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Broadcasting of entanglement via local copying
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We show that inseparability of quantum states can be partially broadcasted~copied or cloned! with the help
of local operations, i.e., distant parties sharing an entangled pair of spin-1/2 states can generate two pairs of
partiallynonlocallyentangled states using onlylocal operations. This procedure can be viewed as an inversion
of quantum purification procedures.@S1050-2947~97!02905-3#
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I. INTRODUCTION

The laws of quantum mechanics impose restrictions
manipulations with quantum information. These restrictio
can, on the one hand, be fruitfully utilized in quantum cry
tography@1#. On the other hand, they put limits on the pr
cision with which quantum-mechanical measurements
copying ~broadcasting and cloning! of quantum information
can be performed@2–4#. One of the most important aspec
of quantum-information processing is that information c
be ‘‘encoded’’ in nonlocal correlations~entanglement! be-
tween two separated particles. The more ‘‘pure’’ the qu
tum entanglement, the more ‘‘valuable’’ the given tw
particle state. This explains current interest inpurification
procedures@5# by means of which one can extract pure qua
tum entanglement from a partially entangled state. In ot
words, it is possible tocompresslocally an amount of quan
tum information. This is implemented as follows. Two ‘‘dis
tant’’ parties share a number of partially entangled pa
They each then applylocal operations on their own particle
and, depending on the outcomes~which they are allowed to
communicate classically!, they agree on further actions. B
doing this they are able to reduce the initial ensemble t
smaller one but whose pairs are more entangled. This
important implications in the field of quantum cryptograp
as it immediately implies an unconditional security of co
munication at the quantum level.

Our main motivation for the present work comes from t
fact that local compression of quantum correlations is p
sible. We now ask the opposite: Can quantum correlation
‘‘decompressed’’? Namely, can two parties acting loca
start with a number of highly entangled pairs and end
with a greater number of pairs with lower entangleme
This, if possible, would also be of great operational value
determining the amount of entanglement of a certain s
@6#. For if we could optimally ‘‘split’’ the original entangle-
ment of a single pair into two pairs equally entangled~e.g.,
having the same state! we have a means of defining half th
entanglement of the original pair.

We may view the process of decompression of quan
551050-2947/97/55~5!/3327~6!/$10.00
n
s
-

r

-

-
r

.

a
as

-

-
be

p
?
n
te

m

entanglement~i.e., inseparability! as a local copying~broad-
casting and cloning! of nonlocal quantum correlations. I
this case one might raise the question whether it is poss
to clone partially quantum entanglement using only local o
erations. When we ask the question whether inseparab
can be broadcast via local copying we mean the followi
Let two distant parties share an inseparable stater̂aIaII

( id) . Now

manipulate the two systemsaI andaII locally, e.g., with the
help of two distant quantum copiersXI andXII . These two
quantum copiers are supposed to be initially uncorrelated~or,
more generally, they can be classically correlated, i.e.,
density operatorr̂xIxII describing the input state of two quan

tum copiers is separable!. The quantum copierXI (XII ) cop-
ies the quantum subsystemaI (aII ) such that at the outpu
two systemsaI andbI (aII andbII ) are produced~see Fig.
1!. As a result of this copying we obtain out of two system
aI and aII four systems described by a density opera

FIG. 1. An entangled pair of spin-1/2 particlesaI ,aII is shared
by two distant partiesI andII , which then perform local operation
using two quantum copiersX1 and X2. Each party obtains two
output particles that are in a separable state, while the spat
separated pairsaI ,bII andaII ,bI are entangled.
3327 © 1997 The American Physical Society
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r̂aIbIaII bII
(out) . If the statesr̂aIbII

(out) andr̂aII bI
(out) areinseparablewhile

the statesr̂aIbI
(out) andr̂aII bII

(out) that are produced locally aresepa-

rable, then we say that we have partially broadcasted~cloned
and split! the entanglement~inseparability! that was presen
in the input state. As we said earlier, this broadcasting
inseparability can be viewed as an inversion of the disti
tion protocol. The advantage of our operational definition
that we impose the inseparability condition only betwe
two spins 1/2~i.e., either on spinsaI andbII or spinsaII and
bI). Obviously, due to the quantum nature of copying e
ployed in our scheme, multiparticle quantum correlations
tweenpairs of spinsaIbII andaII bI ~i.e., each of these sys
tems is described in four-dimensional Hilbert space! may
appear at the output. But presently there do not exist s
criteria that would allow one to specify whether these s
tems are inseparable~see below! and, consequently, it would
be impossible to introduce operational definition of the
verse of the distillation protocol based on multiparticle
separability.

In this paper we show that the decompression of ini
quantum entanglement is indeed possible, i.e., that fro
pair of entangled particles we can, by local operations, ob
two less entangled pairs. Therefore, entanglement can
copied locally, i.e., the inseparability can be partially broa
cast.

II. INSEPARABILITY AND THE PERES-HORODECKI
THEOREM

We first recall that a density operator of two subsystem
inseparable if itcannotbe written as the convex sum

r̂aIaII5(
m

w~m!r̂aI
~m!

^ r̂aII
~m! . ~1!

Inseparability is one of the most fundamental quantum p
nomena, which, in particular, may result in the violation
Bell’s inequality ~to be specific, a separable system alwa
satisfies Bell’s inequality, but the contrary is not necessa
true!. Note that distant parties cannot prepare an insepar
state from a separable state if they only use local operat
and classical communications.

We will not address the question of copying entanglem
in its most general form, but will rather focus our attenti
on copying of the entanglement of spin-1/2 systems. In
case, we can explicitly describe the transformations that
necessary to broadcast entanglement . Moreover, in the
of two spins 1/2 we can effectively utilize the Pere
Horodecki theorem@7,8#, which states that the positivity o
the partial transposition of a state isnecessaryandsufficient
for its separability. Before we proceed further we briefly d
scribed how to ‘‘use’’ this theorem: The density matrix a
sociated with the density operator of two spins 1/2 can
written as

rmm,nn5Šemu^ f mur̂uen&u f n‹, ~2!

where $uem&%($u f m&%) denotes an orthonormal basis in th
Hilbert space of the first~second! spin 1/2 ~for instance,
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ue0&5u0&a , ue1&5u1&a and u f 0&5u0&b , u f 1&5u1&b). The
partial transpositionr̂T2 of r̂ is defined as

rmm,nn
T2 5rmn,nm . ~3!

Then the necessary and sufficient condition for the stater̂ of
two spins 1/2 to be inseparable is that at least one of
eigenvalues of the partially transposed operator~3! is nega-
tive. This is equivalent to the condition that at least one
the two determinants

W35detS r00,00
T2 r00,01

T2 r00,10
T2

r01,00
T2 r01,01

T2 r01,10
T2

r10,00
T2 r10,01

T2 r10,10
T2

D , ~4!

W45det$rT2% ~5!

is negative. In principle, one would also have to check
positivity of the subdeterminantsW15r00,00

T2 and

W25r00,00
T2 r01,01

T2 2r00,01
T2 r01,00

T2 . However, they are positive

because the density operatorr̂ is positive. In this paper we
deal exclusively with nonsingular operatorsrT2. Conse-
quently, we do not face any problem that may arise wh
rT2 are singular.

III. QUANTUM COPYING AND THE NO-BROADCASTING
THEOREM

In the realm of quantum physics there does not exis
process that would allow us to copy~clone and broadcast! an
arbitrary state with perfect accuracy@2–4#. What this means
is that if the original system is prepared in an arbitrary st
r̂a
( id) , then it is impossibleto design a transformation

r̂a
~ id !→ r̂ab

~out! , ~6!

wherer̂ab
(out) is the density operator of the combined origina

copy quantum system after copying such that

Trbr̂ab
~out!5 r̂a

~ id ! , Trar̂ab
~out!5 r̂b

~ id ! . ~7!

This is the content of theno-broadcastingtheorem, which
has been recently proven by Barnumet al. @3#. The stronger
form of broadcasting, when

r̂ab
~out!5 r̂a

~ id !
^ r̂b

~ id ! , ~8!

is denoted as thecloning of quantum states. Wootters an
Zurek @2# pointed out that the cloning of anarbitrary pure
state is impossible. To be more specific, the no-broadcas
and no-cloning theorems allow us to copy a singlea priori
known state with absolute accuracy. In fact, also two sta
can be precisely copied if it isa priori known that they are
orthogonal. But if noa priori information about the copied
~i.e., original! state is known, then precise copying~broad-
casting! is impossible.

Even though ideal copying is prohibited by the laws
quantum mechanics, it is still possible to imagine quant
copiers that produce reasonably good copies without dest
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ing the original states too much. To be specific, instead
imposing unrealistic constraints on outputs of quantum co
ers given by Eqs.~7! and ~8!, one can adopt a more mode
approach and give an operational definition of a quant
copier. For instance, a reasonable quantum copier can
specified by three conditions.

~i! States of the original system and its quantum copy
the output of the quantum copier, described by density
eratorsr̂a

(out) and r̂b
(out) , respectively, are identical, i.e.,

r̂a
~out!5 r̂b

~out! . ~9!

~ii ! Once noa priori information about thein state of the
original system is available, then it is reasonable to assu
that all pure states are copied equally well. One way
implement this assumption is to design a quantum co
such that distances between density operators of each sy
at the output (r̂ j

(out) , where j5a,b) and the ideal density

operatorr̂ ( id), which describes thein state of the original
mode, are input-state independent. Quantitatively, this me
that if we employ the Bures distance@9#

dB~ r̂1 ; r̂2!:5A2@12Tr~ r̂1
1/2r̂2r̂1

1/2!1/2#1/2 ~10!

as a measure of distance between two operators, then
quantum copier should be such that

dB~ r̂ i
~out! ; r̂ i

~ id !!5const, i5a,b. ~11!

~iii ! It is important to note that the copiers we have
mind are quantum devices. This means that even though
assume that a quantum copier is initially disentangled~let us
assume it is in a pure state! from the input system it is mos
likely that after copying has been performed the copier w
become entangled with the output original plus copy syst
This entanglement is in part responsible for an irrevers
noise introduced into the output original plus copy syste!.
Consequently,r̂ab

(out)Þr̂ab
( id) , wherer̂ab

( id)5 r̂a
( id)

^ r̂b
( id) . Once

again, if noa priori information about the stater̂a
( id) of the

input system is known, it is desirable to assume that
copier is such that the Bures distance between the ac
output stater̂ab

(out) of the original plus copy system and th

ideal output stater̂ab
( id) is input-state independent, i.e.,

dB~ r̂ab
~out! ; r̂ab

~ id !!5const. ~12!

The copying process as specified by conditions~i!–~iii ! can
be understood as broadcasting in a weak sense, i.e., it is
perfect, but it can serve to some purpose when it is desir
to copy ~at least partially! quantum information without de
stroying it completely~eavesdropping is one of the exampl
@10#!.

The action of the quantum copier for spins 1/2 that sa
fies conditions~i!–~iii ! can be described in terms of a unita
transformation of two basis vectorsu0&a and u1&a of the
original system. This transformation can be represented
@4#

u0&auj&buQ&x→A2
3 u00&abu↑&x1A1

3 u1&abu↓&x ,
f
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u1&auj&buQ&x→A2
3 u11&abu↓&x1A1

3 u1&abu↑&x , ~13!

whereuQ&x describes the initial state of the quantum copi
uj&b is an arbitrary initial state of modeb, and u↑&x and
u↓&x are two orthonormal vectors in the Hilbert space of t
quantum copier. In Eq.~13! we use the notation such tha
uemen&ab5uem&a^ uen&b and u1&ab5(u01&ab1u10&ab)/A2.
We do not specify the in state of modeb in Eq. ~13!. In our
discussion there is no need to specify this state. Obviou
in real physical processes the in state of modeb may play an
important role. In what follows, unless it may cause con
sion, we will omit subscripts indicating the subsystems.

IV. BROADCASTING OF INSEPARABILITY

Now we present the basic operation necessary to c
entanglement locally for spins 1/2. The scenario is as
lows. Two partiesXI andXII share a pair of particles pre
pared in a state

uC&aIaII5au00&aIaII1bu11&aIaII , ~14!

where we assumea andb to be real anda21b251. The
state ~14! is inseparable for all values ofa2 such that
0,a2,1 because one of the two determinantsWj from Eqs.
~4! and ~5! is negative. Now we assume that the systemaI
(aII ) is locally copied by the quantum copierXI (XII ) op-
erating according to the transformations~13!. As the result of
the copying we obtain a composite system of four spins
described by the density operatorr̂aIbIaII bII

(out) . We are now

interested in seeing two properties of this output state. F
both statesr̂aIbII

(out) and r̂aII bI
(out) should be inseparable simulta

neously for at least some values ofa and second, state
r̂aIbI
(out) and r̂aII bII

(out) should be separable simultaneously f

some values ofa for which r̂aIbII
(out) andr̂aII bI

(out) are inseparable

Using the transformation~13! we find the local output of
the quantum copierXI to be described by the density oper
tor

r̂aIbI
~out!5

2a2

3
u00&^00u1

1

3
u1&^1u1

2b2

3
u11&^11u, ~15!

while the nonlocal pair of output particles is in the sta
described by the density operator

r̂aIbII
~out!5

24a211

36
u00&^00u1

24b211

36
u11&^11u

1
5

36
~ u01&^01u1u10&^10u!

1
4ab

9
~ u00&^11u1u11&^00u!. ~16!

We note that due to the symmetry between the systemsI and
II we have thatr̂aIbI

(out)5 r̂aII bII
(out) and r̂aIbII

(out)5 r̂aII bI
(out) .

Now we check for which values ofa the density operator
r̂aIbII
(out) is inseparable. From the determinants in Eqs.~4! and
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~5! associated with this density operator it immediately f
lows thatr̂aIbII

(out) is inseparable if

1

2
2

A39
16

<a2<
1

2
1

A39
16

. ~17!

On the other hand, from Eq.~15! we find thatr̂aIbI
(out) is sepa-

rable if

1

2
2

A48
16

<a2<
1

2
1

A48
16

. ~18!

Comparing Eqs.~17! and~18! we observe thatr̂aIbI
(out) is sepa-

rable if r̂aIbII
(out) is inseparable. This finally proves that it is

possible to clone partially quantum entanglement using o
local operations and classical communication. Note that
other initial state obtained by applying local unitary transf
mation will yield the same result.

This last result clearly illustrates the fact that for giv
values ofa2 the inseparability of the input state can b
broadcasted by performing local operations. To apprec
more clearly this result we turn our attention to the copy
of a separable state of the form

r̂aIaII
~ in ! 5(

i
wi r̂aI ,i

~ in !
^ r̂aII ,i

~ in ! . ~19!

In this case it is easily seen that the output of our proced
is of the form

r̂aIbIaII bII
~out! 5(

i
ui r̂aI ,i bI ,i

~out!
^ r̂aII ,i bII ,i

~out! , ~20!

from which it follows that in this case the outputr̂aIbII
(out) is

always separable, i.e.,

r̂aIbII
~out!5(

i
v i r̂aI ,i

~out!
^ r̂bII ,i

~out! . ~21!

This illustrates the fact that the inseparability cannot be p
duced by two distant parties operating locally and who c
communicate only classically. This result is not only relat
to our procedure, but is easily seen to be valid for gene
local operations and classical communications.

V. CONCLUSION

In conclusion, using a simple set of local operations t
can be expressed in terms of quantum state copying@4# we
have shown that inseparability of quantum states can belo-
cally copied with the help oflocal quantum copiers. We will
investigate elsewhere how close the distilled copied st

r̂̃ aIbII
(out) and r̂̃ bIaII

(out) are to the distilled input stater̂̃ aIaII
( in) and in

particular whether the efficiency of the quantum copying c
be improved when we do not average over all possible o
put states of the quantum copier but perform measurem
on the quantum copier~conditional output states!. This will
give us a qualitative measure of how well a pure quant
entanglement can be broadcasted. More importantly,
-
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would like to generalize our procedure such that any amo
of initial entanglement, no matter how small, can be sp
into two even less entangled states. We now know that
equivalent of such a general procedure exists for purifica
procedures@11#. This, when found, would give us opera
tional means of quantifying the amount of entanglement@6#.
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APPENDIX

In this paper we have utilized one nontrivial quantum
copier transformation~13! with the help of which broadcast
ing of entanglement via local copying can be performe
Here we present a scheme by means of which one can
principle, determine a class of local quantum-copier trans
mations such that local outputs of quantum copiers are
scribed by separable density operatorsr̂aIbI

(out) andr̂aII bII
(out) while

the nonlocal statesr̂aIbII
(out) and r̂aII bI

(out) are inseparable.

The most general quantum-copier transformation fo
single spin 1/2 has the form

u0&auQ&x→(
i51

4

uRi&abuXi&x ,

u1&auQ&x→(
i51

4

uRi&abuYi&x , ~A1!

whereuRi&ab( i51, . . . ,4) arefour basis vectors in the four
dimensional Hilbert space of the output modesa and b.
These vectors are defined asuR1&5u00&, uR2&5u01&,
uR3&5u10&, and uR4&5u11&. The output statesuXi&x and
uYi&x of the quantum copier in the basis of four orthonorm
quantum-copier statesuZi&x read

uXi&x5 (
k51

4

Ck
~ i !uZk&x ,

uYi&x5 (
k51

4

Dk
~ i !uZk&x . ~A2!

The amplitudesCk
( i ) andDk

( i ) specify the action of the quan
tum copier under consideration. From the unitarity of t
transformation~A1! three conditions on these amplitudes fo
low:

(
k51

4

uCk
~ i !u251,

(
k51

4

uDk
~ i !u251,

(
k51

4

Ck
~ i !Dk

~ i !51. ~A3!
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The further specification of the amplitudesCk
( i ) andDk

( i )

depends on the tasks that should be performed by the q
tum copier under consideration. This means that we hav
specify these amplitudes in terms of constraints imposed
the output of the copier. These constraints~which can take
form of specific equalities or inequalities! then define do-
mains of acceptable values ofCk

( i ) andDk
( i ) .

To be specific, let us assume that the entangled state~14!
is going to be broadcasted by twoidentical local quantum
copiers defined by Eq.~A1!. In this case the density operato
r̂aIbIaII bII
(out) describing the four-particle output of the two cop

ers reads~in what follows we assume the amplitudesCk
( i ) and

Dk
( i ) to be real!

r̂aIbIaII bII
~out! 5 (

i I ,i II , j I , j II
(
kI ,kII

vkIkII

~ i I i II !vkIkII

~ j I j II !

3uRi I
&aIbI^Rj I

uuRi II
&aII bII ^Rj II

u, ~A4!

where

vkl
~ i j !5aCk

~ i !Cl
~ j !1bDk

~ i !Dl
~ j ! . ~A5!

The local output of the quantum copierXI is now described
by the density operatorr̂aIbI

(out) , which can be expressed as

r̂aIbI
~out!5 (

i I , j I
J~ i I j I !uRi I

&aIbI^Rj I
u, ~A6!

where the matrix elementsJ ( i I j I ) of this density operator in
the basisuRi I

&aIbI read

J~ i I j I !5(
k

a2Ck
~ i I !Ck

~ j I !1b2Dk
~ i I !Dk

~ j I ! . ~A7!

In our discussion of broadcasting of entanglement we h
assumed that local outputs of quantum copiersXI andXII are
separable. This implies restrictions on the density oper
r̂aIbI
(out) , i.e., the four eigenvalues of the partially transpos

operator@ r̂aIbI
(out)#T2 have to be positive@7,8#. So these are

four additional constraints on the amplitudesCk
( i ) andDk

( i )

@the first three constraints are given by Eq.~A2!#. Further
constraints are to be obtained from the assumption that
density operatorr̂aIbII

(out) is inseparable. The explicit expressio

for this density operator can be expressed in the form

r̂aIbII
~out!5 (

i I , j II
V~ i I j II !uRi I

&aIbII ^Rj II
u, ~A8!

where the diagonal matrix elementsV ( i I j II ) read

V~1,1!5(
k,l

@vkl
~1,1!vkl

~1,1!1vkl
~2,1!vkl

~2,1!

1vkl
~1,3!vkl

~1,3!1vkl
~2,3!vkl

~2,3!#,
n-
to
n

e

or
d

he

V~2,2!5(
k,l

@vkl
~1,2!vkl

~1,2!1vkl
~2,2!vkl

~2,2!

1vkl
~1,4!vkl

~1,4!1vkl
~2,4!vkl

~2,4!#, ~A9!

V~3,3!5(
k,l

@vkl
~3,1!vkl

~3,1!1vkl
~4,1!vkl

~4,1!

1vkl
~3,3!vkl

~3,3!1vkl
~4,3!vkl

~4,3!#,

V~4,4!5(
k,l

@vkl
~4,2!vkl

~4,2!1vkl
~3,2!vkl

~3,2!

1vkl
~3,4!vkl

~3,4!1vkl
~4,4!vkl

~4,4!#.

For the off-diagonal matrix elements we find

V~2,1!5(
kl

@vkl
~2,2!vkl

~2,1!1vkl
~1,2!vkl

~1,1!

1vkl
~1,4!vkl

~1,3!1vkl
~2,4!vkl

~2,3!#5V~1,2!,

V~3,1!5(
kl

@vkl
~3,1!vkl

~1,1!1vkl
~4,1!vkl

~2,1!

1vkl
~3,3!vkl

1,31vkl
~4,3!vkl

~2,3!#5V~1,3!,

V~4,1!5(
kl

@vkl
~3,2!vkl

~1,1!1vkl
~4,2!vkl

~2,1!

1vkl
~3,4!vkl

~1,3!1vkl
~4,4!vkl

~2,3!#5V~1,4!,

~A10!

V~3,2!5(
kl

@vkl
~1,2!vkl

~3,1!1vkl
~2,2!vkl

~4,1!

1vkl
~1,4!vkl

~3,3!1vkl
~2,4!vkl

~4,3!#5V~2,3!,

V~4,2!5(
kl

@vkl
~1,2!vkl

~3,1!1vkl
~2,2!vkl

~4,2!

1vkl
~1,4!vkl

~3,4!1vkl
~2,4!vkl

~4,4!#5V~2,4!,

V~3,4!5(
kl

@vkl
~3,1!vkl

~3,2!1vkl
~4,1!vkl

~4,2!

1vkl
~3,3!vkl

~3,4!1vkl
~4,3!vkl

~4,4!#5V~4,3!.

If the density operator is supposed to be inseparable the
least one of the eigenvalues of the partially transposed
eratorr̂aIbII

(out) has to be negative. This represents another c
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dition that specifies the amplitudesCk
( i ) andDk

( i ) .
We have to note that the conditions we have derived

sult in a set of nonlinear equations that are very difficult
solve explicitly. Moreover, these equations do not spec
hu

h
,
Le
-

y

the amplitudes uniquely, so more constraints have to
found. Obviously, it will then become more difficult to chec
whether there exist some amplitudesCk

( i ) andDk
( i ) that fulfill

these constraints.
.

A

v.
@1# A. Ekert, Phys. Rev. Lett.67, 661 ~1991!; C.H. Bennett, G.
Brassard, and N.D. Mermin,ibid. 68, 557 ~1992!.

@2# W.K. Wootters and W.H. Zurek, Nature299, 802 ~1982!.
@3# H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, and B. Sc

macher, Phys. Rev. Lett.76, 2818~1996!.
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