. Comput., 38 (1989), pp. 567-581.

S. SEIDEL, Circuit-switched vs. store and forward solutions to symmetric communication problems, Proceedings
of the 4th Conference on Hypercube Concurrent Computers and Application, 1989.

Q. STouT AND B. WAGAR, Intensive hypercube communication, prearranged communication in link-bound
machines, . Parallel Dist. Comput., 10 (1990), pp. 167-181.

