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Abstract
The malleability of the epigenome has long been recognized as a unique opportunity for therapeutic intervention.
Interest in targeting components of the epigenetic machinery for therapeutic gain had initially been aimed at chro-
matin modifying enzymes. However, advances in medicinal chemistry have now made it possible to exploit pro-
tein^protein interactions at the chromatin interface. Bromodomains (BRD) are a conserved motif used by a large
number of chromatin-associated proteins to recognize and bind acetylated histone tails. Small molecules with high
specificity for the Bromodomain and Extra Terminal family of proteins (BRD2, BRD3, BRD4 and BRDT) have re-
cently been shown to have remarkable pre-clinical efficacy in various malignancies. These findings have provided
the impetus for exploring other BRD proteins as novel targets in cancer therapy.
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INTRODUCTION
The dawn of the genomic era has focused our atten-

tion on the central role of epigenetic regulators in

cancer biology. It is now apparent that many of the

components involved in the epigenetic regulation of

gene expression, DNA repair and replication are

commonly mutated in various cancers [1,2].
Importantly, the plasticity of the epigenome lends

itself well to therapeutic manipulation and as such

there is now great interest in generating small mol-

ecules that are effective in modulating the activities

of the various protagonists involved in controlling

the epigenetic landscape.

A fundamental tenet in chromatin biology is that

all components of the nucleosome are covalently

modified and these modifications are dynamic enti-

ties that play an instructive role in various biological

processes. Currently, there are four different DNA

modifications and over 16 separate histone modifica-

tions described [2]. These modifications serve two

main functions; they alter chromatin structure by

enhancing or weakening the non-covalent inter-

actions between histone–histone or histone–DNA

and they provide an informative platform for the

dynamic recruitment of chromatin modifying/remo-

delling enzymes that then establish local and global

chromatin patterns. Whilst many of the proteins that

control and interpret these modifications have been

implicated in oncogenesis the subject of this review

will focus on the bromodomain (BRD) proteins that

bind acetylated lysine residues on histones. For a

more comprehensive overview on cancer epigen-

etics, the reader is referred to several recent reviews

[1–5].

Histone acetylation is one of the best-studied

histone modifications. It has been implicated in the

control of gene expression, DNA repair and replica-

tion. Levels of acetylation are controlled by the com-

peting activities of two enzymatic families: the

histone acetyl transferases (HATs) and the histone
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deacetylases (HDACs). HATs catalyse the transfer of

an acetyl group to the e-amino group of lysine side

chains of a histone protein, whereas HDACs’ func-

tion to remove it. Altered levels of histone acetyl-

ation are widely reported in various malignancies [6]

and the pharmacological interference with the

acetylation levels represents a promising approach

for cancer therapy. A widely cited proof of principle

for this approach is HDAC inhibitors which inacti-

vate many of the enzymes that remove acetyl groups

from acetylated lysines within histone and

non-histone proteins [7]. In fact, HDAC inhibitors

are currently used for the treatment of cutaneous

T-cell lymphoma and are being assessed in clinical

trials for the treatment of several other types of

malignancies [8–10]. The addition of an acetyl

group on histones serves two main purposes: first,

it neutralizes the positive charge on lysine thus redu-

cing the electrostatic interaction with the negatively

charged DNA, relaxing the chromatin structure and

facilitating the access of various chromatin associated

proteins; second, it provides a binding site for pro-

teins with specialized binding motifs that recognize

this histone modification. The best characterized

binding motif for lysine acetylation is the BRD.

BROMODOMAINS: STRUCTURE
AND FUNCTION
BRDs are 110 amino acid modules that are highly

conserved throughout evolution. They were first

identified in the protein encoded by the

D. melanogaster brahama gene. The BRD-containing

protein family includes various transcriptional co-

regulators, chromatin modifying enzymes and

nuclear scaffold proteins that are able to specifically

recognize acetylated lysine residues on histone tails.

BRD containing proteins can also bind acetylated

lysine residues on non-histone proteins. For instance,

it has been reported that BRD4 can bind acetylated

lysines on the NF-kappaB subunit RelA [11] and

similarly BRD3 has been shown to associate with

acetylated GATA1 [12].

The BRD structure consists of a left-handed

bundle of four antiparallel alpha helices linked by

two loop regions (Figure 1). The co-crystal structures

of BRDs bound to acetyl-lysine containing peptides

show that the acetylated lysine is first recognized in a

hydrophobic pocket located between the two loops,

which is formed by the most highly conserved resi-

dues. This includes an asparagine at the core of the

binding site, which engages the acetyl-lysine via a

hydrogen bond between its NH2 group and the

acetyl carbonyl oxygen atom of the acetylated

lysine. At the entrance of the binding pocket, resi-

dues located in the two loop regions interact with

residues adjacent to the acetylated lysine in the target

sequence, thus further reinforcing the binding

through hydrophobic and electrostatic interactions.

Although the acetyl-lysine binding pocket for all

BRDs is hydrophobic, there is considerable variation

in the electrostatic interactions at the opening of the

pocket among BRD families [13]. This variation de-

termines the specificity of individual BRDs and pro-

vides the opportunity to both sub-classify BRD

proteins into families and develop specific small mol-

ecules that are specifically targeted against certain

families.

The human genome encodes 46 diverse proteins

that contain a total of 61 BRDs structurally clustered

into eight distinct subfamilies (Figure 2). The first

subfamily is comprised of a functionally diverse

group of proteins that includes the HAT P300/

CBP-associated factor (PCAF). Indeed, it was the

Figure 1: BRD4 bromodomain 1 structure showing
the binding with the acetylated Lysine 16 on the tail of
Histone H4.
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solution of the BRD structure of PCAF that demon-

strated the ability of BRDs to bind to acetylated ly-

sine’s [14]. The Bromodomain and Extra Terminal

(BET) proteins are grouped in the second subfamily

and highly specific small molecule inhibitors of this

family have recently emerged as promising thera-

peutic agents in inflammation and cancer [15].

Proteins within the fifth subfamily are structurally

characterized by the presence of a methyl-lysine

reader domain, the plant homeodomain (PHD)

finger in tandem with a BRD. This tandem epigen-

etic reader module is necessary for the binding to

chromatin and highlights an important theme in

chromatin biology: the multivalent engagement of

histone modifications by epigenetic reader proteins

that contain more than one reader domain. Whilst an

exhaustive description of the structural diversity of

the various BRD families is beyond the scope of this

review the reader is directed to an excellent and

comprehensive review of this subject [16].

From a functional perspective, most of the BRD

containing proteins are integral members of larger

multi-subunit chromatin complexes. These can be

roughly grouped in three major categories: chroma-

tin modifiers, chromatin readers and chromatin

remodellers. The first group is composed of enzymes

that possess the capacity to introduce modifications

on chromatin, such as histone methylation (MLL)

and histone acetylation (CREBBP/p300). The

second group contains proteins that do not possess

enzymatic activity on chromatin but can recruit gen-

eral transcription factors or chromatin modifying

complexes (BET). The third group is composed of

proteins with ATPase activity able to remodel chro-

matin (SMARCA4).

In the histone acetyl-transferase complexes, the

BRD component is generally responsible for anchor-

ing the HATs complex to acetylated chromatin

so allowing the spreading of acetylation on adja-

cent nucleosomes. Likewise, several chromatin

remodelling complexes, which are ATP-dependent

remodellers of DNA–histones interactions and nu-

cleosome position, are recruited to their appropriate

genomic location by the BRD proteins they contain.

This localization then facilitates gene expression by

improving access for the transcriptional machinery.

BET proteins contain two BRDs at their amino ter-

minal and an extra-terminal domain at their carboxyl

terminal, which is also involved in protein–protein

interactions. Whilst the tandem BRDs of the BET

Figure 2: Phylogenetic tree based on the structure of the human BRDs. The BRDs are grouped in eight families,
each family is identified by a roman number. In cases where several bromodomains are present on a single protein
they are differentiated by the number in brackets. Adapted from Filippakopoulos et al. [13].
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proteins localize them to acetylated histones, the ET

domain interacts with various transcription factors or

chromatin remodellers aiding the localization of

these proteins to chromatin. It is also feasible that

the two BRDs of the BET proteins bind multiple

adjacent acetyl-lysine residues on the same nucleo-

some, on different nucleosomes or on adjacent

non-nucleosomal proteins. The complete nuclear

BET interactome has recently been defined and

serves to highlight the broad functional diversity of

these essential BRD proteins [17].

BROMODOMAINSAS
THERAPEUTIC TARGETS
The importance of transcriptional dysregulation as a

sentinel event in the initiation and maintenance of

oncogenesis has been well established. A wealth of

literature describes the role that various transcription

factors play in this process. The difficulty has been

establishing a therapeutic strategy that negates the

aberrant transcriptional programmes driven by these

transcription factors. The recognition that many epi-

genetic regulators are either directly or indirectly

co-opted to facilitate these oncogenic gene-

expression programmes has opened untapped av-

enues for cancer therapeutics. A major focus in this

arena is the opportunity to develop and deploy small

molecules against epigenetic reader domains such as

BRDs. Many of the BRD proteins play an integral

role in the regulation of transcription via a direct

association with transcription factors and/or the lo-

calization of chromatin modifying complexes. A fur-

ther testament to the influence these proteins have in

the oncogenic process is the fact that many of these

proteins are recurrently mutated or aberrantly

expressed in various malignancies (Table 1).

The BRD/histone interaction can be blocked by

small molecules directed to the acetylated lysine

recognizing pocket. These small molecules mimic

the acetyl-lysine head group and interact with the

conserved residues, while their lipophilic part inter-

acts with the hydrophobic side chains of the binding

site’s residues [57]. Early NMR-based screening stu-

dies identified several compounds that were capable

of selectively disrupting the acetyl-lysine BRD inter-

action [58,59]. These findings established the prin-

ciple of selective BRD inhibition and provided the

impetus for the recent development of highly potent

and selective inhibitors of the BET family of BRD

proteins [17,28,60]. The stage is now set for the

development of a range of structurally distinct me-

dicinal compounds that selectively inhibit the func-

tionally diverse set of BRD proteins. These inhibitors

may offer a novel therapeutic paradigm in range of

malignancies [15].

CHROMATIN READERS
The BRD proteins that lack intrinsic chromatin

modifying potential primarily function as scaffolds

for transcription factors or other chromatin regulat-

ing factors. Exemplars of this group are the BET

BRD proteins, which are epigenetic readers that rec-

ognize acetylated lysine residues on histone tails. The

family includes four different proteins, BRD2,

BRD3, BRD4 and BRDT and is characterized by

the presence of two distinct BRDs at the N-terminal

end of the protein. It is notable that members of the

BET family are recurrently mutated or aberrantly

co-opted in several cancers. For instance, BRD3

and BRD4 are involved in the pathognomonic

chromosomal translocations seen in NUT midline

carcinoma (NMC) [61]. In addition, BET proteins

are part of transcriptional complexes that are essential

for the initiation and maintenance of certain leukae-

mias. They are also associated with viral oncopro-

teins, such as the HPV E2 protein [62]. The

important function of the BET proteins in gene

regulation and their involvement in various cancers

suggested that inhibitors of the BET BRDs maybe

promising anti-cancer agents [15]. This led to the

development of three different BET inhibitors:

I-BET762, JQI and I-BET151. These drugs have

been shown to be highly specific to the BET

BRDs. They are cell permeable and able to displace

the BET proteins from acetylated histones in a cel-

lular context.

Translocations involving the mixed leukaemia

gene (MLL) are the initiating event in a range of

acute myeloid and lymphoid leukaemias. These dis-

eases often share a common mechanism of trans-

formation and are almost uniformly refractory to

conventional therapies. A common feature of these

translocations is the fusion of MLL gene with genes

that code for members of the super elongation com-

plex (SEC). The central role of transcriptional elong-

ation in the pathogenesis of MLL leukaemia is

further highlighted by the MLL mediated interaction

with the polymerase associated factor complex

(PAFc). Importantly, the functional integrity of

both the SEC and PAFc has been shown to be
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critical for the malignant transformation by MLL

fusions [63,64]. Using a novel tripartite proteomic

approach, Dawson et al. demonstrated that BRD3

and BRD4 are fundamental components of the

PAFc and SEC complexes providing a therapeutic

rationale for BET inhibitors in these leukaemia’s

[17] (Figure 3). Moreover, using a complementary

approach, Zuber et al. showed that the downregula-

tion of BRD4 by RNAi strongly reduced the viabil-

ity of MLL-AF9 leukaemias both in vitro and in vivo
[65]. Both groups went on to demonstrate that

chemically distinct but equally selective inhibitors

of the BET BRD proteins showed excellent efficacy

in inducing growth arrest and apoptosis in MLL cell

lines. This effect is achieved by the downregulation

of pivotal oncogenes, such as MYC and BCL2

(Figure 3). These studies also showed the efficacy

of BET inhibition in AML cell lines lacking MLL

rearrangements, albeit at slightly higher concentra-

tions to those seen in MLL-translocated leukaemias,

suggesting that this therapeutic approach may be

useful in different subtypes of AML and potentially

in different haematopoietic malignancies [17,65].

Indeed, in concurrent studies two other groups

showed that BET inhibition is effective in Multiple

Myeloma and Burkitt’s lymphoma [66,67]. Both

these pathologies are characterized by an abnormal

expression of MYC and the therapeutic effect shown

by these studies was deemed to be mediated, at least

in part, by the downregulation of MYC [66,67].

Together, these studies suggest MYC as one of the

main target genes for BET inhibition. Nevertheless,

the identification of the BET protein interactome

shows that these proteins are involved in a large

number of nuclear regulatory complexes suggesting

that the therapeutic effect in different malignancies

may be driven by a variety of diverse molecular

mechanisms.

The tripartite motif (TRIM)-containing proteins

are another family of epigenetic reader proteins that

could be useful therapeutic targets in cancer. The

TRIM proteins are characterized by the presence

of a conserved N-terminal motif formed by a

RING finger, one or two zinc-binding domains

Figure 3: The BET proteins recruit the SEC and the PAFc on acetylated chromatin increasing transcriptional
elongation (A). In the presence of the I-BET inhibitor, the BET proteins are displaced from acetylated chromatin
and the productive transcription is reduced.
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and a coiled-coil domain. These factors are involved

in a range of homeostatic processes and have also

been implicated in several diseases including cancer.

The TRIM family is subdivided into 12 subgroups

based on the C-terminal part of the protein. The

TIF1 proteins, TRIM24 (TIF1a), TRIM 28

(TIF1b) and TRIM33 (TIF1g) constitute one of

the 12 subgroups of the TRIM family and contain

a PHD finger and a single BRD at their C-terminus.

The presence of these epigenetic reader domains

allows these factors to recognize and bind specific

methylation/acetylation modifications on a single

nucleosome and potentiate a specific transcriptional

response.

TRIM24, the founding member of the TIF

family, has been associated with the pathogenesis of

several malignancies. The TRIM24-FGFR1 fusion is

a rare but recurrent translocation observed in a subset

of myeloproliferative diseases [68]. Other fusion pro-

teins involving TRIM24 have also been observed

in various solid cancers [51,69] and overexpression

of TRIM24 is observed in subset of breast cancers

where it confers a poor prognosis [70]. Experimental

evidence in murine models of hepatocellular carcin-

oma has suggested a tumour suppressor function for

TRIM24 and TRIM33 and mechanistic insights

have demonstrated a functional interaction between

these factors and key regulatory proteins including

p53 [71], SMAD transcription factors [72] and oes-

trogen receptors [73]. Infact, TRIM24 has recently

been shown to mediate an aberrant oestrogen re-

sponse in breast cancer via a specific interaction

with modified and unmodified residues on the tail

of histone H3 [73].

CHROMATIN REMODELLERS
Modifications of the nucleosome can directly influ-

ence the compaction state of chromatin by altering

the affinity of the histone-DNA interaction. In add-

ition to this, the active reorganization of nucleosome

positioning is often necessary to initiate transcription.

In mammals, four major complexes of chromatin

remodellers have been identified: the switching

defective/sucrose non-fermenting (SWI/SNF)

family, the imitation SWI family, the nucleosome

remodelling and deacetylation/Mi-2/chromodo-

main helicase DNA-binding family (NuRD) and

the inositol requiring 80 family. These remodelling

complexes are capable of both shifting and evicting

nucleosomes. The energy obtained from the ATPase

activity is used to destabilize the interaction between

DNA and histones. The chromatin remodelling ac-

tivity of the SWI/SNF complex in mammalian cells

can induce both transcriptional activation and tran-

scriptional repression. Activation is achieved by the

creation of loops of open chromatin that are access-

ible to transcription factors, whilst repression is

achieved by concentrating nucleosomes at specific

genomic regions and reducing the accessibility of

DNA to the transcriptional machinery.

The SWI/SNF complexes are formed by the phys-

ical interaction of 9–12 protein subunits. The core

subgroup of proteins that are always present in

the complex include SNF5, BAF170, BAF155 and

one of the mutually exclusive ATPase subunits

SMARCA4 or SMARCA2, both of which contain

a BRD. The accessory subunits are often lineage and

context specific and tailor the regulation and the tar-

geting of the complexes. In mammalians two distinct

subgroups of SWI/SNF complexes can be identified

by the presence of specific accessory subunits. The

BRG1-associated factor (BAF) complex, also known

as SWI/SNF-A, is characterized by the presence of the

ARID1A/B subunits; whilst the polybromo-BAF

(pBAF) complex, also known as SWI/SNF-B is char-

acterized by the presence of BAF180, BAF200 and

BRD7. The BAF complex can associate with both

SMARCA4 (BRG1) and SMARCA2 (BRM) cata-

lytic subunits but the pBAF complex is almost exclu-

sively associated with SMARCA4. In mammals, the

expression of several components of the SWI/SNF

complexes is tissue specific, generating variants of the

remodelling complexes that direct cell fate by facilitat-

ing lineage-specific gene expression programmes.

Several members of the SWI/SNF complexes are

involved in cancer. In particular, the core subunit

SNF5 and the ATPase subunits SMARCA2 and

SMARCA4 are often downregulated or deleted in

variety of cancers suggesting a tumour-suppressor

role for these complex members [74].

The expression of BRG1 is markedly reduced in

20–50% of primary human lung cancers [75,76].

However, experimental evidence would suggest

that gene dosage and cellular context play a signifi-

cant role in determining the functional outcome

from pertubations in BRG1. BRG1 haploinsuffi-

ciency in lung cells was initially demonstrated to

accelerate carcinogenesis induced by ethyl carbamate

but interestingly homozygous deletion of BRG pre-

vented the formation of lung tumours [77].

Furthermore, if the homozygous deletion of BRG1
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is induced after the treatment with the carcinogen it

now promotes carcinogenesis [77]. Further evidence

to support the hypothesis that gene dosage is import-

ant is seen in a haploinsufficient murine model

where one of the brg1 alleles is deleted. These mice

develop mammary tumours that retain the expres-

sion of the second brg1 allele indicating that a residual

ATPase activity is necessary for tumour cells [78].

The wealth of genomic and functional informa-

tion implicating the SWI/SNF complexes in cancer

would suggest that aberrant chromatin localization

via one of the many BRD containing proteins to

facilitate oncogenic gene expression programmes is

likely to be involved. Therefore, small molecules that

specific perturb the BRD-mediated association with

chromatin may find a therapeutic niche in certain

malignancies.

CHROMATINMODIFIERS
Several members of the BRD family are direct chro-

matin modifiers. These enzymes may use their BRD

to bind to chromatin and deposit and spread new

modifications on neighbouring nucleosomes facili-

tating specific biological outcomes.

An example of this group is the cyclic AMP re-

sponse element-binding (CREB) protein (CBP) and

the highly homologous p300, which are histone

acetyltransferases and transcriptional cofactors that

contain a single BRD [79]. CBP/p300 also function

as a scaffold for various members of the transcrip-

tional machinery and/or transcription factors

[80,81]. Together, CBP/p300 localize to acetylated

chromatin via their BRD, modify chromatin

through their HAT activity and recruit the transcrip-

tional machinery to potentiate gene expression. CBP

is also able to bind acetylated lysines on non-histone

proteins, such as p53, and this interaction is required

for the activation of the cyclin-dependent kinase in-

hibitor p21 [82]. These functions have led to many

studies that have drawn associations with CBP/p300

activity and the development, maintenance or pro-

gression of cancer. In rare cases of acute myeloid

leukaemia CBP, and less frequently p300, are

found fused with the monocytic leukaemia

zinc-finger protein (MOZ) or MLL [83–85]. When

present, these fusions are often the initiating event in

the transformation process. These proteins have also

been ascribed an oncogenic function in prostate

cancer [86]. Here, CBP and p300 function as cofac-

tors of the androgen receptor (AR) and drive the

progression of prostate cancer [87]. Interestingly,

they are induced by androgen deprivation and can

induce androgen-dependent genes in castration-

resistant cancers even in the presence of very low

AR levels [88]. Further evidence to support their

oncogenic potential is derived from the observation

that inhibition of the acetyltransferase activity of

CBP-p300 induces apoptosis in prostate cancer

cells [89]. In contrast to its reported oncogenic func-

tion, inactivating mutations of CBP have also been

described in a range of haematological and solid

malignancies [37,36]. The functional consequences

of these inactivating mutations have not been

explored in depth but serve to highlight the fact

that, like many chromatin regulators, CBP/P300

may act as oncogenes or tumour suppressors depend-

ing on the cellular context. As the BRD of CBP/

p300 serves to localize their activity at chromatin

these could represent an exciting therapeutic target

if applied in the correct context and malignancy.

CLINICALAPPLICATION
The exciting possibility of translating these novel

epigenetic therapies into the clinical arena has already

begun with the BET inhibitors. The results of these

early stage clinical trials are eagerly awaited not only

from an efficacy point of view but also from a tox-

icity perspective. Many of the proteins discussed

earlier play a fundamental role in cellular homeostasis

and as such one would expect that perturbation of

their function might have detrimental effects in

normal tissues. Interestingly, this prediction has not

been a major issue thus far in the pre-clinical char-

acterization of these compounds. Using the BET in-

hibitors as an example, in vitro studies with these

compounds on mobilized haematopoietic stem cells

show only a modest effect on their clonogenic cap-

acity in comparison with the near complete inhib-

ition observed in the leukaemia initiating cells

[17,65]. Similarly, in vivo studies with these com-

pounds at doses that have significant anti-tumour

activity does not led to widespread systemic toxicity

as evidenced by a lack of significant anorexia,

diarrhoea or a discernable nadir in blood counts

[17,65–67]. Nonetheless, it should be recognized

that treatment with these compounds results in a

reversible sterility consequent to the inhibition of

BRDT [90,91]. Whilst the pre-clinical characteriza-

tion of these compounds is an imperative step in the

process of clinical translation, these studies are limited
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by their scope and duration. The ultimate proof of

clinical utility will be gleaned from the ensuing clin-

ical trials in human subjects.

CONCLUDING REMARKS
The last decade has witnessed some of the most im-

pressive advances in human biology. The advent of

new technologies and innovative platforms has ush-

ered us into the ‘Omic’ era, one that promises an

unparalleled opportunity to tackle human disease.

Whilst the fundamental principle in oncology, that

cancer is a disease initiated and driven by genetic

anomalies remains uncontested, we are now more

than ever aware that this is not the whole story.

Many of the hallmarks of cancer, such as malignant

self-renewal, differentiation blockade, evasion of cell

death and tissue invasiveness are profoundly influ-

enced by changes in the epigenome. Moreover,

unlike genomic aberrations, the plasticity of the epi-

genome provides the perfect milieu for therapeutic

intervention. Recognition of these facts has led to a

flood of interest in developing novel cancer thera-

peutics aimed at chromatin regulators. A testament to

this progressive approach has been the FDA approval

of DNA methyltransferase inhibitors and HDAC-I,

which have already made a substantial clinical

impact. The pre-clinical promise offered by inhibi-

tors that specifically target the BRDs of BET proteins

is a further paradigm shift in our ability to manipulate

the epigenome for therapeutic gain. With improved

technologies and the increasing interest of the scien-

tific community the stage is now set to make some

fundamental inroads into the fight against cancer.

Key Points

� Targeting the epigenome is an emerging therapeutic paradigm in
cancer biology.

� BRD containing proteins play a diverse role in regulating various
biological processes.

� The normal cellular function of several BRD proteins is per-
turbed in the initiation andmaintenance of variousmalignancies.

� Advances in structural biology and medicinal chemistry have
enabled the development of specific smallmolecule inhibitors to
BRD proteins.
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