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A spin-1 ferromagnetic Bose-Einstein condensate subject to a certain magnetic field exhibits a broken-
axisymmetry phase in which the magnetization tilts against the applied magnetic field due to the competition
between ferromagnetism and linear and quadratic Zeeman effects. The Bogoliubov analysis shows that in this
phase two Goldstone modes associated with U�1� and SO�2� symmetry breakings exist, in which phonons and
magnons are coupled to restore the two broken symmetries.
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I. INTRODUCTION

Bose-Einstein condensates �BECs� with spin degrees of
freedom have attracted growing attention since the first ob-
servation of the spin-1 23Na BEC by the MIT group �1,2�. In
contrast to a magnetic trap, in which hyperfine-spin degrees
of freedom are frozen, an optical trap can confine atoms in
all magnetic sublevels of spin, allowing study of the mag-
netic properties of BECs. A variety of experiments have been
performed to date, on subjects such as spin domains �3�,
interdomain tunneling �4�, and realization of a spin-2 23Na
BEC �5�. The spin-exchange dynamics of 87Rb BECs have
also been investigated experimentally by Schmaljohann et al.
�6�, Chang et al. �7�, and Kuwamoto et al. �8�.

Extensive theoretical investigations have been focused on
the spinor BEC. Mean field theory �MFT� for a spin-1 BEC
was formulated by Ho �9� and Ohmi and Machida �10�. The
MFT of a spin-2 BEC was developed by Ciobanu et al. �11�
and Ueda and Koashi �12�. Law et al. �13� developed a
many-body theory of spin-1 antiferromagnetic BEC, and Ko-
ashi and Ueda �14� and Ho and Yip �15� extended it to in-
cluding the linear Zeeman effect and found that an antiferro-
magnetic BEC realizes a fragmented BEC for a very weak
magnetic field. The Bogoliubov analysis of a spin-1 BEC
was carried out by Huang and Gou �16� and by Ueda �17� in
the presence of the linear Zeeman effect. Their results agree
with those obtained later using a diagrammatic method re-
ported by Szépfalusy and Szirmai �18�. In these studies, the
Zeeman effects are restricted to those up to the linear order
in the magnetic field. Since the linear Zeeman effect can be
effectively tuned by changing the total spin of the system �2�,
the linear and quadratic Zeeman effects can be manipulated
independently, which is a unique feature of trapped atomic
systems. If we take the quadratic Zeeman term into account,
the ground-state phase diagram becomes much richer, as
shown in Ref. �2�. In particular, under a certain range of
linear and quadratic Zeeman effects, there is a special phase
in which the magnetization tilts against the applied magnetic
field. The investigation of some of the unique features of this
phase is the primary purpose of our study.

When a weak magnetic field is applied along the quanti-
zation axis, the m=1 or −1 state is favorable for a spin-1
87Rb atom depending on the sign of the magnetic field,

where m refers to the magnetic quantum number. On the
other hand, the quadratic Zeeman effect raises the energy of
the m= ±1 states relative to that of the m=0 state. As a
consequence, if the quadratic Zeeman effect is sufficiently
large, the spin vector of the ferromagnetic ground state not
only shrinks but also tilts against the direction of the mag-
netic field. Therefore, even if the Hamiltonian is axisymmet-
ric with respect to the direction of the magnetic field, the
ground state spontaneously breaks the axisymmetry. This
phase, which we shall refer to as the broken-axisymmetry
phase, was predicted in Ref. �2�, but little attention has been
paid to it from the viewpoint of symmetry breaking. Re-
cently, the spontaneous axisymmetry breaking in this phase
was observed in the magnetization dynamics of a spin-1 87Rb
BEC by the Berkeley group �19�.

In the present study, we investigate the Goldstone modes
of this phase by studying its excitation spectrum. The BEC
with ferromagnetic interactions has three phases: ferromag-
netic, polar, and broken-axisymmetry phases. In the ferro-
magnetic and polar phases, only the U�1� �global phase�
symmetry is broken, and the associated Goldstone mode is a
phonon. In the broken-axisymmetry phase, the SO�2� sym-
metry �axisymmetry� of the spin vector is broken in addition
to the U�1� symmetry. Because of the simultaneous breaking
of these two continuous symmetries, the associated Gold-
stone modes are expected to involve both phonons and mag-
nons.

This paper is organized as follows. Section II reviews the
mean-field ground state of a spin-1 BEC to make this paper
self-contained. Section III uses the Bogoliubov theory to de-
rive one gapful mode and two gapless Goldstone modes.
Section IV explores the implications of the present study for
other related studies, and Sec. V concludes this paper. Ap-
pendix A derives analytic expressions for the ground-state
spinor and magnetization of the broken-axisymmetry phase.
Appendix B discusses the excitation spectra of the ferromag-
netic and polar phases for comparison with the excitation
spectrum of the broken-axisymmetry phase.

II. GROUND STATE WITH BROKEN AXISYMMETRY

A. Formulation of the problem

We consider a uniform system of N identical bosons with
hyperfine spin 1 in which an external magnetic field is ap-
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plied in the z direction. The Hamiltonian of the system is

written as the sum of one-body part ĤI and two-body inter-

action part ĤII. The one-body part is given by

ĤI = �
m=−1

1 � dr �̂m
† �−

�2

2M
�2 − pm + qm2��̂m, �1�

where subscripts m= +1, 0, −1 denote the magnetic quantum
numbers along the z axis and M is the mass of the atom. The
coefficient p is the sum of the linear Zeeman energy and the
Lagrange multiplier �2� and q is the quadratic Zeeman en-
ergy. The Lagrange multiplier is introduced to set the total
magnetization in the z direction to a prescribed value, which
is conserved due to the axisymmetry of the system. In the
cases of spin-1 23Na and 87Rb atoms, q is positive. The two-
body part, which is described by a contact-type s-wave in-
teraction at ultralow temperature, takes the form

ĤII =
1

2 �
F=0,2

gF� dr �̂n�
†
�̂m�

† 	m�;n�
PF
m;n��̂m�̂n, �2�

where gF=4��2aF /M with a0 and a2 being the s-wave scat-
tering lengths in the singlet and quintuplet channels, respec-
tively, and PF projects a two-body state into that with total
spin F. The projection onto the F=1 channel is absent due to
the Bose statistics.

Because the system is uniform, it is convenient to work in
the momentum space by expanding the field operators in

terms of plane waves as �̂m=�−1/2�qeiq·râq,m, where � is
the volume of the system and âq,m represents the annihilation
operator of a boson with wave number q and magnetic quan-
tum number m. Equations �1� and �2� are then rewritten as

ĤI = �
k,m

��k − pm + qm2�âk,m
† âk,m, �3�

ĤII =
c0

2��
k

:�̂k
†�̂k: +

c1

2��
k

:f̂k
† · f̂k: , �4�

where �k=�2k2 / �2M�, c0= �g0+2g2� /3, c1= �g2−g0� /3,

�̂k=�q,mâq,m
† âq+k,m, and f̂k=�q,m,nfm,nâq,m

† âq+k,n with f
= �fx , fy , fz� being the spin-1 matrices in vector notation
�see Eq. �A13��. The symbol � denotes the normal ordering
of operators. The spin-spin interaction is ferromagnetic if
c1�0 and antiferromagnetic if c1�0. It is known that the
interaction between spin-1 23Na atoms is antiferromagnetic
and that between spin-1 87Rb atoms is ferromagnetic �20,21�.

Assuming that a macroscopic number of atoms occupy
the k=0 state, we replace the relevant operators with c num-
bers. The Hamiltonian for the BEC in the k=0 state is given
by

ĤBEC =
c0

2�
:� �

m=−1

1

â0,m
† â0,m�2

:

+ �
m=−1

1

�− pm + qm2�â0,m
† â0,m −

c1

2�
ŝ†ŝ , �5�

where

ŝ =
1
�3

�â0,0
2 − 2â0,1â0,−1� �6�

is an annihilation operator for a singlet pair. In the MFT, we
replace the operator â0,m with c-number 	m

�N0. Here N0 is
the number of condensed atoms and the order parameters
	m’s are complex variational parameters that are determined
so as to minimize the energy functional under the constraint
of normalization �m
	m
2=1. For this purpose, we introduce a
Lagrange multiplier 
 and minimize 	H�−
N0�m
	m
2 with
respect to �m. In the following, we denote the set of the order
parameters as �= T�	1 ,	0 ,	−1�, where the superscript T stands
for transpose.

B. Ground states

The ground-state phase diagram for a spin-1 ferromag-
netic BEC is shown in Fig. 1 �2�. The phases are classified as
follows.

�1� Ferromagnetic phase �
+1� and 
−1� in Fig. 1�. The
order parameter is given for p�0 by �F= T�ei�1 ,0 ,0� and for
p�0 by �F= T�0,0 ,ei�−1�, where �m denotes an arbitrary
phase of 	m, i.e., 	m= 
	m
ei�m.

�2� Polar phase �
0� in Fig. 1�. The order parameter is
given by �P= T�0,ei�0 ,0�.

1 2 3 4

-4

-2

2

4

0

p c n1

q c n1

FIG. 1. Ground-state phase diagram for a spin-1 ferromagnetic
BEC, where 
c1
n is the ferromagnetic interaction energy, p is the
sum of the linear Zeeman energy and the Lagrange multiplier that
determines the total magnetization in the z direction, and q is the
quadratic Zeeman energy. The dashed curves indicate second-order
phase boundaries. In the figure, 
+1� and 
−1� represent the ferro-
magnetic phase and 
0� represents the polar phase. The shaded re-
gion is the broken-axisymmetry phase, in which the magnetization
tilts against the z axis.
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�3� Broken-axisymmetry phase �shaded region in Fig. 1�.
The order parameter is given by �see Appendix A for deri-
vation�

	±1 = �q ± p��p2 + 2
c1
nq − q2

8
c1
nq3 ei�±1,

	0 =��q2 − p2��p2 + 2
c1
nq + q2�
4
c1
nq3 ei��1+�−1�/2. �7�

In the broken-axisymmetry phase, the transverse magnetiza-
tion, which is perpendicular to the external magnetic field
�see Fig. 2�b��, is nonzero and given by

	F��  �	Fx�2 + 	Fy�2 = N0

�q2 − p2��p2 + 2
c1
nq�2 − q4

2
c1
nq2 .

�8�

If we choose 	0 to be real and positive, we have 	Fx�
= 	F��cos � and 	Fy�= 	F��sin �, where ��1=−�−1. The

longitudinal magnetization, which is parallel to the external
magnetic field, is given by

	Fz� = N0
p�p2 + 2
c1
nq − q2�

2
c1
nq2 . �9�

The total magnetization is therefore given by


	F�
  �	F��2 + 	Fz�2 = N0

�4c1
2n2q2 − �p2 − q2�2

2
c1
nq
.

�10�

The magnetization thus tilts against the applied magnetic
field with the polar angle

 = arctan��q2 − p2�p2 + 2
c1
nq + q2

p�p2 + 2
c1
nq − q2 � . �11�

We note that this ground state breaks the axisymmetry
around the z axis despite the fact that the Hamiltonian in-
cluding the external magnetic field is axisymmetric. Thus the
ground state features spontaneous breaking of axisymmetry
or spontaneous breaking of the SO�2� symmetry. Such an
axisymmetry breaking is due to the competition between the
linear and quadratic Zeeman effects and the ferromagnetic
interaction. The quadratic Zeeman effect decreases the z
component of the spin vector. However, a decrease in the
length of the spin vector costs the ferromagnetic interaction
energy. To reconcile the quadratic Zeeman effect with the
ferromagnetic interaction, the spin vector tilts against the z
axis. In fact,  in Eq. �11� is a monotonically decreasing
function of p and a monotonically increasing function of q,
and the length of the spin vector �10� attains the maximum
value of N0 for 
c1
n→�.

III. BOGOLIUBOV EXCITATIONS AND GOLDSTONE
MODES

According to the Goldstone theorem �22�, there exists a
gapless excitation mode when a continuous symmetry is
spontaneously broken. In the preceding section, we have
shown that in the broken-axisymmetry phase the relevant
continuous symmetry is the SO�2� axisymmetry. Since in the
MFT the global phase of the wave function is assumed to be
arbitrarily chosen, the U�1� symmetry is also broken. Thus
the two continuous symmetries are simultaneously broken in
this phase. In this section, we examine the corresponding
Goldstone modes using the Bogoliubov theory.

A. Number-conserving Bogoliubov theory

We employ the number-conserving Bogoliubov theory
�23� for a BEC with spin degrees of freedom �17�. The ad-
vantage of the number-conserving formalism is that we do
not need to introduce the chemical potential as a Lagrange
multiplier in order to adjust the particle number to a pre-
scribed value. In this formulation, we replace â0,m with
	m�N−�k�0,mâk,m

† âk,m�1/2 in Eqs. �3� and �4� and keep terms
up to those of the second order in âk�0,m and âk�0,m

† . We then
obtain an effective Bogoliubov Hamiltonian as �17�

FIG. 2. �Color online� �a� Transverse magnetization, i.e., mag-
netization perpendicular to the direction of the applied magnetic
field 	f��	F�� /N0 as a function of linear and quadratic Zeeman
coefficients. The transverse magnetization is nonzero only in the
broken-axisymmetry phase. �b� Schematic illustration of the spin
vector in the broken-axisymmetry phase.
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Ĥeff = �
k�0

�
m=−1

1

��k − pm + qm2 + p	fz� − q	fz
2� − c1n + c1n
	0

2

− 2	1	−1
2�âk,m
† âk,m + c1n	f� · �

k�0
�
m,n

fm,nâk,m
† âk,n

+
c0n

2 �
k�0

�2D̂k
†D̂k + D̂kD̂−k + D̂k

†D̂−k
† �

+
c1n

2 �
k�0

�2F̂k
† · F̂k + F̂k · F̂−k + F̂k

† · F̂−k
† � + E0,

�12�

where D̂k�m	m
* âk,m, F̂k�m,nfm,n	m

* âk,n, and E0 repre-
sents a constant term.

In general, for spin-f atoms, we can express quasiparticle

operators b̂k,�’s as linear combinations of the annihilation
and creation operators of the original particles:

B̂k = U�k�Âk + V�k�Â−k
* . �13�

Here U�k� and V�k� are �2f +1�� �2f +1� real matrices and
the bold letters represent sets of operators

B̂k = T�b̂k,�1
, b̂k,�2

, . . . , b̂k,�2f+1
� ,

Âk = T�âk,f, âk,f−1, . . . , âk,−f� ,

Âk
* = T�âk,f

† , âk,f−1
† , . . . , âk,−f

† � ,

where � j is the label for each Bogoliubov mode. The quasi-
particle operators �13� should satisfy the Bose commutation
relations,

�b̂k,�, b̂k�,��� = 0, �b̂k,�, b̂k�,��
† � = �k,k���,��, �14�

which lead to

�
i

�U�,i�k�TUi,��
�k� − V�,i�k�TVi,��

�k�� = ��,��, �15�

�
i

�U�,i�k�TVi,��
�k� − V�,i�k�TUi,��

�k�� = 0. �16�

We can rewrite Eqs. �15� and �16� in a matrix form,

T�U + V��U − V� = I. �17�

Thus U and V are not independent of each other. For later

convenience, we rewrite B̂k as

B̂k =
1

2
��U + V��Âk + Â−k

* � + �U − V��Âk − Â−k
* �� . �18�

We seek the excitation spectrum E� and the corresponding

Bogoliubov operators b̂k,� such that the quasiparticles be-
have independently, i.e.,

Ĥeff = �
k�0

�
�=��1,�2,. . .,�2f+1�

E�b̂k,�
† b̂k,� + Evac, �19�

where Ĥeff is given in Eq. �12� and Evac is the energy of the
vacuum state for the quasiparticles. From Eq. �12�, the
Heisenberg equation of motion takes the form

i�
d

dt
Âk = M�k�Âk + N�k�Â−k

* , �20�

where M�k� and N�k� are real and symmetric �2f +1�
� �2f +1� matrices. Using the quasiparticle Hamiltonian �19�
and the commutation relations �14�, we obtain

i�
d

dt
B̂k = E�k�B̂k, �21�

where E�k� is the diagonal �2f +1�� �2f +1� matrix, whose
diagonal elements correspond to the energies of the elemen-
tary excitations Ek,�j

. Then by substituting Eq. �20� into Eq.
�21� and using Eq. �17�, we obtain

�M + N��M − N�T�U + V� = T�U + V�E2. �22�

Since E2 is also a diagonal matrix, the Bogoliubov excitation
spectrum can be found as the eigenvalues of the matrix

G  �M + N��M − N� . �23�

We note that G, which is the product of two Hermitian ma-
trices, is not, in general, Hermitian. The present approach has
the advantage that we can reduce the dimension of the eigen-
value equation from 2�2f +1� to �2f +1� and therefore the
diagonalization is simplified. That is, instead of the diagonal-
ization of the 2�2f +1��2�2f +1� matrix as

� M N

− N − M
� → �E 0

0 − E
� , �24�

the �2f +1�� �2f +1� matrix G is to be diagonalized.

B. Low-lying modes in the broken-axisymmety phase for k\0

Without loss of generality, we can assume 	m to be real
and positive. The excitation spectra in the ferromagnetic and
polar phases can be derived analytically as shown in Appen-
dix B. The analytic solutions can also be obtained for the
broken-axisymmetry phase for general k. However, since
they are very complicated, we derive here the excitation
spectrum for small k.

The effective Hamiltonian �12� gives the coefficient ma-
trices M and N of the Heisenberg equation of motion �20�.
Using the explicit form of 	m in Eq. �7�, the matrix G can be
written in the form

G = G0 + 2�g2nG1 − c1nG1���k + I�k
2 , �25�

where I is the unit matrix and

G0 = � �1	−1	0 �1	1	−1 �1	1	0

�0	−1	0 �0	1	−1 �0	1	0

�−1	−1	0 �−1	1	−1 �−1	1	0
� , �26�
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G1 = � 	1
2 	1	0 	1	−1

	1	0 	0
2 	−1	0

	1	−1 	−1	0 	−1
2 � , �27�

G1� = � 	0
2	−1/	1 − 2	−1	0 − 2	1	−1

− 2	−1	0 	0
2 + 2	1	−1 − 2	−1	0

− 2	1	−1 − 2	−1	0 	0
2	1/	−1

� , �28�

with

�m = �3m2 − 2�
c1
n�p2 + 2
c1
nq + �− 1�mq2

− 2mpq�	0/�q	m� . �29�

We first consider the limit of k→0. The three eigenvalues
for G=G0 can be obtained easily: One is

Egap
2 = �3p2 − 2c1nq − q2��p2 − 2c1nq + q2�/q2 �30�

and the other two are zero. Thus the system has two gapless
excitation modes, which, as we will show later, originate
from the U�1� and SO�2� symmetry breakings. We label the
gapful mode as � and the two gapless modes as � and �.

The eigenvectors of G0 are given by each row of the
following matrix:

U + V = � ��1 ��0 ��−1

�
p + 
m�	1 
p	0 �
p − 
m�	−1

��p + �m�	1 �p	0 ��p − �m�	−1
� , �31�

where �, 
p, 
m, �p, and �m are arbitrary parameters. Note
that the second and third rows can be expressed as the linear
combinations of two vectors �	1 ,	0 ,	−1� and �	1 ,0 ,−	−1�,
both of which are eigenvectors with zero eigenvalues. It fol-
lows from Eq. �17� that the matrix U−V is given as the
transposed inverse matrix of Eq. �31�:

U − V =
1

A�
	−1	0

�
2
	1	−1

�

	1	0

�

− 	−1�0��p − �m� + 	0�−1�p

J

	−1�1��p − �m� − 	1�−1��p + �m�
J

	1�0��p + �m� − 	0�1�p

J

	−1�0�
p − 
m� − 	0�−1
p

J

− 	−1�1�
p − 
m� + 	1�−1�
p + 
m�
J

− 	1�0�
p + 
m� + 	0�1
p

J

� , �32�

where A2	1	−1�0−	0	−1�1−	0	1�−1 and J
p�m
−
m�p.

C. Low-lying modes in the broken-axisymmetry phase
for small k

In the limit of small k, the five parameters �, 
p, 
m, �p,
and �m can be determined by substituting Eqs. �31� and �32�

into the definitions of the Bogoliubov operators �18� and by
comparing the quasiparticle Hamiltonian �19� with the effec-
tive Hamiltonian �12�. However, we cannot perform this pro-
cedure by using the expressions of the eigenvectors for k
=0 because the two Goldstone modes diverge in the limit of
k→0. Thus it is necessary to find the �k dependence of the
eigenenergies in order to find the properties of the low-lying
excitations. From Eqs. �26�–�28�, we obtain the eigenener-
gies up to the order of �k as

E�
2 = Egap

2 + 4� p2 − c1nq

q
��k + O��k

2� ,

E�
2 = �+�k + O��k

2� ,

E�
2 = �−�k + O��k

2� , �33�

where

�± = g2n +
�

2
±

1

2
��2g2n − ��2 +

8g2n�q − ���2

c1n�3� − 2q + 2c1n�

with �= �q2− p2� /q. In Fig. 3, we compare the �k depen-
dences of the approximate eigenenergies �33� �dashed
curves� with those of the numerically obtained exact energies
�solid curves�.

2

4

6

0
1/2

k( )

/

0.2 0.4 0.6 0.8 1.0

c n1

c
n

1
Ex

ci
ta

tio
n 

en
e

rg
y

FIG. 3. Excitation spectrum in the broken-axisymmetry phase.
The solid curves represent the numerically obtained exact solutions
and the dashed curves are approximate solutions in Eq. �33�. The
linear and quadratic Zeeman coefficients are chosen to be p / 
c1 
n
=9/10 and q / 
c1 
n=11/10. The modes � and � are the gapless
modes associated with the simultaneous breakings of U�1� and
SO�2� symmetries. The exact and approximate solutions for the �
mode cannot be resolved in this figure.
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It is important to note that the two gapless excitations E�

and E� in Eq. �33� share the same leading-order term �k
1/2.

Since the effective Hamiltonian Ĥeff in Eq. �12� contains
only the terms that are proportional to �k, this �k

1/2 depen-

dence must be canceled by the factors in the operators b̂k,� so
that Eq. �19� reproduces Eq. �12�. Therefore, we find that the
normalization factors 
p, 
m, �p, and �m in Eq. �31�, which

determines b̂k,� through Eq. �13�, must be proportional to
either �k

−1/4 or �k
1/4. From numerical analysis, we find that

they all have an �k
−1/4 dependence as do the cases of gapless

excitations in the other phases �see Appendix B�. It follows
then from Eqs. �31� and �32� that �U+V��,m�O��k

−1/4� and
�U−V��,m�O��k

1/4�, and

�U + V��,m � �U − V��,m �� = � or �� �34�

for �k→0. Therefore, we can neglect the second term in the
square bracket in Eq. �18�, obtaining

b̂k,� � �
m

�U + V��,m�âk,m + â−k,m
† � �35�

for �=� and �. The corresponding Bogoliubov operators are
then written as

b̂k,� � 
p�
m

	m�âk,m + â−k,m
† � + 
m�

m

m	m�âk,m + â−k,m
† � ,

b̂k,� � �p�
m

	m�âk,m + â−k,m
† � + �m�

m

m	m�âk,m + â−k,m
† � .

�36�

Equation �36� indicates that the quasiparticle operators for
the two gapless modes are constituted from the number fluc-
tuation operator

�N̂ = �N0��
m

	m�âk,m + â−k,m
† �� �37�

and the spin fluctuation operator

�F̂z = �N0��
m

m	m�âk,m + â−k,m
† �� . �38�

We recall that the operator N̂ is the generator of the global

phase rotation and the operator F̂z is that of the spin rotation
around the z axis. The creations of the gapless quasiparticles
therefore lead to translation in the global phase of the order
parameter and rotation of the magnetization around the z
axis. The modes � and � are thus the Goldstone modes that

restore the U�1� and SO�2� symmetries. Since �N̂ and �F̂z
can be regarded as the phonon and magnon operators, re-
spectively, phonons and magnons are coupled in the quasi-
particles described by Eq. �36�. This is in contrast to the
cases of the ferromagnetic and polar phases, in which
phonons and magnons are decoupled �see Appendix B�. The
numerically obtained coefficients 
p, 
m, �p, and �m are

shown in Fig. 4 as functions of q / 
c1 
n. We see that b̂k,� is

predominantly the density fluctuation operator, while b̂k,� is
the linear combination of the number and spin fluctuation
operators with roughly equal weights for small q / 
c1 
n. In

other words, the � mode is a phonon-dominant mode and the
� mode is a phonon-magnon coupled mode. The � mode
crosses over to a phonon mode across the two neighboring
phase boundaries, while the � mode crosses over to a mag-
non mode.

D. Coherent excitations

We investigate the dynamics of the system when the qua-
siparticles are coherently excited. The excited state is as-
sumed to be a coherent state


�k,��  e�k,�b̂k,�
† −�k,�

* b̂k,�
0�B, �39�

where 
0�B is the vacuum of the Bogoliubov quasiparticles.

The change in the expectation value of an observable Q̂ due
to the excitation of quasiparticles is given by

	�Q̂k,��t�� = 	�k,�
Q̂H�t�
�k,�� − B	0
Q̂H�t�
0�B, �40�

where the subscript H denotes the Heisenberg representation.

Since Âk=TU�k�B̂k−TV�k�B̂−k
* using the inverse relation of

Eq. �13�, we obtain

	��̂m�t��k,� =

�k,�

��

��U − V��,m cos�k · r − ��t + �k,��

+ i�U + V��,m sin�k · r − ��t + �k,��� , �41�

where �k,�=arg��k,�� and ��=Ek,� /�. Since the ratio of the
real part to the imaginary part is estimated from Eq. �34� to
be ��̄k�1/2�1, the real part is negligible for the two gapless
modes, �=� and �, in the long-wavelength limit. Therefore,

	��̂m�t��k,� is almost purely imaginary, indicating that the
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FIG. 4. �Color online� Coefficients in the phonon-magnon
modes �
p, 
m, �p, and �m in Eq. �36�� as functions of the normal-
ized quadratic Zeeman energy q / 
c1 
n. The linear Zeeman energy is
chosen to be p / 
c1 
n=9/10. The vertical axis is scaled by
��k / 
c1 
n�1/4 /�N0. The values of the scattering lengths obtained by
Kempen et al. �21� are used: a0=101.8 a.u. and a2=100.4 a.u. The
insets show the enlarged curves for 
p and 
m.
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change occurs mostly in the phase of the order parameter 	m.
Thus the excitations of the � and � modes lead to a global
phase rotation and a spin rotation around the z axis.

To study how the quasiparticle excitation rotates the spin,

we calculate 	�F̂�t��k,�. Keeping terms up to those of the first
order in �k,�, we obtain

	�F̂��t��k,� =
�n0

���
m,n

	m�f��m,n

���U � V��,nei�k·r−��t��k,� ± H.c.� , �42�

where f� ��=x ,y ,z� are the spin-1 matrices defined in Eq.
�A13�, and the upper signs refer to �=x and z and the lower

signs to �=y. Hence, Eq. �34� leads to 	�F̂y�k,�� 	�F̂x�k,�

and 	�F̂y�k,�� 	�F̂z�k,�. This is because 	F̂x��0, 	F̂z��0,

and 	F̂y�=0 from the assumption of real and positive 	m, and
the infinitesimal spin rotation around the z axis predomi-

nantly changes 	F̂y�.
We have shown that the excitations of the Goldstone

modes � and � lead to U�1� and SO�2� transformations. Os-
cillations of the order-parameter phases and those of the azi-
muthal angle of the spin vector are shown in Fig. 5. Figure
5�a� shows that excitations of the � mode change the phases

of 	�̂1�, 	�̂0�, and 	�̂−1� in the same manner. This is because,
as shown in Fig. 4, the dominant contribution to the � mode
is made by phonons which are insensitive to individual spin
components. On the other hand, the �-mode excitation de-
scribes not only fluctuations of the overall phase but also
those of the spin vector around the z axis. Since the rotation

around the z axis is ei F̂z
m�=ei m 
m�, �1 and �−1 are out of
phase with respect to �0.

The gapful mode �� mode� can be interpreted as playing
the role of changing the magnitude of magnetization. As
shown in Fig. 6, the fluctuation of Fx is dominant when the �
mode is excited. The z component Fz cannot vary due to the
spin conservation, and hence the spin fluctuation is restricted
in the x-y plane, as illustrated in the inset of Fig. 6.

IV. DISCUSSION

We have shown that the ground state in the shaded region
of Fig. 1 is the broken-axisymmetry phase which features
transverse magnetization. Here, we discuss possible experi-
mental consequences of the axisymmetry breaking and the
transverse magnetization.

We have considered so far the case in which the axisym-
metry is broken uniformly over the entire system. However,
starting from a nonmagnetic state, e.g., the m=0 state, the
system cannot develop into the uniformly broken-
axisymmetry state, since the total spin angular-momentum
component parallel to the magnetic field must be conserved,
and for small q the magnitude of the transverse component
of the total spin is nearly entirely conserved. For such an
initial state, directions of the axisymmetry breaking should
vary randomly in space while conserving the projected total
spin angular momentum, and various spin textures are
formed depending on the trap geometry �24,25�. For ex-

ample, in an elongated cigar-shaped trap, a staggered domain
structure or a helical structure is expected to develop spon-
taneously �24�. In a pancake-shaped trap, on the other hand,
a concentric domain structure will be formed �24�.

Another interesting possibility is a topological spin tex-
ture, in which the orientation of transverse magnetization has
a 2� winding about a central defect �25�. The direction of the
winding can be clockwise or counterclockwise which is cho-
sen spontaneously. Therefore, this state breaks the chiral
symmetry as well as the axisymmetry.

Recently, spontaneous magnetization of a 87Rb BEC has
been observed by the Berkeley group �19� under conditions
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FIG. 5. Oscillations of the order-parameter phases

��m tan−1�Im	�̂m� /Re	�̂m��� and the azimuthal angle of magneti-

zation around the z axis �� tan−1�	F̂y� / 	F̂x��� caused by the exci-
tation of the Bogoliubov quasiparticles in the long-wavelength
limit. The ordinates are marked in arbitrary units, and the Zeeman
energies are taken to be p / 
c1 
n=9/10 and q / 
c1 
n=11/10. �a�
Phonon-dominant mode �� mode�. Since rotation of the magnetiza-
tion occurs much slower than rotations of the order parameter
phases, we cannot see the latter ��� in this figure. �b� Phonon-
magnon coupled mode �� mode�.
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0.3
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FF
F

FIG. 6. Oscillation of transverse magnetization 	Fx� due to co-
herent excitations of the gapful mode �� mode�. The inset schemati-
cally illustrates a change in the spin vector caused by the excitation
of the � mode.

BROKEN-AXISYMMETRY PHASE OF A SPIN-1… PHYSICAL REVIEW A 75, 013607 �2007�

013607-7



in which the state of the system is changed rapidly by a
change in the magnetic field from the 
0� region to the shaded
region in Fig. 1. The spontaneous transverse magnetization
observed in the Berkeley experiment is therefore a manifes-
tation of the symmetry breaking discussed in the present pa-
per. In this experiment, a topological spin texture predicted
in Ref. �25� was also detected as a spin vortex. In the Ber-
keley experiment, the magnetic field is rapidly changed from
the polar phase to the broken-axisymmetry phase and the
system is significantly disturbed. If the speed of the change is
slow, on the other hand, the system will be only weakly
disturbed, and low-energy gapless excitations �the � and �
modes� predicted in this paper should be observed.

V. CONCLUSIONS

We have studied a spin-1 ferromagnetic BEC by taking
the quadratic Zeeman effect into account. The mean field
theory predicts that BECs with ferromagnetic interactions
have the broken-axisymmetry phase, in which magnetization
tilts against the direction of an external magnetic field. Here,
the SO�2� symmetry is broken, in addition to the U�1� global
phase symmetry. Applying the Bogoliubov theory for a BEC
with spin degrees of freedom, we have found one gapful
mode and two gapless Goldstone modes for this phase. We
have analytically shown that two gapless modes are the
coupled phonon-magnon modes that restore the U�1� and
SO�2� symmetries simultaneously. Numerical analysis has
shown that one Goldstone mode is the phonon-dominant
mode and the other is the phonon-magnon coupled mode
with roughly equal weights. The gapful mode changes the
magnitude of the spin by fluctuating the spin in the direction
perpendicular to the magnetic field �see the inset of Fig. 6�.

When more than one continuous symmetry is spontane-
ously broken, multiple gapless modes emerge which are
coupled to generate the same number of Goldstone modes as
that of the broken symmetries. When two gapless modes are
coupled, they usually anticross and develop a gapful mode
such as optical phonons and plasmons. This rule does not
apply to the present case because both of the gapless modes
originate from broken continuous symmetries. Similar phe-
nomena may be expected in spin-2 BECs �12� and higher
spin BECs, which merit further investigation.
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APPENDIX A: DERIVATION OF THE PHASE DIAGRAM
FOR c1�0

In this Appendix, we derive the analytic expression for the
spinor components in Eq. �7� in the broken-axisymmetry

phase and reproduce the phase diagram for c1�0 in Fig. 1.
The average energy per atom is given from Eq. �5� by

e 

c1
n

2

2	1	−1 − 	0

2
2 + �
m=−1

1

�− pm + qm2�
	m
2, �A1�

where we omit the spin-independent energy c0n /2. The first
term on the right-hand side of Eq. �A1� can be rewritten as


c1
n
2


2	1	−1 − 	0
2
2 =


c1
n
2


2
	1	−1
 − 
	0
2ei�2�0−�1−�−1�
2,

�A2�

where 	m= 
	m 
ei�m. Hence the phase depends on energy only
through 2�0−�1−�−1, and the energy is minimized for
2�0−�1−�−1=0. Without loss of generality, we assume that
	m’s are real and non-negative.

We minimize

K  e − 
�	1
2 + 	0

2 + 	−1
2 � , �A3�

where 
 is a Lagrange multiplier which is introduced to
ensure the normalization condition 	1

2+	0
2+	−1

2 =1. Stationary
conditions can be obtained through differentiation of K with
respect to 	m’s as

�K

�	±1
= 2
c1
n�2	1	−1 − 	0

2�	�1 + 2�q � p − 
�	±1 = 0,

�A4�

�K

�	0
= − 2
c1
n�2	1	−1 − 	0

2�	0 − 2
	0 = 0. �A5�

It follows from Eq. �A5� that either 	0=0 or


 = − 
c1
n�2	1	−1 − 	0
2� �A6�

has to be satisfied. When 	0=0, we find that K is minimized
with

	1 = 1, 	−1 = 0 for p � 0 �e = q − p� , �A7�

	1 = 0, 	−1 = 1 for p � 0 �e = q + p� . �A8�

When 	0�0, Eq. �A4� becomes

�q � p − 
�	±1 = 
	�1. �A9�

We can easily see that the polar state

	0 = 1, 	1 = 	−1 = 0 �e = 1� �A10�

satisfies Eq. �A9�. Solving Eqs. �A6� and �A9�, and the nor-
malization condition for 	m, we obtain the solution for the
broken-axisymmetry phase in Eq. �7�. This solution is valid
for

q2 − p2 ! 0 and 2
c1
nq − q2 + p2 ! 0. �A11�

The energy of the broken-axisymmetry state is calculated to
be

MURATA, SAITO, AND UEDA PHYSICAL REVIEW A 75, 013607 �2007�

013607-8



ebr =
1

4�
c1
nq�2 �q2 − p2��p2 − 4
c1
nq − q2� . �A12�

We can show that ebr"1 and ebr"q± p are always satisfied
in the region specified by Eq. �A11�, and thus we obtain the
phase diagram in Fig. 1.

The three components of the spin-1 matrices are given by

fx =
1
�2�0 1 0

1 0 1

0 1 0
�, fy =

i
�2�0 − 1 0

1 0 − 1

0 1 0
� ,

fz = �1 0 0

0 0 0

0 0 − 1
� , �A13�

and the corresponding spin components are given by

	Fx�  N0�†fx� =
N0

�2
�	0

*�	1 + 	−1� + 	0�	1
* + 	−1

* �� ,

�A14�

	Fy�  N0�†fy� = i
N0

�2
�	0

*�	1 − 	−1� − 	0�	1
* − 	−1

* �� ,

�A15�

	Fz�  N0�†fz� = N0�
	1
2 − 
	−1
2� . �A16�

Substituting Eq. �7� into Eqs. �A14�–�A16�, we obtain Eqs.
�8�–�10�.

APPENDIX B: EXCITATION SPECTRA
IN THE FERROMAGNETIC AND POLAR PHASES

1. Ferromagnetic phase

We first consider the ferromagnetic phase �
+1� in Fig. 1�
for p�0. In this phase the order parameters are given by
	1=1 and 	0=	−1=0. The matrices M and N in Eq. �20� are
shown to be

M = ��k + c0n + c1n 0 0

0 �k + p − q 0

0 0 �k + 2p − 2c1n
� ,

�B1�

N = �c0n + c1n 0 0

0 0 0

0 0 0
� , �B2�

and the matrix G in Eq. �23� is given by

G = ��k��k + 2g2n� 0 0

0 ��k + p − q�2 0

0 0 ��k − 2p − 2c1n�2� .

�B3�

Hence we obtain three excitation energies as

Ep = ��k��k + 2g2n� ,

E0 = �k + p − q ,

E−1 = �k − 2p − 2c1n , �B4�

and the associated quasiparticle operators as

b̂k,p =
��k + g2n + Ep

�2Ep

âk,1 +
��k + g2n − Ep

�2Ep

â−k,1
† ,

b̂k,0 = âk,0,

b̂k,−1 = âk,−1. �B5�

The corresponding results for p�0 can be obtained by
changing the linear Zeeman term p to −p. For q=0, these
results reduce to those obtained in the absence of the qua-
dratic Zeeman effect �17�. The excitation spectrum Ep is
similar to the one obtained for scalar BECs; it is a phonon
mode with the speed of sound given by c=�g2n /M. The
other two modes are associated with excitations from the
m=1 state to the m=0 and m=−1 states, respectively. In the
long-wavelength limit �k→0�, E0 �E−1� coincides with the
single-particle energy difference between the m=1 state and
the m=0 �m=−1� state. Hence the phonon mode �Ep� and the
magnon modes �E0 ,E−1� are decoupled in the ferromagnetic
phase.

It can be easily verified that these excitation modes and
operators do reproduce the effective Hamiltonian �12�
through Eq. �19�. For small �k, Ep in Eq. �B4� is proportional

to �k
1/2 and b̂k,p in Eq. �B5� is proportional to �k

−1/4. The sin-

gular �k dependence in each of Ep and b̂k,p is therefore can-

celed in the product Epb̂k,p
† b̂k,p, giving the original �k depen-

dence in the effective Hamiltonian.

2. Polar phase

In the polar phase �
0� in Fig. 1�, the order parameters are
	0=1 and 	1=	−1=0, and the matrices M and N have the
forms

M = ��k − p + q + c1n 0

0 �k + c0n 0

0 0 �k + p + q + c1n
� ,

�B6�

N = � 0 0 c1n

0 c0n 0

c1n 0 0
� , �B7�

which give
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G = ���k − p + q + c1n�2 − c1n2 0 2c1np

0 �k��k + 2c0n� 0

− 2c1np 0 ��k + p + q + c1n�2 − c1n2� . �B8�

Diagonalizing G in Eq. �B8�, we obtain the eigenvalues as

Ep = ��k��k + 2c0n� ,

E+ = − p + �k,

E− = + p + �k, �B9�

where �k=���k+q���k+q+2c1n�. The quasiparticle opera-
tors are found to be

b̂k,p =
��k + c0n + Ep

�2Ep

âk,0 +
��k + c0n − Ep

�2Ep

â−k,0
† ,

b̂k,± =
��k + q + c1n + �k

�2�k

âk,±1 −
��k + q + c1n − �k

�2�k

â−k,�1
† .

�B10�

The first mode Ep in Eq. �B9� is a phonon mode. The other
two are magnon modes which scatter a quasiparticle from the
state with m=0 to the one with m= ±1. Thus, in this phase as
in the ferromagnetic phase, phonons and magnons are decou-
pled.
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