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Abstract 

The primary function of the bronchial epithelium is to act as a defensive barrier aiding 

the maintenance of normal airway function. Bronchial epithelial cells (BECs) form 

the interface between the external environment and the internal milieu, making it a 

major target of inhaled insults. However, BECs can also serve as effectors to initiate 

and orchestrate immune and inflammatory responses by releasing chemokines and 

cytokines, which recruit and activate inflammatory cells. They also produce excess 

reactive oxygen species as a result of an oxidant/antioxidant imbalance which 

contributes to chronic pulmonary inflammation and lung tissue damage. Accumulated 

mucus from hyperplastic BECs obstructs the lumen of small airways, whereas 

impaired cell repair, squamous metaplasia and increased extracellular matrix 

deposition underlying the epithelium is associated with airway remodelling 

particularly fibrosis and thickening of the airway wall. These alterations in small 

airway structure lead to airflow limitation, which is critical in the clinical diagnosis of 

chronic obstructive pulmonary disease (COPD). In this review, we discuss the 

abnormal function of BECs within a disturbed immune homeostatic environment 

consisting of ongoing inflammation, oxidative stress and small airway obstruction.  

We provide an overview of recent insights into the function of the bronchial 

epithelium in the pathogenesis of COPD and how this may provide novel therapeutic 

approaches for a number of chronic lung diseases. 
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Introduction 

Chronic obstructive pulmonary disease (COPD) represents a syndrome comprising 

chronic bronchitis (CB) and emphysema characterised by largely irreversible and 

progressive airflow limitation [1]. More than 200 million people worldwide are 

currently affected by the disease, which is the fourth leading cause of death 

worldwide [2] and is projected to be the third leading cause by 2030 [3]. At the 

pathological level, COPD is associated with chronic pulmonary inflammation in 

response to environmental insults.  This is, in turn, inextricably linked to disturbed 

tissue repair, increased mucus secretion and epithelial cell hyperplasia with airway 

wall thickening in the small conducting airways [4].  Bronchial epithelial cells 

(BECs), which line the airway lumen, are among the first sites of contact for 

environmental stimuli (microorganisms, gases and allergens) and perform a crucial 

role in maintaining normal airway function. Studies on human bronchial biopsies in 

COPD have demonstrated increased inflammatory gene and protein expression and 

structural alterations in bronchial epithelial cells [5–8] suggesting a causal role of 

BECs in COPD pathogenesis. 

 

Bronchial epithelial cells (BECs) 

BECs are composed of various cell types and may be classified into three categories 

based on ultrastructural, functional and biochemical criteria: basal, ciliated and 

secretory cells [9].  Basal cells are ubiquitous in the large (50%) and small airways 

(81%) [10] but the absolute cell count decreases with airway size [11].  Basal 

epithelial cells exclusively express hemidesmosomes indicating an important role in 

the attachment of themselves and more superficial cells to the basement membrane 

[11, 12].  These cells are also thought to be primary progenitor or stem cells because 

they can self-renew and give rise to secretory and ciliated epithelial cells in response 

to epithelial injury [13].  In addition to their structural and progenitor functions, 

basal epithelial cells also produce various bioactive molecules, including neutral 

endopeptidase, 15-lipoxygenase products and cytokines [14].   



Ciliated epithelial cells are the major cell type within the airways, accounting for over 

50% of all epithelial cells [9]. They possess up to 300 cilia per cell and have 

numerous energy-producing mitochondria adjacent to their apical surface, 

highlighting the critical function of the cells in clearing mucus out from the airways 

via directional ciliary beating [15].   

Mucus (goblet) cells are large secretory granules containing large quantities of mucin 

glycoproteins which secrete mucus in order to trap foreign objects in the airway 

lumen [16]. A balance between the correct amount of mucus production and clearance 

provides a critical defensive barrier and prevents airway surface desiccation [17]. 

Mucus cells are also capable of self-renewal and differentiation into ciliated epithelial 

cells [11].  

In humans, non-ciliated secretory cells called Club cells (these were formerly known 

as Clara cells) exist in the small airways and trachea.  These are morphologically 

identified by their distinctive dome-shaped apical protrusions and molecularly 

identified by their expression of Clara cell secretory protein [17]. The cells possess 

several lung protective functions. They regulate bronchiolar epithelial integrity and 

immunity by producing bronchiolar surfactants and specific anti-proteases; they 

metabolise xenobiotic compounds by the action of p450 mono-oxygenases [18] and 

also have an important stem cell function as progenitors for both ciliated and 

mucus-secreting cells [19].  

Considering the critical functions of BECs in maintaining the normal structure and 

function of the airways it is not surprising that dysregulated BECs may contribute to 

the pathogenesis of many lung diseases such as COPD. In this review we address the 

evidence for a critical role of dysfunctional BECs in the pathogenesis of COPD. 

 
BECs initiate and regulate immune responses 

The lungs are persistently exposed to environmental insults, but rarely show signs of 

infection, implying the existence of effective host defence mechanisms. The host is 

protected against various stimuli by a multi-layered defence system consisting of a 

combination of physical barriers, as well as innate and adaptive immune mechanisms 



[20].  The importance of numerous immune cell types in COPD has been stressed for 

many years [21].  Vareille et al. [22] summarised the important functions of BECs in 

response to respiratory viruses and these can be categorised on several different levels. 

Firstly, BECs form an efficient physical barrier function against viral invasion by 

exhibiting cell–cell junctions, including tight junctions, adherens junctions, gap 

junctions and desmosomes [23]. Ciliated and mucus cells together enable the 

formation of a mucus barrier that traps and clears approximately 90% of inhaled 

particles [24]. Secondly, BECs rapidly recognise molecules that are exclusive to 

microbes, namely, pathogen-associated molecular patterns (PAMPs), via expression of 

pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs).  This 

recognition enables BECs to subsequently interact with, guide, activate and modulate 

other immune cells [25]. Thirdly, BECs produce various antiviral substances and 

release chemokines and cytokines that are important in both innate and adaptive 

immune processes upon viral recognition. 

Cigarette smoke (CS) is the main etiological factor for COPD. CS can disturb immune 

homeostasis in the lungs and change airway host defence mechanisms leading to 

COPD [26]. CS induces dramatic alterations in the airway epithelial architecture and 

impairs barrier functions of BECs by increasing the permeability of the airway 

epithelium, impairing cilia beat ability and reducing mucociliary clearance [27, 28]. 

This barrier dysfunction, which is often found in COPD [29, 30], can increase viral 

binding and entry into cells, further impairing barrier function [31–33]. CS also 

inhibits the production of interferons (IFNs), important antiviral substances, by BECs 

upon stimulation with a viral double-stranded RNA mimic, polyI:C [34], indicating 

that BECs have an impaired immune defence against viral infections. 

In addition to the compromised immune barrier function following chronic CS 

exposure, altered BECs also show disproportionate immune responses to other 

environmental hazards. CS and other inhaled toxic agents cause direct damage to 

BECs leading to the release of endogenous molecules called damage-associated 

molecular patterns (DAMPs) [35]. Concentrations of high-mobility group box 1 [36], 

uric acid and extracellular ATP [37], which are important DAMPs, are shown to be 



increased in bronchoalveolar lavage fluid of patients with COPD compared with 

smokers without COPD. Similar to PAMPs, these signals are identified by PRRs, such 

as TLR4 and TLR2 on BECs [38] and can subsequently trigger a non-specific 

inflammatory response [39]. Release of early cytokines and chemokines [such as 

tumour necrosis factor α (TNF-α) and interleukin (IL)-1 and IL-8/CXCL8] by BECs 

elicits the recruitment of macrophages, neutrophils and dendritic cells (DCs) to the 

site of inflammation [40, 41].  These cells, in turn, secrete proteolytic enzymes and 

reactive oxygen species (ROS), causing lung tissue damage [42].  

DCs are specialised antigen-presenting cells that have a central function in the 

initiation of innate and adaptive immune responses [43]. By integrating multiple 

signals from the local microenvironment, DCs promote CD4+ T helper cell 

differentiation and CD8+ cytotoxicity [35], which are both associated with more 

advanced stages of airflow limitation and emphysema in COPD [44]. Considering the 

close proximity of BECs and DCs, DCs are likely to be receptive to local signals 

derived from epithelial cells. Several studies have demonstrated that DC migration, 

maturation and activation is regulated by BEC-secreted chemokines [45, 46]. For 

example, MIP-3α/CCL20, the unique ligand for CCR6 released by BECs in response 

to CS exposure, can facilitate the recruitment of DC subsets to the airway epithelium 

[41, 45]. BECs not only help promote terminal differentiation of B-cells oriented 

towards polymeric immunoglobulin-A (IgA) production by producing different 

cytokines, such as TGF-β, IL-5 or IL-10 [47], but also mediate IgA transportation [48]. 

Thus, we suggest that BECs can both initiate and regulate the innate and adaptive 

immune systems involved in COPD pathogenesis (Figure 1). 
 

BECs act as both targets and potent effector cells in chronic pulmonary 

inflammation 

Chronic inflammation contributes to airflow limitation in COPD [1, 49]. Chronic 

inflammation in COPD is mainly characterised by the accumulation of neutrophils, 

macrophages, B cells and CD8+ T cells, especially in small airways [50]. Various 

inflammatory mediators also have important functions in the pathogenesis of the 



disease. BECs serve as a barrier to noxious stimuli and produce mediators and 

enzymes to maintain normal airway homeostasis. Respiratory viruses rapidly 

stimulate epithelial cells to secrete a wide range of pro-inflammatory mediators, such 

as IL-6, IL-8 and granulocyte-monocyte colony-stimulating factor (GM-CSF) [51, 52]. 

These early activated cells cause changes in endothelial cell physiology and further 

induce migration and infiltration of inflammatory cells to the airways [52–54]. Under 

normal conditions, the inflammatory cells in airways kill and eliminate inhaled 

foreign matter by secreting cytotoxic mediators and proteases, employing 

phagocytosis and a respiratory burst. However, sustained deleterious environmental 

stimuli, such as CS, may cause injury and alterations in defence mechanisms in BECs. 

The bronchial epithelium not only serves as a target of environmental stresses, but 

also works as a major effector to propagate the inflammatory process [55]. BECs 

produce primary inflammatory mediators, such as IFN-γ, TNF-α and IL-1, which then 

trigger the release of secondary mediators by BECs, including other cytokines, lipid 

mediators, growth factors, proteases and ROS [35, 56, 57].  A summary profile of 

the mediators produced by BECs potentially involved in COPD is shown in Table 1, 

with further details on major mediators provided in the following section. 

Lipid mediators, including prostaglandins (PGs), leukotrienes (LTs) and 

platelet-activating factor (PAF), are produced by BECs in response to various stimuli 

[58, 59] and act in an autocrine or paracrine manner to trigger the production of more 

lipid mediators [60, 61]. These mediators are chemotactic for neutrophils and 

macrophages and can alter vascular and epithelial permeability [62]. PAF and LTs can 

induce airway mucin secretion and cause bronchoconstriction [60, 61]. When oxidant 

exposure (e.g., chronic CS exposure) is continuous, oxidant species are especially 

important in the lung epithelium. Reactive species, such as hydrogen peroxide (H2O2), 

superoxide anion radicals (O2●), hydroxyl radicals (i.e., OH●), nitric oxide (NO) and 

peroxynitrite (ONOO), change cell functions in the lungs. The oxidants released by 

BECs [63, 64] either directly injure the airway epithelium or alter the expression and 

activation of redox-sensitive pro-inflammatory signalling pathways including nuclear 

factor-κB (NF-κB) and activation protein (AP)-1 [65], thereby amplifying 



inflammatory cell influx. Cytokines are pluripotent proteins that are produced and 

released by various cell types, including human BECs [66]. Primary pro-inflammatory 

mediators such as IL-1 and TNF-α are produced rapidly by BECs upon stimulation 

and can feedback on the same cells to up-regulate the expression and secretion of 

secondary cytokines including IL-6, IL-8/CXCL8 and GM-CSF [35, 56, 57, 66]. In 

addition, BECs are a major source of numerous chemokines such as CXCL1, CXCL5, 

CXCL10, CCL11, CCL2 and CCL5 [67] which facilitate the recruitment and 

activation of different inflammatory cells within the airways.  These recuited 

inflammatory cells can release various proteases, including neutrophil elastase and 

matrix metalloproteinases (MMPs), which break down connective tissue components, 

particularly elastin, in lung parenchyma to produce emphysema. 

Exposure of BECs to cigarette smoke results in the activation of numerous 

redox-associated intracellular signalling pathways including MAPKs, NF-κB and 

AP-1 [68, 69]. Other transcription factors, including cAMP response element-binding 

protein, CBP [70], CCAAT/enhancer-binding protein-b [71] and peroxisome 

proliferator-activated receptor [72], are also activated by CS exposure. These all 

contribute to varying degress to the expression of inflammatory mediators in BECs. 

 

BECs contribute to the oxidant/antioxidant imbalance in oxidative stress 

Increasing evidence showed that oxidative stress is an important feature in COPD [73, 

74] because of excess ROS in the antioxidant defence mechanisms in the airways. 

BECs can produce increased amounts of ROS in response to different stimuli [75]. 

The airways are exposed to exogenous oxidants, such as CS, which summate with 

endogenous ROS production to elevate oxidative stress and further increase the 

inflammatory and destructive response in COPD. 

Activation of MAPK and NF-κB pathways [68, 76] and increased cytokine release 

[77] has also been demonstrated in airway epithelial cells in response to oxidant stress 

per se and this may be linked, at least in part, to alterations in the histone 

acetylation/deacetylation balance [78, 79]. The increased expression and release of 

mediators, such as CXCL8/IL-8, GM-CSF, soluble ICAM-1 and TNF-α, may also 



regulate the influx of inflammatory cells [80]. For instance, exposure of human 

airway epithelial cells to ozone results in the induction of adhesion molecules on 

BECs leading to increased neutrophil adhesion [81]. Therefore, oxidative stress in 

BECs may amplify the ongoing inflammatory responses in COPD. In addition, 

oxidative stress can increase both airway mucus obstruction in vivo and the expression 

of mucin genes (MUC5AC) in vitro by activating epidermal growth factor receptors 

(EGFRs) in BECs [82, 83]. The activation of EGFR also mediates oxidative stress 

induced-proliferation of BECs [84].  

Oxidative stress causes direct injury of BECs. Ozone alters the distribution of β1 

integrins in cultured primate BECs resulting in damage of cells and loss of cilia [85].  

Exposure of BECs to oxidants increases their permeability and can result in apoptosis 

or necrosis [86, 87]. These effects may be attributed to DNA strand breaks in airway 

epithelial cells that induce changes in the expression of epithelial cell-specific genes 

[88]. These injuries to BECs impair their protective capacity against inhaled oxidants 

and other insults, enhancing local inflammation and cell death. 

Numerous endogenous antioxidants are produced to maintain oxidant/antioxidant 

homeostasis in the airways. Glutathione (GSH) is a major antioxidant in airway 

epithelial cells and in epithelial lining fluid, but the concentration of GSH in the latter 

is much higher than that in the former [89, 90]. Extracellular glutathione peroxidase 

can be released by BECs and macrophages particularly in response to CS or oxidative 

stress [91]. GSH and its redox system can inactivate H2O2, O2●- and reactive nitrogen 

species [90] and are important for the detoxification of lipid peroxides or other toxic 

metabolites in lung tissue.  Oxidative stress induced by hyperoxia, H2O2, menadione 

or ozone exposure in vivo in rats and monkeys, may initially deplete GSH although 

this is followed by a significant increase in GSH levels.  Similar results are seen in 

vitro in human BECs which was associated with the tolerance of cells to further 

oxidative stress [92, 93]. However, Rusznak et al. [94] demonstrated that exposure to 

CS leads to a significant decrease in intracellular GSH levels without a rebound 

increase in levels within primary cultures of human BECs derived from healthy 

never-smokers, smokers with normal pulmonary function and those with COPD. 



Furthermore, Van der Toorn M et al. [95] showed that CS irreversibly modifies GSH, 

thereby depleting the total available GSH pool in airway epithelial cells. These 

findings indicated a chronic lack of protection against oxidative stress, providing a 

mechanism by which BECs contribute to CS-induced oxidative damage found in 

patients with COPD (Figure 2). 

 

Goblet cell hyperplasia and mucous metaplasia results in CB in COPD 

Mucus is a liquid bilayer that lines the inner surface of the airways and exists as the 

first line of defence against various insults. Inhaled particles are trapped in viscous, 

adhesive liquid gel and removed from the airways by mucociliary clearance [96]. The 

efficiency of mucociliary transport depends on the viscoelasticity of mucus, which is 

conferred by mucous glycoproteins or mucins [97]. Mucins are produced and secreted 

by several cell types and seromucous glands in the submucosa. Among these cell 

types, goblet cells have the greatest potential for mucus composition [198, 99]. 

Chronic bronchitis (CB) is one of the two major diseases constituting COPD. CB is 

caused by excessive luminal mucus resulting from a combination of mucus 

hypersecretion by goblet cells and decreased mucus elimination. Smokers with CB 

have increased numbers of goblet cells, which are associated with elevated amounts 

of intracellular mucin, in which MUC5AC is predominant form, compared with 

non-smoking controls [100, 101]. The hypersecreted mucus with increased viscosity 

and decreased antibacterial products aggravates airflow limitation and leads to an 

increased risk of chest infection [98, 102]. 

Inflammation, oxidative stress and proteases involved in COPD pathogenesis have 

been linked to goblet cell hyperplasia accompanied with hypersecretion of mucins. 

Various inflammatory mediators and signalling pathways regulate the transcription of 

MUC genes.  IL-1β, IL-17A and TNF-α induce mucus production via the activation 

and nuclear translocation of NF-κB [103, 104]. IL-1β-induced MUC5AC expression 

also depends on cyclooxygenase (COX)-2-generated PGE2 and triggering of a cyclic 

AMP-protein kinase A-dependent pathway through PGE receptors (EPs), specifically 

EP2 and EP4 receptors [105]. Up-regulation of chloride channels expressed in BECs 



increases Cl- secretion and regulates mucus volume [106]. IL-13 can also induce 

mucin gene expression in human BEC cultures through the MAPK and 

phosphatidylinositol 3-kinase pathways [107]. IL-13 also induces disordered mucus 

cell metaplasia via EGFR activation in COPD [108]. Oxidative stress, both 

exogenously from CS and endogenously from neutrophils, can activate EGFR and 

induce mucin synthesis [109]. Furthermore, a recent study reported that human BECs 

express the arylhydrocarbon receptor (AhR) whose activation causes excess mucin 

production in a ROS-dependent manner [110]. Furthermore, human neutrophil 

elastase [111], MMP-9 [112] and MMP-14 [113] also increase mucin production via 

an EGFR-mediated mechanism. 

Failure to clear mucus from the airway surface is another critical event in the 

pathogenesis of CB. Excess mucin production leads to an imbalance of mucin, salt 

and water on the airway surface, resulting in mucus stasis and reduced clearance, 

which may be attributed to two mechanisms. One is the reduced ciliary beat efficiency 

due to the increased viscosity of the periciliary liquid layer (PCL) which underlies the 

mucus layer and acts as a lubricant. The other is that the depleted PCL, flattened cilia 

and adhesion of the thickened mucus to the apical cell surface contribute to the failure 

of cough-dependent clearance [114]. 

   

Disordered repair, regeneration and consequent remodelling of airways actively 

contribute to airflow limitation in COPD 

In addition to mucus accumulation in airway lumen, airflow obstruction is also 

associated with small airway remodelling in COPD [115]. Thickening of airway wall 

tissue associated with BEC repair, squamous metaplasia and increased amounts of 

extracellular matrix (ECM) deposition are characteristic features of airway 

remodelling in COPD. Acute exposure to inhaled toxic insults, such as CS or 

microorganisms, induces the loss of epithelial integrity and increased epithelial injury. 

Under normal conditions this injury is repaired or the epithelium regenerated as 

exemplified in several animal models by the proliferation and migration of the basal 

epithelial cells neighbouring the wound over the provisional ECM secreted by 



epithelial cells, squamous metaplasia, progressive redifferentiation and finally 

ciliogenesis and complete regeneration of a pseudostratified secretory or ciliated 

epithelium [116, 117]. This repair and regeneration “ad integrum” leaves no residual 

trace of the previous injury. However, any delay or interruption in the epithelial repair 

and redifferential process caused by interactions with other cells or the presence of 

inflammatory mediators may disturb the normal repair and regeneration process 

leading to ECM deposition and airway fibrosis. 

Peripheral airway wall fibrosis is more prevalent in COPD compared with asthma and 

represents an important cause of airway narrowing in COPD [118, 119]. Chronic 

exposure to CS or environmental pollution induces the loss of epithelial integrity, 

leading to epithelial abnormalities which can affect airway tissue fibrosis.  The loss 

of epithelial integrity impairs the innate immune functions of the airway epithelium 

[120, 121] and extensive molecular reprogramming allows mesenchymal 

transdifferentiation into fibroblasts by a process called epithelial-mesenchymal 

transition (EMT) [122].  Zhang et al. [123] demonstrated that EMT occurs in human 

BECs stimulated by TGF-β1. Furthermore, Sohal et al. [124] reported that EMT may 

be an active process in COPD airways. This process is accompanied with progressive 

loss of epithelial markers, gain in migratory and invasive potential and elevated 

ability to produce ECM components [125, 126] which all contribute to airway wall 

fibrosis and thickening. In addition, BECs can produce and release various 

inflammatory mediators and growth factors including TGF-β [50] which is the main 

stimulus causing fibroblasts to produce ECM constituents.  MMPs, expressed by 

migrating epithelial cells, have key functions in the migration of BECs (MMP-9), the 

shift from an epithelial to a mesenchymal phenotype (MMP-3 and MMP-11) and 

degradation of ECM components during the tissue remodelling process (MMP-12) 

[127, 128]. Thus, COPD epithelial cells produce abnormal levels of active MMPs. 

Dysregulated production and activation of MMPs will result in an imbalance of ECM 

turnover and induce degradation in lung parenchyma and deposition in bronchi and 

bronchioles in COPD [128–130]. 

 



Conclusions and future directions 

CODP is characterised by airflow limitation that is not fully reversible because of 

remodelling of the small airway compartment and emphysematous destruction of the 

parenchyma [131]. Several mechanisms have been implicated in the pathogenesis of 

the disease, including immune dysregulation, exaggerated chronic inflammation and 

oxidant and antioxidant imbalance in response to inhaled insults. As the first line of 

defence against noxious insults, the human bronchial epithelium lining the respiratory 

airways exerts a negative regulatory function in the preventing the onset of COPD. 

Upon repeated environmental challenge, BECs serve as a switchboard to initiate and 

orchestrate immune responses through the release of chemokines and cytokines, 

which recruit and activate inflammatory cells. Epithelial cells damaged by inhaled 

agents, such as CS, produce a disorganised immune response and heightened 

inflammatory processes.  Exposure of BECs to CS, inhaled airborne pollutants or 

other oxidants not only generates excess ROS but also impairs antioxidant gene 

expression in BECs [75, 94, 95] leading to an oxidant/antioxidant imbalance and lung 

inflammation. In addition, goblet cell hyperplasia, mucus accumulation, squamous 

epithelial metaplasia, airway wall fibrosis and thickening caused by ECM deposition 

underlying the epithelium are major characteristics of COPD and can cause small 

airway obstruction and airflow limitation. 

Even after smoking cessation in COPD patients, oxidative stress and pulmonary 

inflammation persist, which may hamper or prevent tissue repair [35]. Therefore, an 

effective treatment regime for COPD requires stopping exposure to toxic substrates, 

such as CS, as well as inhibition of excessive inflammation, oxidative stress and 

ideally reversal of structural changes within the small airways and parenchyma [132].  

Considering the ability of BECs to orchestrate the myriad of downstream responses to 

cigarette smoke, drugs that modify the ability of activated COPD BECs to modulate 

these oxidative stress, immune responses and inflammatory processes should be 

effective in COPD.  A consequence of preferentially targeting BECs is that 

downstream effects on inflammatory cell recruitment and on airway remodelling 

should also be improved without the need for separate therapies.
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Table 1.  Mediators produced by BECs in COPD. 
 

Lipid mediators PGE2, LTs B4 and C4, PAF 

Reactive oxygen species (and 
products) 

H2O2, superoxide anion radicals, hydroxyl 
radicals, nitric oxide, peroxynitrite, 
8-isoprostanes, 3-nitrotyrosine 

Cytokines  Proinflammatory IL-1β, TNF-α, IL-6, IL-8, GM-CSF 

           T-helper IL-4, IL-9, IL-10, IL-13 (T-helper-2); IFN-γ 
(T-helper-1) 

Chemokines    CXC IL-8 (CXCL8), GRO-α (CXCL1), ENA-78 
(CXCL5), IP-10 (CXCL10) 

                CC MCP-1 (CCL2),  RANTES (CCL5), eotaxin 
(CCL11) 

Growth factors TGFβ, Endothelin-1, PDGF, VEGF, EGF 

Proteases 
MMP-1, -2, -7, -9, -12, Cathepsins, Cysteine 
proteinases 

 
PDGF: Platelet-derived growth factor; VEGF: Vascular endothelial growth factor; 
EGF: Epidermal growth factor 
 

 



Figure legends. 

 

 

 

Figure 1. Bronchial epithelial cells (BECs) initiate and control immune and 

inflammatory responses in COPD pathogenesis 

Cigarette smoke activates BECs by triggering pattern recognition receptors (PRR) 

such as Toll-like receptors (TLRs) either directly by cigarette components or 

indirectly via the release of damage-associated molecular patterns (DAMPs). On 

activation, BECs release pro-inflammatory cytokines and chemokines, which recruit 

infiltrating inflammatory cells including macrophages, neutrophils and dendritic cells 

(DCs). Activated immune cells, in turn, secrete additional inflammatory mediators, 

reactive oxygen species (ROS) and proteolytic enzymes (neutrophil elastase [NE] and 

matrix metalloproteinases [MMPs]).  These mediators contribute to the airway 

remodelling and destruction of lung tissue that is involved in the pathogenesis of 

COPD. HSP=heat shock protein. HMGB1=high-mobility group box 1  

 

 



 
 

Figure 2.  Bronchial epithelial cells (BECs) contribute to oxidative 

stress-mediated lung inflammation.  

BECs are exposed to exogenous oxidants, such as CS, which induces production of 

ROS and depletion of some antioxidants. Excessive ROS production overwhelms the 

antioxidant defense mechanisms in the airways resulting in elevated expression of 

inflammatory mediators.  This, in turn, induces an influx of inflammatory cells into 

the airway and lung. In addition, excess oxidative stress impairs the structural 

integrity of BECs and the protective capacity of the bronchial epithelium against 

inhaled oxidants, further enhancing the inflammation. 


