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ARTICLE

Bromodomain and extraterminal proteins foster
the core transcriptional regulatory programs
and confer vulnerability in liposarcoma
Ye Chen1, Liang Xu 1, Anand Mayakonda1, Mo-Li Huang1,2, Deepika Kanojia1, Tuan Zea Tan 1,

Pushkar Dakle1, Ruby Yu-Tong Lin1, Xin-Yu Ke1, Jonathan W. Said 3, Jianxiang Chen4, Sigal Gery5,

Ling-Wen Ding1, Yan-Yi Jiang1, Angela Pang6, Mark Edward Puhaindran6,7,8, Boon Cher Goh1,6,9 &

H. Phillip Koeffler 1,5,6

Liposarcomas (LPSs) are a group of malignant mesenchymal tumors showing adipocytic

differentiation. Here, to gain insight into the enhancer dysregulation and transcriptional

addiction in this disease, we chart super-enhancer structures in both LPS tissues and cell

lines. We identify a bromodomain and extraterminal (BET) protein-cooperated FUS-DDIT3

function in myxoid LPS and a BET protein-dependent core transcriptional regulatory circuitry

consisting of FOSL2, MYC, and RUNX1 in de-differentiated LPS. Additionally, SNAI2 is

identified as a crucial downstream target that enforces both proliferative and metastatic

potentials to de-differentiated LPS cells. Genetic depletion of BET genes, core transcriptional

factors, or SNAI2 mitigates consistently LPS malignancy. We also reveal a compelling

susceptibility of LPS cells to BET protein degrader ARV-825. BET protein depletion confers

additional advantages to circumvent acquired resistance to Trabectedin, a chemotherapy

drug for LPS. Moreover, this study provides a framework for discovering and targeting of

core oncogenic transcriptional programs in human cancers.
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T
ranscription factors (TFs) coordinate the expression of
target genes typically through cis-regulatory DNA ele-
ments. A small set of lineage-specific master TFs and/or de

novo chimeric fusion TFs dictate the core transcriptional pro-
grams governing cell identity and malignant state1. Elucidating
the core transcriptional regulatory mechanisms is necessary to
understand the fundamentals of molecular carcinogenesis.

Liposarcomas (LPSs) are a group of mesenchymal malig-
nancies showing adipocytic differentiation and are the prevailing
types of soft tissue sarcomas in adults2. LPSs are heterogeneous
diseases with four major subtypes: well-differentiated LPS
(WDLPS), de-differentiated LPS (DDLPS), myxoid LPS (MLPS),
and pleomorphic LPS (PLPS). The latter three comprise the
majority of high-grade cases. DDLPS and PLPS are largely
refractory to current treatment modalities, while MLPS shows
generally better clinical response and prognosis3–5. Although
recent approval of Trabectedin (Yondelis) for LPS treatment
offers a new option of systematic chemotherapy agent, durable
benefits are hampered by clinical toxicity, unresponsiveness, and
acquired resistance6,7. Unfortunately, local recurrence and distant
metastasis occur frequently in advanced LPSs8, urging the
development of novel therapeutic interventions.

Seminal studies reveal comprehensively somatic abnormalities
within LPS genomes3,9–11. Amplification of chromosome
12q13-15 and overexpression of CDK4 and MDM2 are prevalent
in WDLPS and DDLPS patients, which has guided clinical
investigation of MDM2 and CDK4 inhibitors12,13. Genomic
rearrangements involving FUS-DDIT3 and EWSR1-DDIT3
translocations define MLPS subtype, which shows the
highest response rate and survival benefit from Trabectedin
treatment14–17. Trabectedin binds to the minor groove of the
DNA double helix and impairs DNA repair and transcription
processes, resulting in growth arrest, differentiation, and cell
death18. Trabectedin induces maturation of lipoblasts via inacti-
vation of FUS-DDIT3 in MLPS19,20. Aberrant DNA methylation
and histone modifications have also been implicated in
liposarcomagenesis3,11,21. Promoter hyper-methylation silences
the expression of master pro-adipogenic TFs: CEBPA and KLF43.
Increase of H3K9me3 is associated with de-differentiated phe-
notype and repression of KLF621. To date, tremendous efforts
have been made to determine genomic and epigenetic defects
that block terminal differentiation of high-grade LPS, whereas
the feed-forward transcriptional regulatory mechanism that
reinforces and stabilizes the malignant characteristics remains
unexplored.

Super-enhancers (SEs) are recognized as active and clustered
enhancers that acquire excessive transcriptional machinery and
permissive chromatin marks (e.g., H3K27ac)22. SE-driven genes
are often associated with disease-related oncogenes and lineage-
specific master regulators22,23. As little is known about enhancer
dysregulation in liposarcomagenesis, uncovering the SE archi-
tectures will be important to improve the current understanding
of epigenetic mechanism underlying LPS malignancy. SE regions
are bound asymmetrically by BRD4, one of the bromodomain
and extraterminal (BET) family proteins that read histone lysine
acetylation and co-activate key oncogenic transcription23,24. To
date, although BET bromodomain inhibitors (BBIs) have been
shown extensively to disrupt the SE activity and display pro-
mising anti-cancer effects25, the function of BET proteins and
their druggability in LPS are still unexplored.

The current study was designed to elaborate the BET protein
dependency and its mechanistic connections to the aberrant
enhancer states and core transcriptional programs in LPS. We
demonstrate that (1) BET proteins are vital to maintain the
DDLPS-specific core transcriptional regulatory circuitry consist-
ing of SE-associated TFs FOSL2, MYC, and RUNX1; and (2)

BRD4 is a novel co-activator for FUS-DDIT3 function in MLPS.
We also report the superior anti-LPS efficacy of BET protein-
degrading agents, which provides important insights to targeted
depletion of BET proteins as a candidate therapeutic approach
for LPS.

Results
Charting the super-enhancer landscape in DDLPS and MLPS.
To evaluate the active epigenetic states associated with LPS
malignancy, we performed chromatin immunoprecipitation fol-
lowed by next-generation sequencing (ChIP-seq) of histone mark
H3K27ac in both LPS cell lines and primary tumors. We first
compared the H3K27ac-inferred SE architectures in mesenchy-
mal stem cells (MSCs)26, mature adipocytes27, and cells derived
from MLPS and DDLPS (Fig. 1a and Supplementary Fig. 1). SE-
association captured the vast majority of highly expressed genes,
which can distinguish differentiation stages, disease states, and
subtypes of these cells (Fig. 1b and Supplementary Fig. 2a–c). LPS
cells engaged preferentially SEs to genes involved in cancer
pathways, as well as biological processes of development, cell
migration, angiogenesis and transcription from RNA-Pol2 pro-
moter (Supplementary Fig. 2d, e). In contrast, SE-associated genes
that were exclusive to adipocytes (e.g., CEBPA and PPARG) were
enriched in PPAR signaling pathway (Fig. 1c and Supplementary
Table 1). Of note, we also mapped the SE structures in primary
tumors and found that MLPS and DDLPS tissues had 25% and
33% of SE-associated genes overlapping, respectively, with LPS
cell lines of the same subtype (Fig. 1d–f and Supplementary
Table 2). Altogether, these data are insightful for molecular
pathogenesis of LPS, and motivate us to explore the disease-
specific gene regulation in MLPS and DDLPS.

Occupancy of FUS-DDIT3 across super-enhancers in MLPS.
The preferential association of SEs to genes regulating RNA-Pol2
activity prompted us to interrogate potential transcriptional
addiction. MLPS manifests core dependency on FUS-DDIT3
(Fig. 2a and Supplementary Fig. 3a–d). Genome-wide occupancy
analysis indicated that about 9% of FUS-DDIT3 peaks bound
active promoters with broader RNA-Pol2 loading and higher
transcription (Fig. 2b, c and Supplementary Fig. 3e, f). Moreover,
nearly 60% of FUS-DDIT3 peaks were mapped to putative
enhancers, including 97% of H3K27ac-defined SEs and 62% of
typical enhancers. Interestingly, the intensity of FUS-DDIT3
peaks was enhanced moderately but significantly inside SEs,
coincided with elevated permissive histone marks (Fig. 2d and
Supplementary Fig. 3g). FUS-DDIT3 loading in SE was strongly
associated with low promoter-proximal pausing of RNA-Pol2 in
target genes (Supplementary Fig. 3h). By stitching the peaks of
FUS-DDIT3, we discovered FUS-DDIT3-overloaded enhancers
and found that genes associated with H3K27ac/FUS-DDIT3
double-positive SEs (e.g., FST and IL8) showed high basal
expression in MLPS (Fig. 2e–h). Next, by interrogating SEs in
primary MLPS tissues, we identified a list of genes, including
SMURF2 and ARID5B as potential FUS-DDIT3 targets whose
expression were regulated through H3K27ac/FUS-DDIT3 double-
positive SEs (Supplementary Tables 2 and 3). As BRD4 has dis-
played asymmetrical loading in SE regions, we hypothesized that
FUS-DDIT3 may function together with BRD4 in regulating
expression of SE-associated genes in MLPS. In support of this, we
identified a physical interaction between BRD4 and FUS-DDIT3,
and demonstrated further BET proteins as novel partners of FUS-
DDIT3 (Fig. 2i, j and Supplementary Fig. 3i). Moreover, about
40% of BRD4 ChIP-seq peaks co-localized with FUS-DDIT3
(n= 3611) across the MLS402 genome (Fig. 2k). Silencing of BET
genes resembled partially the regulatory effect of FUS-DDIT3
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adipocytes, mesenchymal stem cells (MSCs), DDLPS (i.e., LPS141 and LP6) cells, and MLPS (i.e., MLS402 and MLS1765) cells. Representative super-

enhancer (SE)-associated genes and their rankings in parentheses were highlighted. Transcription factors were marked in red. b Unsupervised clustering

of SE regions across the eight cell lines. Colors represent cell types. c Venn-diagram showing common and cell-type-specific SE-associated genes across

eight cell line samples. SE-associated genes that were present commonly in same cell types were compared. Lower panel indicates top KEGG pathways

by which genes from indicated categories were overrepresented (hypergeometric test). d Relative rank of stitched H3K27ac ChIP-seq signals in
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knockdown on downstream targets (Fig. 2l). Altogether, our data
reveal that FUS-DDIT3 and BET proteins cooperate to regulate
expression of SE-associated genes in MLPS, and support the
notion that fusion TFs hijack BET proteins for malignant
transformation28.

Core transcriptional regulatory circuitry in DDLPS. Inspired
from MLPS and other cellular system1,23,24,28, SE regions are
often loaded densely with lineage/disease-specific master trans-

acting factors. Next, we sought to identify TFs associated with
aberrant SE architectures in fusion-negative-DDLPS. By scanning
known TF motifs in the SE regions of LPS141 and LP6 cells, a list
of SE-associated TFs with both auto- and mutual- regulatory
potentials was identified and subjected to computational recon-
stitution of feed-forward core transcriptional regulatory circuitry
(CRC)29,30. Further, SE ranking and co-expression analysis yiel-
ded RUNX1, FOSL2, and MYC as top co-operative core TFs in
both DDLPS cells and primary DDLPS tissues (Fig. 3a and
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Supplementary Fig. 4a). Silencing of core TFs diminished
expression of each other, which was also observed by depletion of
CBFB, the heterodimeric subunit for RUNX proteins (Fig. 3b).
Importantly, silencing of individual core TFs and CBFB atte-
nuated cell viability, clonogenic growth and tumorigenicity of
DDLPS cells (Fig. 3c–e and Supplementary Fig. 4b–e). To explore
downstream network of core TFs, we mapped the genome-wide
occupancy of FOSL2 and RUNX proteins (pan-RUNX). Half of
FOSL2 and RUNX peaks were located in enhancers, capturing
over 90 and 30% of SEs (Fig. 3f and Supplementary Fig. 4f),
respectively. Nearly 70% of SE-associated RUNX peaks over-
lapped with FOSL2 signals, indicative of a collaborative activity of
FOSL2 and RUNX proteins. FOSL2 and RUNX proteins co-
occupied at the SE regions of all core TF genes (Fig. 3g–i and
Supplementary Fig. 4g)31. Additionally, SNAI2 was identified as
an important downstream target of FOSL2 and RUNX1 to rein-
force the proliferative, tumorigenic, and metastatic capabilities of
DDLPS cells (Fig. 3j–p and Supplementary Fig. 4h, i). Indeed,
SNAI2 transcripts were significantly elevated in DDLPS samples
(Fig. 3q). Higher expression of SNAI2 was associated with shorter
disease-free survival of DDLPS patients (Fig. 3r). Altogether,
these data identify a feed-forward transcriptional program in
maintaining DDLPS malignancy.

Involvement of BET proteins in liposarcomagenesis. BET pro-
teins including BRD2, BRD3, and BRD4 regulate enhancer activity
and transcriptional output23,24. Inhibition of BET bromodomains
has been shown to impair the expression and/or activity of key
oncogenic TFs (e.g., MYC, and PAX3-FOXO1)28,32,33. Having
shown the core dependency of MLPS cells on FUS-DDIT3/BET
proteins and DDLPS cells on newly identified CRC, we sought for a
strategy to target these oncogenic transcriptional structures. As
little is known about BET proteins in LPS, the potential functional
interplays between BET proteins and disease-specific core TFs
prompted us to explore their roles in liposarcomagenesis and LPS-
addicted transcription.

We found that BRD2, BRD3, and BRD4 were expressed
prevalently in LPS (Supplementary Fig. 5a), with BRD3 and
BRD4 showing significant elevation relative to normal fat tissues.
Functional assays demonstrated that BRD2/3/4 were essential for
in vitro proliferation of LPS cells, including MLS402/ET, an
isogenic line of MLS402, which acquired resistance to Trabecte-
din7 (Fig. 4a, b and Supplementary Fig. 5b–e). Silencing of BET
genes also retarded subcutaneous tumor formation in a DDLPS
model (Fig. 4c). Knockdown of BRD4 attenuated further distant
metastasis (Fig. 4d, e). Similarly, depletion of BET genes
prolonged the tumor-free survival of recipient mice in a MLPS

model, with BRD4 knockdown reducing both incidence and
burden of tumor (Fig. 4f).

To gain insights into the BET dependency, we mapped genome-
wide occupancy of BRD2/3/4 proteins across LPS141 genome.
BET proteins not only bound active promoters that are positive
for RNA-Pol2, H3K4me3 and H3K27ac, but also marked actively
transcribed genes, including all core TFs and SNAI2 (Fig. 4g–j and
Supplementary Fig. 5f). Notably, 58% of overall BET-positive
promoters were co-occupied by at least two BET proteins. BRD2/
3/4 triple-positive genes showed the highest basal expression
(Supplementary Fig. 5g, h), suggesting both co-operative and non-
redundant functions of BET proteins. Meanwhile, BET proteins
distributed asymmetrically to enhancers (Fig. 4k), with all SEs
being loaded with at least one BET protein and SE regions of three
core TF genes being co-occupied by all three BET proteins
(Supplementary Fig. 5i). Hence, the widespread loading of BET
proteins in active promoter and SEs implicates their extensive
engagement in transcriptional dysregulation in LPS.

Inhibition of BET proteins exerts potent anti-LPS efficacy.
Next, we determined the sensitiveness of LPS cells to BET
protein-targeting agents, including four BBIs (JQ1, OTX015, I-
BET151, and CPI203) and two dBETs (dBET134 and ARV-82535)
(Fig. 5a). Generally, DDLPS and MLPS cells were highly
responsive, while osteosarcoma cells were least sensitive. All LPS
cells except LiSa-2 showed greater susceptibilities (from fourfold
to > 100-fold) to ARV-825 than dBET1 and BBIs. Remarkably,
MLS402/ET showed slight increase in IC50 of BBIs, yet remained
hyper-sensitive to dBETs (Supplementary Fig. 6a). Therefore,
consistent with their genetic dependency on BET family genes,
LPS cells are highly vulnerable to dBETs.

ARV-825 triggered more prominent inhibition of cell cycle
progression, BrdU incorporation, and anchorage-independent
growth of LPS cells, relative to equimolar BBI OTX015
(Fig. 5b–e). Importantly, ARV-825 treatment at a well-tolerated
dose delayed LPS xenograft development and prolonged the
survival of mice bearing distal metastasis (Fig. 5f–k and
Supplementary Fig. 6b). These data indicate a strong anti-LPS
efficacy and therapeutic potential of ARV-825.

Mechanistically, ARV-825 induced a selective and efficient
depletion of BET proteins, in contrast to the competitive
interference of BET chromatin loading by OTX015 (Fig. 5l and
Supplementary Fig. 6c, d). ARV-825 redirected the Cullin-RING
ubiquitin ligase (CRL) CRBN to degrade BET proteins in a
proteasome-dependent manner (Fig. 5m). Genetic silencing of
CRBN restored growth of LPS cells even in the presence of ARV-
825, which was also phenocopied by disruption of the CRLCRBN

Fig. 2 Disproportionate occupancy of FUS-DDIT3 across myxoid LPS (MLPS) genome. a Effect of FUS-DDIT3 silencing on cell viability of MLS402 cells.

Data are presented as mean ± SEM; n= 3. Two-tailed Student’s t-test was used. b Pie chart showing the genomic occupancy of FUS-DDIT3 peaks in

MLS402 cells. Top de novo DNA-binding motif of FUS-DDIT3 was identified by Homer (hypergeometric test). TSS, transcription start site; UTR,

untranslated region; TTS, transcription termination site. c Heatmaps for the ChIP-seq signals of indicated antibodies ± 2 kb from TSS in MLS402 cells.

d Differential enrichment of FUS-DDIT3 in SE and typical enhancer (TE) regions. e Rank order of stitched FUS-DDIT3 ChIP-seq signals in MLS402 cells.

Representative FUS-DDIT3-overloaded genes and their rankings were highlighted. f Venn-diagram showing number of genes with their SEs overloaded

with H3K27ac and/or FUS-DDIT3 in MLS402 cells. g, h FUS-DDIT3/H3K27ac double-positive SEs were associated with high basal gene expression in

gMLS402 and h primary MLPS samples (n= 20). Wilcoxon signed-rank test was applied. FPKM, fragments per kilobase million. Box plots indicate median

value (center line), first and third quartiles (box limits), as well as minimum and maximum values (whiskers) after excluding outliers (dots). i Co-

immunoprecipitation (IP) between endogenous BRD4 and FUS-DDIT3 in MLS402 cells. j GFP-IP showing the interaction between FUS-DDIT3 and BET

proteins. FUS-DDIT3 was co-expressed with either EGFP or EGFP-tagged BET proteins in HEK293T cells. k Co-localization of FUS-DDIT3 and BRD4 across

the genome of MLS402 cells. Heatmaps were used to present the ChIP-seq signals of indicated antibodies ± 2.5 kb from the peak centers of FUS-DDIT3 in

MLS402 cells. l Quantitative reverse transcription PCR (qRT-PCR) analysis showing the mRNA levels of FST, IL8, BCAT1, and SMURF2 upon small-

interfering RNA (siRNA)-mediated knockdown of FUS-DDIT3, BRD2, BRD3, and BRD4, relative to si-NT. RNA was harvested 48 h post transfection in

MLS402 cells. Data are presented as mean ± SEM; n= 3. Significance was reported within each target gene based on one-way analysis of variance

(ANOVA). n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001. Source data are provided as a Source Data file
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complex via depletion of either RBX1 or DDB136 (Fig. 5n and
Supplementary Fig. 6e–h). Conversely, forced expression of
CRBN rendered the cells hyper-responsive to ARV-825 (Supple-
mentary Fig. 6i). Restoration of CRBN level in CRBN-silenced
cells reversed the ARV-825 responsiveness (Fig. 5o). Thus,
cellular activity of CRLCRBN is a key determinant of ARV-825
efficacy. CRBN serves a promising predictive marker for ARV-
825 effectiveness.

BET degrader disrupts oncogenic transcription. To uncover the
transcriptional responses underlying the superior activity of

ARV-825 versus OTX015 in LPS cells, a comparative tran-
scriptome analysis was performed. ARV-825 elicited a more
pronounced impact than OTX015 on gene expression. ARV-825
down-regulated promoter-BET (+) genes, especially those bound
with BRD4, BRD2/4, or BRD2/3/4 (Fig. 6a and Supplementary
Fig. 7a). Meanwhile, ARV-825 suppressed preferentially the
transcription of SE-associated genes, including FOSL2, MYC, and
SNAI2, to a greater extent than OTX015 (Fig. 6b–d). Similar
observations were made using dBET633,37, a different BET pro-
tein degrader, which has a distinct BET bromodomain binding
moiety (Supplementary Fig. 7b–d). Interestingly, while dBET6
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can inhibit RUNX1 transcription, ARV-825 reduced the half-life
of RUNX1 protein (Supplementary Fig. 7e). These observations
also highlight the expressional dependency of core TFs on BET
proteins37. In MLPS cells, ARV-825 down-regulated selectively
the expression of genes associated with FUS-DDIT3/H3K27ac
SEs, without affecting FUS-DDIT3 level (Fig. 6e and Supple-
mentary Fig. 7f). Echoing the effects of genetic depletion of BET
genes and FUS-DDIT3, we also validated the robust inhibition of
FUS-DDIT3 targets by BET-targeting agents (Fig. 6f). Remark-
ably, both ARV-825 and OTX015 elicited a transcriptional sig-
nature of Trabectedin response, which has been attributed to the
interruption of FUS-DDIT3 function in MLPS19,20 (Fig. 6g),
while other chemotherapy drugs, including docetaxel, paclitaxel,
and gemcitabine showed no consistent impact on the expression
of known Trabectedin-responsive genes (Supplementary Fig. 7g,
h). Given the persistent dependency of Trabectedin-resistant
MLPS cells on BET proteins, our data provide a strong rationale
to circumvent Trabectedin-resistance via chemically induced
degradation of BET proteins and suggest a new strategy to inhibit
FUS-DDIT3 via scavenging co-operative BET proteins.

Discussion
In this study, we uncovered a disproportionate genomic dis-
tribution of FUS-DDIT3 and its connection to the aberrant
transcriptome in MLPS. We have also identified a set of SE-driven
transcriptional regulators (RUNX1, FOSL2, and MYC) that col-
laborate to generate interconnected feed-forward regulatory loops
that reinforce the malignancy of human DDLPS. Importantly,
both the FUS-DDIT3-driven transcriptional network in MLPS
and the core transcriptional regulatory circuitry in fusion-
negative DDLPS are maintained by BET proteins, establishing a
mechanistic basis for the promising preclinical efficacy of BET-
targeting/degrading agents. These data collectively uncover a
critical dependency of LPS cells on BET proteins, and provide
insights into clinical translation of BET degraders (Fig. 6h).

By charting the first SE landscape in MLPS and DDLPS, our
study interrogates the dysregulation of SE and SE-associated
genes in liposarcomagenesis. SE-associated genes show a much
higher basal expression than those with typical enhancers. Con-
cordant with the phenotypic defect in terminal differentiation,
LPS cells retain SEs of genes with known function in early adi-
pogenesis (e.g., FOSL238), but ablate SEs associated with adipose-
definitive genes (e.g., CEBPA and PPARG). Albeit the functional
outputs of SE and individual enhancers remain controversial39,
SE analysis helped to identify most genes with high expression
and disease-relevance. The de novo SEs in LPS are likely asso-
ciated with transformation, such as MYC, JUN, and CDK6. Our
results encourage a more comprehensive cataloging of enhancers
and SEs across LPS subtypes to understand the molecular
pathogenesis in this heterogeneous group of diseases.

Although more studies are required to dissect the mechanisms
of FUS-DDIT3 in transcriptional activation and repression, the
overload of FUS-DDIT3 in SEs implicates its potential function in
establishing aberrant epigenetic landscape. Similar to PAX3-
FOXO1 in rhabdomyosarcoma and EWSR1-associated fusions in
Ewing sarcoma28,40,41, our data indicate a substantial co-
localization of BRD4 and FUS-DDIT3, and a BET protein-
dependent function of FUS-DDIT3 via physical interaction in
MLPS. Remarkably, appreciable amounts of EWS-FLI1 and EWS-
ERG proteins were found in a large transcriptional complex
consisting of BRD4, MED1, and RNA-Pol2 in Ewing sarcoma
cells40. Either inhibition of BET protein activity or depletion of
BET proteins consistently attenuated the fusion-dependent gene
expression in the respective sarcoma cells28,40,42. However, in
contrast to the preferential binding of EWS-FLI1 to GGAA
repeats43,44, the top binding motif of FUS-DDIT3 resembled that
of FOSL2 (AP-1 subunit). Altogether, these observations suggest
that BET proteins are commonly hijacked by oncogenic fusion
TFs for malignant transformation. As both FUS-DDIT3 and
EWSR1-associated fusions involve the N-terminal domains of
their respective FET proteins, exploration of whether these
fusions show similar dependency on their N-terminus to recruit
additional key co-factors such like FOXQ1 and BAF complex
would be of interest43,45.

CRC stabilizes cell-type/disease-specific transcriptional pro-
grams and controls cell identity46,47. RUNX1, FOSL2, and MYC
formed a CRC in DDLPS cells maintaining their malignant
growth. Expression of these core TFs showed a mutually depen-
dent manner. As RUNX family contains three homologous pro-
teins, functional redundancy from other RUNX proteins may also
contribute to the transcriptional output of the CRC. In line with
this notion, depletion of CBFB phenocopied RUNX1 deficiency,
suggesting the engagement of RUNX/CBFB complex in the
functionality of CRC. As the functional contribution of MYC to
oncogenic transcription has been widely studied, we mainly
evaluated the roles of RUNX1 and FOSL2 in DDLPS. ChIP-seq
analysis revealed a marked co-occupancy of RUNX proteins and
FOSL2 across SEs, supporting their collaborative activity to reg-
ulate broad downstream network involved in liposarcomagenesis.
We also demonstrated the co-operative function of RUNX1 and
FOSL2 in maintaining the expression of SNAI2, a key mediator of
epithelial–mesenchymal transition and tumor dissemination48.
For the first time, our data demonstrate that SNAI2 reinforces
proliferative and metastatic capability of LPS cells and that SNAI2
expression is a promising prognostic marker for DDLPS. More
studies are still required to understand the activity of SNAI2
and explore its downstream network in promoting DDLPS
tumorigenesis. Moreover, BET proteins were essential to foster
the expression of core TFs and their downstream targets, echoing
recent findings from leukemia37. Depletion of BET proteins by
two different degraders, ARV-825 and dBET6, inhibited

Fig. 3 Discovery of core transcriptional regulatory circuitry in de-differentiated LPS (DDLPS) cells. a Pearson correlation matrix for the expression values of

four TFs based on RNA-seq data from TCGA-DDLPS patient cohort (n= 57). RUNX1, FOSL2, and MYC were candidate core TFs in DDLPS. CEBPA was

included as an example of negatively correlated gene. b Effects of core TF and CBFB knockdown on the protein expression of indicated TFs. Whole-cell

lysates were extracted from LPS141 cells stably expressing short hairpin RNAs (shRNAs) against respective genes. c–e Effects of shRNA-mediated silencing

of core TFs and CBFB on c cell viability, d anchorage-independent growth, and e tumorigenic ability of LPS141 cells. f Pie charts of RUNX and FOSL2 binding

to cis-regulatory regions of the DDLPS genome. g–j Co-occupancy of FOSL2 and RUNX proteins across the SEs of g–i core TF genes and j SNAI2. E1 inside

the intron 1 of PVT1 locus has been well-studied as MYC enhancer (see also Supplementary Fig. 4g). k Effects of FOSL2, RUNX1, and CBFB knockdown on

protein level of SNAI2 in LPS141 cells. l–p Effects of shRNA-mediated silencing of SNAI2 in LPS141 cells on their l viability, m anchorage-independent

growth, n tumorigenic ability, and distant metastatic potential to o lung and p liver. Arrows in p indicate tumor nodules. q Upregulated expression of SNAI2

in DDLPS samples relative to normal fat tissues. Box plot indicates median value (center line), first and third quartiles (box limits), as well as minimum and

maximum values (whiskers). r Association of SNAI2 expression with disease-free survival time of patients in TCGA-DDLPS cohort (n= 51). Log-rank test

was applied. Data of e, l–p are presented as mean ± SEM. Student’s t-test (two-tailed) was applied in e, l–q. n= 3, in c, d, l, m; n≥ 7, in e, n, o, p. *p < 0.05;

**p < 0.01; ***p < 0.001. Source data are provided as a Source Data file
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effectively both mRNA and protein levels of MYC, FOSL2, and
SNAI2. Both degraders could downregulate RUNX1 protein,
although only dBET6 blocked RUNX1 transcription. Persistent
RUNX1 transcription under ARV-825 treatment may be asso-
ciated with unrecognized probe-specific activity/property of
ARV-825. Other factors such like gene length may also affect
the transcriptional output of downstream targets in response to

BET depletion. Despite different mechanisms, both ARV-825 and
dBET6 attenuated the expression of RUNX1 protein. Altogether,
our data support the concept that BET proteins is a potential
Achilles' heel that could be targeted to disrupt the core oncogenic
transcriptional programs.

Importantly, our study uncovered the essential roles and
desirable therapeutic potentials of BET proteins in LPS.
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Degradation of BET proteins and inhibition of bromodomains
elicited distinct cellular and transcriptional responses, implying
differential reliance of LPS cells on BET protein function and
bromodomain activity. Consistent with the genetic dependency of
LPS cells on BET proteins, depletion of BET proteins by ARV-825
accounted for its superior anti-cancer efficacy. BET protein
inhibition/depletion mainly triggered a cytostatic effect in estab-
lished LPS cell lines, similar to previous studies in established
glioblastoma cells and established osteosarcoma cells33,49,50.
Apart from anti-proliferative activities, BET protein-targeting
agents have also been reported to induce apoptosis in a number of
cancer cells, including primary osteosarcoma cells49, breast cancer
cells51, and many types of hematopoietic malignancies35,37,52.
Although we and others have demonstrated that BET protein
degraders or inhibitors can effectively suppress the expression of
SE-driven MYC, BET protein perturbation had negligible effect
on MYC protein in osteosarcoma cells49. These heterogeneous
responses may be associated with differential intrinsic depen-
dencies on BET proteins and cell-type-specific genomic/tran-
scriptional abnormalities. While our study provides one
mechanism to explain the LPS-specific BET protein dependency
and its connection to LPS-promoting CRC, main targets of BET
proteins are likely different in other cancers lacking FUS-fusions
or 12q amplicons. Stubbs et al.52 evaluated the BET protein-
regulated kinase network in myeloma models, and provided an
insightful strategy of combinatory inhibition of BET proteins and
their downstream kinases to achieve optimal anti-cancer impact.
Hence, BET protein-targeting agents may target distinct down-
stream molecules in different cancers. Integrative analysis of BET
protein-dependent transcriptional network and key other path-
ways serves as a promising approach to tackle the heterogeneous
responses to BET protein-targeting agents in human cancers.

Remarkably, MLPS cells with acquired resistance to Trabecte-
din remained vulnerable to both genetic and chemical depletion
of BET proteins, thus highlighting the potential of targeting BET
protein dependency to overcome clinical insensitivity to Tra-
bectedin. In addition, we identified CRBN as a promising pre-
dictive marker for ARV-825 efficacy across different sarcoma
cells and found alternative factors that may impair ARV-825
efficacy, including co-factor expression and proteasomal activity.
Collectively, this study reveals the BET protein-dependent core
transcriptional programs that are targetable by BET protein-
degrading agents in LPS.

Methods
Cell culture. All cell lines tested negative for mycoplasma and are not listed in the
ICLAC database. Human embryonic kidney cells 293T (HEK293T, ATCC), U2OS
(U-2 OS, ATCC), and MG63 (MG63, ATCC) were cultured in Dulbecco's Modified
Eagle Medium (DMEM, Biowest). MLS402 (MLS 402-91), MLS1765 (MLS 1765-
92) and GOT-3 cells were generously provided by Dr. Pierre Åman53–55. LP6 and
LPS141 cells were provided by Dr. Christopher DM Fletcher56. T778 and T1000
cells were kind gifts from Dr. Florence Pedeutour. MLS402/ET7, FU-DDLS-157,
and LiSa-258 cells were gifts from Dr. Eugenio Erba, Dr. Jun Nishio, and Dr. Peter

Möller, respectively. All LPS cells were maintained in Roswell Park Memorial
Institute medium 1640 (RPMI-1640, Biowest). All aforementioned cell lines were
also supplemented with 10% fetal bovine serum (FBS, Biowest) and 1% penicillin-
streptomycin (Gibco) in a humidified incubator at 37 °C. All cell lines were
authenticated by short tandem repeat analysis with the Geneprint 10 System Kit
(Promega). U2OS and MG63 were authenticated with 100% identity to the
respective reference cell line in DSMZ database. LPS cell lines reported in this study
did not match any known cell lines in the reference databases, including ATCC,
DSMZ, Riken, JCRB, and KCLB.

Plasmids and reagents. All pLKO.1-based short hairpin RNA (shRNA) vectors
and lentiCRISPR v2-based sgRNA vectors were listed in Supplementary Table 4.
SHC002 was used as non-targeting control (sh-Ctrl). Stable knockdown cell lines
were generated by lentiviral infection followed by puromycin (Sigma-Aldrich)
selection. pLX304 vector control was a gift from Dr. David Root59. pLX304-CRBN-
V5 was purchased from DNASU Plasmid Repository. Plasmids expressing GFP-
tagged BET proteins60, and FUS-DDIT361 were gifts from Drs. Kyle Miller, and
David Ron, respectively. FLAG-BRD3 and HA-FUS-DDIT3 constructs were gen-
erated in this study via ligation-dependent molecular cloning into pcDNA3.1 (+)
vector. SMART-pool small-interfering RNAs (siRNAs) against DDIT3, BRD2,
BRD3, BRD4, CRBN, MYC, FOSL2, RUNX1, and CBFB were purchased from GE
Dharmacon. ON-TARGETplus Non-targeting Pool (D-001810-10-05) was used as
negative control. siRNAs were transfected using RNAiMAX (Life Technologies).
The sources of other key chemicals used in this study are listed in Supplementary
Table 5.

Cell viability assay. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay was performed to measure cell viability under indicated treat-
ment62. Briefly, cells were seeded into 96-well plates at 2000–3000 cells/well and
cultured for specified period. At the end of experiment, MTT substrate (Sigma-
Aldrich) was added into each well and incubated for 3 h. After careful removal of
medium and addition of 100 µL of MTT STOP solution, plates were shaken on a
microplate shaker for 3 h and read on a Tecan microplate reader with the absor-
bance at 570 nm. IC50 values were measured by MTT assay after 96-hour treatment
(n= 3).

BrdU incorporation assay. BrdU Cell Proliferation Assay Kit (BioVision Inc.)
was used according to the manufacturer's instruction. LPS cells were seeded into
96-well plates at 5000 cells/well and treated with indicated compounds for 24 h.
BrdU solution was then added into each assay well and incubated at 37 °C for 3 h
before fixation. BrdU incorporated by proliferating cells was detected by an
enzyme-linked immunosorbent assay.

Cell cycle analysis. Cells receiving indicated treatment were trypsinized, washed,
and fixed in 70% ethanol at 4 °C. Cells were washed with cold phosphate-buffered
saline (PBS), re-suspended in propidium iodide solution containing RNase A, and
incubated at 37 °C for 30 min. After measurement by LSR II Flow Cytometer
System (BD Biosciences), cell cycle distribution was analyzed by FlowJo software.

Soft agar colony formation assay. Soft agar colony formation assay was per-
formed to evaluate the anchorage-independent growth of LPS cells with indicated
treatment. Basal layer was prepared by adding 500 µL of 0.4% agarose (in RPMI
supplemented with 10% FBS) into 12-well plates. After basal layer solidified,
1000–5000 LPS cells were mixed with 500 µL of top layer solution (0.4% low
melting agarose in RPMI supplemented with 10% FBS) and dispersed over the
basal layer. Plates were placed at 4 °C for 25 min before addition of feeder medium
(1 mL) into each well, and then kept at 37 °C in a 5% CO2 incubator for 2 weeks.
Colonies were stained using 0.01% crystal violet in 4% paraformaldehyde/PBS.

Animal models. All animal experiments were in compliance with ethical regula-
tions of the NUS Institutional Animal Care and Use Committee. Subcutaneous

Fig. 4 BET proteins maintain the liposarcoma (LPS) malignancy and active transcription. a, b Effects of short hairpin RNA (shRNA)-mediated silencing

of BRD2, BRD3, and BRD4 on a cell viability and b anchorage-independent growth of DDLPS and MLPS cells. Data are presented as mean ± SEM; n= 3.

c–e Effects of shRNA-mediated silencing of BRD2, BRD3, and BRD4 in DDLPS cells on their c tumorigenic ability (n= 8) and distant metastatic potential

(n= 7) to d lung and e liver. Arrows indicate tumor nodules in liver. One-way analysis of variance (ANOVA) was applied for a–c; Student’s t-test (two-

tailed) was applied in d, e. f Effect of shRNA-mediated silencing of BRD2, BRD3, and BRD4 on tumorigenic ability of MLPS cells. Tumor-free survival of

xenograft-bearing animals and tumor incidence were recorded as the endpoint of experiment. Log-rank test was applied for statistical analysis (n= 10).

g Pie charts of BET proteins binding to cis-regulatory regions of the LPS141 genome. h Heatmaps for the ChIP-seq signals of indicated antibodies ± 2 kb

from TSS in LPS141 cells. i Venn-diagram showing BET (+) genes defined by promoter-proximal occupancy of BET proteins. j Differential expression of BET

(+) genes and BET (−) genes in LPS141 cells. Box plot indicates median value (center line), first and third quartiles (box limits), as well as minimum and

maximum values (whiskers) after excluding outliers (dots). Wilcoxon signed-rank test was applied. k Metagene plots showing differential enrichment of

BET proteins in SE and TE regions of LPS141 genome. *p < 0.05; **p < 0.01; ***p < 0.001. Source data are provided as a Source Data file
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xenograft model was employed to evaluate the tumorigenicity of LPS cells upon
either genetic manipulation or chemical treatment. Indicated amount of LPS cells
were mixed with 100 µL of Matrigel (Corning)/PBS solution (volume ratio, 1:1) and
injected subcutaneously on the upper flanks of NOD/SCID gamma mice (6- to 8-
week-old). For in vivo ARV-825 treatment, mice bearing palpable DDLPS xeno-
grafts were randomized into two groups. Mice in experimental arm received
ARV-825 at a dose of 5 mg/kg by intraperitoneal (i.p.) injection once a day, 5 days

per week; animals in the control arm received the same volume of vehicle (5%
Solutol/Kolliphor® HS 15 in PBS). Tumor size was measured by caliper and tumor
volume (mm3) was estimated according to formula 1/2(Length ×Width2).
Xenografts were dissected and weighed upon harvest.

Experimental metastasis assays via intravenous injection of LPS cells were
performed to study genes that regulate metastatic progression. LPS141 cells with
indicated genetic manipulation were injected (0.1 million per injection) via tail vein
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into the NOD/SCID gamma mice (6- to 8-week-old). Three weeks after
implantation, recipient mice were sacrificed for examination of metastatic nodules
in lung and liver. For the study of ARV-825 treatment in a metastatic model, mice
were injected intravenously into the tail vein with 0.5 million of LPS141 cells,
and subsequently randomized into two groups. Treatments with either vehicle or
ARV-825 (5 mg/kg, once a day, six times per week) were initiated 4-days after cell
injection. Animal survival was recorded using 10% loss of peak body weight as a
humane endpoint criterion.

No specific randomization method was used to allocate mice into different
treatment groups. The investigators were not blinded to allocation during
experiments or outcome assessment. Minimum sample sizes for individual
experiments were determined not on the basis of a statistical method, but according
to experience (n ≥ 7). No animal was excluded from these experiments.

Cell lysate preparation and immunoblot assay. Whole-cell extracts were pre-
pared by incubating cells in lysis buffer (50 mM Tris pH 8.0, 420 mM NaCl, 5%
glycerol, 0.1% NP-40, 0.1 mM EDTA) with fresh addition of 1 mM DTT, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 1x protease inhibitor cocktail (Roche), 1x
phosphatase inhibitor cocktail (Roche), 1 mM MgCl2 and Benzonase (1:500,
Novagen) for 20 min on ice. To extract chromatin-bound proteins, cell pellet was
lysed by CSK buffer (10 mM PIPES, pH 6.8, 300 mM sucrose, 100 mM NaCl, 1 mM
MgCl2, 1 mM EDTA, 1 mM EGTA, 0.5% Triton X-100) supplemented with pro-
tease and phosphatase inhibitors. After centrifugation, non-chromatin soluble
fraction was enriched in the supernatant. Insoluble pellet was washed twice with
CSK buffer, re-suspended in lysis buffer, sonicated, and digested with Benzonase
for 20 min on ice. Clear supernatant after centrifugation (13,000 rpm, 10 min)
represented the chromatin fraction. Protein concentration was quantified by
Bradford assay. Immunoblot analysis was conducted following standard protocol
with indicated antibodies listed in Supplementary Table 6. Uncropped scans of
immunoblots are included in the Source Data file.

Immunoprecipitation (IP). To prepare cell lysate for either IP or Co-IP, cell nuclei
were isolated and lysed in IP buffer (25mM Tris pH 8.0, 0.15M NaCl, 2.5%
glycerol, 0.05% NP-40, 0.05 mM EDTA) with freshly added 1 mM PMSF, 1x pro-
tease inhibitor cocktail, 1 mM MgCl2 and Benzonase (1:500, Novagen). M2
Sepharose beads (Sigma-Aldrich), GFP-Trap® beads (ChromoTek), and Pierce®
Anti-HA Agarose (Thermo Fisher Scientific) were used for IP of proteins with
FLAG-Tag, GFP-Tag, or HA-Tag, respectively. For endogenous IP, one milligram of
nuclear extract was incubated overnight with magnetic beads (Invitrogen Dyna-
beads) conjugated with respective antibodies. Bound proteins were analyzed by
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE) and
immunoblot. Primary antibodies for IP assays were listed in Supplementary Table 6.

Chromatin immunoprecipitation (ChIP) and ChIP-seq analysis. Pathologically
reviewed human LPS samples were collected from National University Hospital
Tissue Repository. The study of human LPS samples was approved by the NUS
Institutional Review Board (reference code N-17-057). ChIP was performed by
following a standard protocol. Briefly, either homogenized tissues or cells were
fixed with 1% formaldehyde for 10 min at room temperature, followed with three
washes using cold PBS. Nuclei were extracted and re-suspended in SDS lysis buffer
for 10 min on ice before sonication by Bioruptor (Diagenode). Optimal condition
of sonication yielded genomic fragments around 200 to 500 bp. After sonication,
cell debris was removed by centrifugation (13,000 rpm, 10 min). Supernatant was
then pre-cleared and incubated with magnetic beads (Invitrogen Dynabeads)
conjugated with specific antibodies (Supplementary Table 6). After overnight
incubation, magnetic beads were washed stepwise with cold low salt wash buffer,
high salt wash buffer, LiCl wash buffer, and TE buffer. Bound DNA was eluted,
reverse-crosslinked, and purified by QIAquick PCR purification kit (Qiagen).
ChIP-seq library was constructed using ThruPLEX® DNA-seq Kit (Rubicon
Genomics) following standard protocols, and subjected to Illumina deep sequen-
cing (single-end reads of 50 bases).

For ChIP-seq data analysis, raw reads were aligned to hg19 reference genome
using bowtie aligner followed by removal of PCR duplicates with Picard

markDuplicates utility63. Resulting bam files were used for peak calling with
MACS2 by extending reads to 200 bp. ChIP signals (Bedgraph) were
simultaneously generated and input signal was subtracted with MACS2 bdgmp
function. Bedgraphs were later converted to bigwig files with UCSC
bedGraphTobigWig utility. Alignment and peak calling pipelines with hard-coded
parameters are available at https://github.com/PoisonAlien/chiptk. Detected peaks
were annotated with HOMER annotatePeaks. Denovo motif identification and
comparison were also performed with HOMER using findMotifsGenome program.
Heatmaps were drawn using deeptools by centering either on identified peaks or on
transcription start site (TSS) of known refseq genes64. RNA-Pol2 signals had been
oriented based on transcription direction in heatmaps or metagene plots where −
and + indicated upstream and downstream of TSS, respectively, of genomic
regions after alignment with transcription direction. RNA-Pol2 pausing index was
estimated based on RNA-Pol2 ChIP-seq data and calculated as a ratio of TSS
region signal to gene body signal. For profile plots, signals around +/− 2500 bp
of peak center were extracted for every 25 bp bin using bwtool matrix function65.
Average signal was estimated and plotted in R. ChIP-seq data of adipocytes
(GSE59703; sequence length= 50) and mesenchymal stem cells (GSE16256;
sequence length= 36) have been published previously.

The ROSE (Rank Ordering of Super-Enhancers) algorithm (https://bitbucket.
org/young_computation/rose) was used to call super-enhancers (SEs). Regions
within +/− 1250 bp from TSS were excluded for this analysis. Input-subtracted
ChIP-seq signals were stitched and ranked based on intensity. A geometrical
inflection point was used as cutoff to separate SEs from typical enhancers. SE-
association was annotated with Ensemble genes. In Fig. 1a, d, enhancer rank and
stitched H3K27ac signals were normalized within each sample. Specifically, x-axis
was normalized by calculating the Relative enhancer rank; y-axis was normalized
by calculating the Percentage of H3K27ac signal in enhancer (as indicated by the
following equation). Relative enhancer rank= (Enhancer rank of individual
stitched enhancer)/(Number of SE and TE identified in each sample). Percentage of
H3K27ac signal in the enhancer= 100 × (Sum of H3K27ac signal in each stitched
enhancer)/(Sum of H3K27ac signal in all SE and TE). For PCA and hierarchical
clustering analysis, ChIP signals for all SEs identified across samples were estimated
(area under the peak) followed by log2 transformation. PCA was performed with
prcomp function. Same data were used for Hierarchical clustering with hclust
function. Core transcriptional regulatory circuitries were computationally inferred
by CRCmapper29 based on scanning of TF motifs within SEs.

The peak distribution of FUS-DDIT3, pan-RUNX, FOSL2, and BET proteins
across cis-regulatory regions of the genome was annotated as below: peaks that
localized within −1000 to +200 bp from the TSS were defined as Promoter-bound;
those present inside either SEs or typical enhancers were defined as Enhancer-
bound; remaining peaks were considered as others.

RNA preparation, qRT-PCR, RNA-seq, and expressional analysis. Total RNA
was extracted by RNeasy Kit (Qiagen) and treated with DNase. cDNA library for
quantitative reverse transcription PCR (qRT-PCR) was prepared by RevertAid RT
Reverse Transcription Kit (Thermo Fisher Scientific). qPCR was conducted with
Kapa SYBR fast qPCR Master Mix (KAPA Biosystems) on a 7500 Real-time PCR
System (Applied Biosystems). qRT-PCR primers are listed in Supplementary
Table 4.

RNA-seq library was constructed by TruSeq Library Prep Kit (Illumina) and
sequenced at BGI Tech Solutions Co., Ltd. (Hiseq, paired-end reads of 100 bases).
Paired-end reads were pseudo-aligned and quantified to Ensemble (hg19; version
88) transcripts using kallisto program66. Kallisto results were imported into
DESeq2 using tximport Bioconductor package67. Differential gene expression
analysis was performed using DESeq2 with lfcThreshold argument set to 0.168.
Expression values were calculated in terms of FPKM for every gene with DESeq2::
fpkm function. Gene set enrichment analysis (GSEA) was performed on all active
genes (mean FPKM > 0.5)69.

Transcriptome data for DDLPS samples of Sarcoma cohort (TCGA-SARC,
n= 57) were downloaded using TCGABiolinks Bioconductor package via GDC
(data freeze from Dec-2017). Gene Expression Matrix files for microarray dataset
GSE211229 were downloaded using GEOquery Bioconductor package. Gene

Fig. 5 ARV-825 redirects CRLCRBN to disrupt BET protein dependency of liposarcoma (LPS). a Heatmaps for the mean IC50 values of BET-targeting agents

in LPS and osteosarcoma (U2OS, MG63) cell lines. IC50 values of ARV-825 in U2OS, MG63, and LiSa-2 cells exceeded the maximum dose (1 µM) and were

set as 1 µM for heat map illustration. b Chemical structure of ARV-825. c, d Effects of ARV-825 and OTX015 treatments on c cell cycle progression and

d cellular BrdU incorporation in LPS141 cells (200 nM, 24 h). e Dose-dependent inhibition of clonogenicity of LPS cells on soft agar by either ARV-825 or

OTX015. f–h Effect of ARV-825 treatment on f animal body weight (n= 5), g xenograft volume (n= 10), and h weight of LPS141 xenografts at endpoint

(n= 10). i, j Effect of ARV-825 treatment on weight of endpoint xenografts from i LP6 and j MLS402 (n= 8). k Effect of ARV-825 treatment on overall

survival time of mice-bearing distant metastasis of LPS141 cells (n= 7). l Temporal effects of ARV-825 and OTX015 (200 nM) on indicated proteins

in LPS141 cells. m Effect of MG132 on the ability of ARV-825 to deplete BET proteins. LPS141 cells were treated with MG132 (5 µM) and/or ARV-825

(200 nM) for 8 h before harvest. n Effects of CRBN, DDB1, and RBX1 silencing on the anti-proliferative efficacy of ARV-825 in LPS141 cells. o Ectopic CRBN

expression in CRBN-silenced cells reversed insensitivity to ARV-825. Data of c–j, n, and o represent mean ± SEM; n= 3 in c–e, n, and o. One-way analysis

of variance (ANOVA) was applied for c–e; Student’s t-test (two-tailed) was applied in g–j; log-rank test was applied in k. Source data are provided as

a Source Data file
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expression for probes mapping to same genes were averaged to get gene level
expression for downstream analysis.

Statistical analysis. Unless otherwise stated, two-tailed Student’s t-test was used
to analyze the statistical difference between two groups, while one-way analysis of

variance (ANOVA) was applied for multi-group comparison. Log-rank test was used
for survival analysis. n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001. Sample
sizes were not predetermined statistically. Center values, error bars, and number of
replicates are described in the corresponding figures and/or figure legends. Replicates
represent: (1) separate tumors in xenograft assays; (2) individual animals in experi-
mental metastasis assays, and (3) independent biological repeats for in vitro assays.
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Fig. 6 BET protein degrader destroys the core transcriptional programs in liposarcoma (LPS). a Differential responses of genes to OTX015 and ARV-825

treatment according to BET protein occupancy around their promoter-proximal regions in LPS141 cells. BET(+) denotes genes with at least one ChIP-seq

peak of BET proteins within their promoter-proximal regions; BET(−) denotes genes that are negative for binding of BET proteins. b Differential responses

of genes to OTX015 and ARV-825 treatment according to enhancer status in LPS141 cells. c Quantitative reverse transcription PCR (qRT-PCR) analysis

showing the mRNA levels of core TF genes, SNAI2, and CDKN1A upon ARV-825 and OTX015 treatment (200 nM, 24 h) in LPS141 cells. CDKN1A was used

as positive control for differentially expressed genes. d Immunoblot analysis showing the impact of ARV-825 and OTX015 (200 nM, 24 h) on levels of BET

proteins, core TFs, and SNAI2 in LPS141 cells. e Differential responses of genes to OTX015 and ARV-825 treatment (200 nM, 24 h) according to their

enhancer occupancy by FUS-DDIT3 in MLS402 cells. f qRT-PCR analysis showing the mRNA levels of FST, IL8, BCAT1, and CDKN1A upon ARV-825 and

OTX015 treatment (200 nM, 24 h) in MLS402 cells. CDKN1A was used as positive control for differentially expressed genes. Data are presented as mean ±

SEM; n= 3. g GSEA plots of Trabectedin response pathway in MLS402 cells treated with dimethyl sulfoxide (DMSO) versus ARV-825 or OTX015.

h Models of BET protein-dependent core transcriptional programs in myxoid LPS (MLPS) and de-differentiated LPS (DDLPS). Depletion of BET proteins

serves as a common strategy to target these core transcriptional dependencies. Box plots indicate median value (center line), first and third quartiles (box

limits), as well as minimum and maximum values (whiskers) after excluding outliers (dots). Wilcoxon signed-rank test was applied for a, b, e; one-way

analysis of variance (ANOVA) was applied for c, f. n.s., not significant; *p < 0.05; **p < 0.01; ***p < 0.001. Source data are provided as a Source Data file
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Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq and ChIP-seq data generated in this study have been deposited in NCBI GEO
and are available under accession GSE111254. RNA-seq data for DDLPS samples of
TCGA Sarcoma cohort are from GDC [https://portal.gdc.cancer.gov/]. cDNA microarray
data (GSE21122) of LPS and control normal fat specimens, and ChIP-seq data of
adipocytes (GSE59703) and mesenchymal stem cells (GSE16256) are available from
NCBI GEO. The source data supporting the findings of this study are available within the
article and its Supplementary information files including Source Data file. A reporting
summary for this Article is available as a Supplementary Information file.
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