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Abstract

In this paper, we present Brook for GPUs, a system
for general-purpose computation on programmable graph-
ics hardware. Brook extends traditional C to include simple
data-parallel constructs, enabling the GPU as a general pur-
pose streaming processor. We present a compiler and run-
time system that compiles and executes Brook code on the
GPU and abstracts and virtualizes many aspects of graphics
hardware. In addition, we present an analysis of the effec-
tiveness of the GPU as a compute engine compared to the
CPU, to provide a framework for establishing when and how
the GPU can outperform the CPU for a particular algorithm.
We demonstrate that applications written in Brook perform
comparably to their hand-written GPU counterparts.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors

Keywords: Programmable Graphics Hardware, Data Par-
allel Computing, Stream Computing, Brook

1 Introduction

In recent years, commodity graphics hardware has rapidly
evolved from being a fixed-function pipeline into having pro-
grammable vertex and fragment processors. While this new
programmability was introduced for real-time shading, it has
been observed that these processors feature instruction sets
general enough to perform computation beyond the domain
of rendering. Applications such as linear algebra [Kruger
and Westermann 2003], physical simulation, [Harris et al.
2003], and a complete ray tracer [Purcell et al. 2002; Carr
et al. 2002] have been demonstrated to run on GPUs.

Originally, GPUs could only be programmed using as-
sembly languages. Microsoft’s HLSL, NVIDIA’s CG, and
OpenGL’s GLslang alleviate some of this burden by allow-
ing shaders to be written in a high level, C-like programming
language [Microsoft 2003; Mark et al. 2003; Kessenich et al.
2003]. However, these languages do not assist the program-
mer in configuring other aspects of the graphics pipeline,
such as allocating texture memory, loading shader programs,
or constructing graphics primitives. As a result, the imple-
mentation of general applications requires extensive knowl-
edge of the latest graphics APIs as well as an understanding
of the features and limitations of modern hardware. In ad-
dition, the user is forced to express their algorithm in terms
of graphics primitives, such as textures and triangles. As a
result, general-purpose GPU programming is limited to only
the most advanced graphics developers.

This paper presents Brook, a programming environment
that provides developers with a view of the GPU as a stream-
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ing coprocessor. The main contributions of this paper in-
clude:

• The presentation of the Brook stream program-
ming model for general purpose GPU programming.
Through the use of streams, kernels and reduction op-
erators, Brook abstracts the GPU as a streaming pro-
cessor.

• The demonstration of how various GPU hardware lim-
itations can be virtualized or extended using our com-
piler and runtime system; specifically, the GPU mem-
ory system, the number of supported shader outputs,
and support for user-defined data structures.

• The presentation of a cost model for comparing GPU
vs. CPU performance tradeoffs to better understand
under what circumstances the GPU outperforms the
CPU. Using applications written in Brook, we apply the
cost model using the latest ATI and NVIDIA graphics
hardware.

2 Background

2.1 Evolution of Streaming Hardware

Programmable graphics hardware dates back to the origi-
nal programmable framebuffer architectures [England 1986].
One of the most influential programmable graphics systems
was the UNC PixelPlanes series [Fuchs et al. 1989] culmi-
nating in the PixelFlow machine [Molnar et al. 1992]. These
systems embedded pixel processors, running as a SIMD pro-
cessor, on the same chip as framebuffer memory. Peercy et
al. [2000] demonstrated how the OpenGL architecture [Woo
et al. 1999] can be abstracted as a SIMD processor. Each
rendering pass implements a SIMD instruction that performs
a basic arithmetic operation and updates the framebuffer
atomically. Using this abstraction, they were able to com-
pile RenderMan to OpenGL 1.2 with imaging extensions.
Thompson et al. [2002] explored the use of GPUs as a
general-purpose vector processor by implementing a soft-
ware layer on top of the graphics library that performed
arithmetic computation on arrays of floating point numbers.

The SIMD and vector processing steps involve a read, ex-
ecution of a single instruction, and a write to off-chip mem-
ory [Russell 1978; Kozyrakis 1999]. This results in signif-
icant memory bandwidth use. Today’s graphics hardware
executes small programs where instructions load and store
data to temporary local registers rather than to memory.
This is the key difference between the vector processor ab-
straction and the stream processor abstraction. [Khailany
et al. 2001].

The stream programming model captures computational
locality not present in the SIMD or vector models through
the use of streams and kernels. A stream is a collection
of records requiring similar computation while kernels are
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Figure 1: Programming model for current programmable
graphics hardware. A shader program operates on a single
input element (vertex or fragment) stored in the input regis-
ters and writes the execution result into the output registers.

functions applied to each element of a stream. A stream-
ing processor executes a kernel over all elements of an input
stream, placing the results into an output stream. Dally
et al. [2003] explains how stream programming promotes
the creation of applications with high arithmetic intensity,
the ratio of arithmetic operations to required memory band-
width. This paper applies the idea of arithmetic intensity to
a comparison of CPU and GPU performance.

Stream architectures are a topic of great interest in com-
puter architecture [Bove and Watlington 1995; Gokhale and
Gomersall 1997]. For example, the Imagine stream processor
[Kapasi et al. 2002] demonstrated the effectiveness of stream-
ing for a wide range of media applications, including graph-
ics and imaging [Owens et al. 2000]. The StreamC/KernelC
programming environment provides an abstraction which al-
lows programmers to map applications to the Imagine pro-
cessor [Mattson 2002]. Labonte et al. [2004] studied the ef-
fectiveness of GPUs as stream processors by evaluating the
performance of a streaming virtual machine mapped onto
graphics hardware. The programming model presented in
this paper could easily be compiled to their virtual machine.

2.2 Programming Graphics Hardware

Modern programmable graphics accelerators such as the
ATI Radeon 9800 and the NVidia GeForce FX [ATI 2003;
NVIDIA 2003] feature programmable vertex and frag-
ment processors. Each processor executes a user-specified
assembly-level shader program consisting of 4-way SIMD
instructions [Lindholm et al. 2001]. These instructions in-
clude standard math operations, such as 3- or 4-component
dot products, texture-fetch instructions (fragment programs
only), and a few special-purpose instructions.

The basic execution model of a GPU is shown in figure 1.
For every vertex or fragment to be processed, the graphics
hardware places a graphics primitive in the read-only input
registers. The shader is then executed and the results writ-
ten to the output registers. During execution, the shader
has access to a number of temporary registers as well as
constants set by the host application.

Purcell et al. [2002] describes how the GPU can be con-
sidered a streaming processor that executes kernels, written

as fragment or vertex shaders, on streams of data stored
in geometry and textures. Instead of raw assembly, Cg,
HLSL, and GLslang provide programmers the ability to
write kernels in a high level, C-like language. However, even
with these languages, applications must still execute explicit
graphics API calls to organize data into streams and invoke
kernels. For example, the API’s texturing system is fully ex-
posed to the programmer, requiring streams to be manually
packed into textures and transferred to and from the hard-
ware. Kernel invocation requires the loading and binding of
shader programs and the rendering of geometry. As a result,
computation is not expressed as a set of kernels acting upon
streams, but rather as a sequence of shading operations on
graphics primitives. Even for those proficient in graphics
programming, expressing algorithms in this way can be an
arduous task.

These languages also fail to virtualize constraints of the
underlying hardware. For example, stream elements are
limited to natively-supported float, float2, float3, and
float4 types, rather than allowing more complex user-
defined structures. In addition, programmers must always
be aware of hardware limitations such as shader instruction
length, number of shader outputs, and texture sizes. There
has been some work in shading languages which attempts
to alleviate some of these constraints. Chan et al. [2002]
presented an algorithm to subdivide large shaders automat-
ically into smaller shaders to circumvent shader length and
input constraints, but did not explore multiple shader out-
puts. McCool et al. [2002; 2004] have developed Sh, a sys-
tem that allows shaders to be defined and executed using a
metaprogramming language built on top of C++. However,
Sh is intended specifically for the purpose of shading and is
not a general-purpose language.

In general, code written today to perform computation on
GPUs is developed in a highly graphics-centric environment,
posing difficulties for those attempting to map other general-
purpose applications onto graphics hardware.

3 Brook Stream Programming Model

Brook was a developed as a language for streaming proces-
sors such as such as Stanford’s Merrimac streaming super-
computer [Dally et al. 2003], the Imagine Processor [Kapasi
et al. 2002], the UT Austin TRIPS processor [Sankaralingam
et al. 2003], and the MIT Raw processor [Taylor et al. 2002].
We have adapted Brook to reflect the capabilities of graph-
ics hardware, and will only discuss Brook in the context of
GPU architectures in this paper. The design goals of the
language include:

• Data Parallelism and Arithmetic Intensity
By providing native support for streams, Brook allows
programmers to express the data parallelism that exists
in their applications. Arithmetic intensity is improved
by performing computations in kernels.

• Portability and Performance
In addition to GPUs, the Brook language maps to a
variety of streaming architectures. Therefore the lan-
guage is free of any explicit graphics constructs. We
have created Brook implementations running on both
NVIDIA and ATI hardware, using both DirectX with
HLSL and OpenGL with Cg, as well as a CPU ref-
erence implementation. Despite the need to maintain
portability, Brook programs execute efficiently on the
underlying hardware.



In comparison with existing high-level languages used for
GPU programming, Brook provides the following abstrac-
tions.

• Memory is managed via streams: named, typed,
and “shaped” data objects consisting of collections of
records.

• Data-parallel operations executed on the GPU are spec-
ified as calls to parallel functions called kernels.

• Many-to-one reductions on stream elements are per-
formed in parallel by reduction functions.

Important features of the Brook language are discussed in
the following sections.

3.1 Streams

A stream is a collection of data which can be operated on
in parallel. Streams are declared with angle-bracket syntax
similar to arrays, i.e. float s<10, 5>; which denotes a 2-
dimensional stream of floats. Each stream is made up of
elements. In this example, s is a stream consisting of 50
elements of type float. The shape of the stream refers to its
dimensionality. In this example, s is a stream of shape 10
by 5.

Streams are similar to C arrays, however, access to stream
data is restricted to kernels (described below) and the
streamRead and streamWrite operators, that transfer data
between memory and streams.

Streams may contain elements of type float, Cg/HLSL
vector types such as float2, float3, and float4, and struc-
tures composed of these native types. For example, we can
specify:

typedef struct ray_t{
float3 o;
float3 d;
float tmax;

} Ray;
Ray r<100>;

Support for user-defined memory types, though common in
general-purpose languages, is a feature not found in existing
high-level graphics languages. Brook provides the user with
the convenience of complex data structures and compile-time
type checking.

3.2 Kernels

Brook kernels are special functions, specified by the kernel
keyword, which operate on streams. Calling a kernel on a
stream performs an implicit loop over the elements of the
stream, invoking the body of the kernel for each element.
An example kernel is shown below.

kernel void saxpy (float a, float4 x<>, float4 y<>,
out float4 result<>) {

result = a*x + y;
}

void main (void) {
float a;
float4 X[100], Y[100], Result[100];
float4 x<100>, y<100>, result<100>;
... initialize a, X, Y ...
streamRead(x, X); // copy data from mem to stream
streamRead(y, Y);
saxpy(a, x, y, result); // execute kernel on all elements
streamWrite(result, Result); // copy data from stream to mem

}

Kernels accept several types of arguments:

• Input streams that contain read-only data for kernel
processing.

• Output streams, specified by the out keyword, that
store the result of the kernel computation. Brook im-
poses no limit to the number of output streams a kernel
may have.

• Gather streams, specified by the C array syntax
(array[]): Gather streams permit arbitrary indexing
to retrieve stream elements. In a kernel, elements are
fetched, or gathered, via the array index operator i.e.
array[i]. Like regular input streams, gather streams
are read-only.

• All non-stream arguments are read-only, primitive
types.

If a kernel is called with input and output streams of dif-
fering shape, Brook implicitly resizes each input stream to
match the shape of the output. This is done by either re-
peating (123 to 111222333) or striding (123456789 to 13579)
elements in each dimension.

Certain restrictions are placed on kernels to allow data-
parallel execution. Memory access is limited to reads from
gather streams, similar to a texture fetch. Operations that
may introduce side-effects between stream elements, such as
accessing static or global variables, are not allowed in ker-
nels. Streams are allowed to be both input and output ar-
guments to the same kernel (in-place computation) provided
they are not also used as gather streams in the kernel.

Brook forces the programmer to distinguish between data
streamed to a kernel as an input stream and that which is
gathered by the kernel using array access. This distinction
permits the system to manage these streams differently. In-
put stream elements are accessed in a regular pattern but
are never reused, since each kernel body invocation operates
on a different stream element. Gather streams may be ac-
cessed randomly, and elements may be reused. As Purcell
et al. [2002] observed, today’s graphics hardware makes no
distinction between these two memory-access types. As as
result, input stream data can pollute a traditional texture
cache and penalize locality in gather operations.

The use of kernels differentiates stream programming from
vector programming. Kernels perform arbitrary function
evaluation whereas vector operators consist of simple math
operations. Vector operations always require temporaries to
be read and written to a large vector register file. In contrast,
kernels capture additional locality by storing temporaries in
local register storage. Arithmetic intensity is increased since
only the final result of the kernel computation is written back
to memory.

A sample kernel which computes a ray-triangle intersec-
tion is shown below.

kernel void krnIntersectTriangle(Ray ray<>, Triangle tris[],
RayState oldraystate<>,
GridTrilist trilist[],
out Hit candidatehit<>) {

float idx, det, inv_det;
float3 edge1, edge2, pvec, tvec, qvec;
if(oldraystate.state.y > 0) {

idx = trilist[oldraystate.state.w].trinum;
edge1 = tris[idx].v1 - tris[idx].v0;
edge2 = tris[idx].v2 - tris[idx].v0;
pvec = cross(ray.d, edge2);
det = dot(edge1, pvec);
inv_det = 1.0f/det;



tvec = ray.o - tris[idx].v0;
candidatehit.data.y = dot( tvec, pvec ) * inv_det;
qvec = cross( tvec, edge1 );
candidatehit.data.z = dot( ray.d, qvec ) * inv_det;
candidatehit.data.x = dot( edge2, qvec ) * inv_det;
candidatehit.data.w = idx;

} else {
candidatehit.data = float4(0,0,0,-1);

}
}

3.3 Reductions

While kernels provide a mechanism for applying a function
to a set of data, reductions provide a data-parallel method
for calculating a single value from a set of records. Examples
of reduction operations include arithmetic sum, computing
a maximum, and matrix product. In order to perform the
reduction in parallel, we require the reduction operation to
be associative: (a◦ b)◦ c = a◦ (b◦ c). This allows the system
to evaluate the reduction in whichever order is best suited
for the underlying architecture.

Reductions accept a single input stream and produce as
output either a smaller stream of the same type, or a single-
element value. Outputs for reductions are specified with the
reduce keyword. Both reading and writing to the reduce
parameter are allowed when computing the reduction of the
two values.

If the output argument to a reduction is a single element,
it will receive the reduced value of all of the input stream’s
elements. If the argument is a stream, the shape of the
input and output streams is used to determine how many
neighboring elements of the input are reduced to produce
each element of the output.

The example below demonstrates how stream-to-stream
reductions can be used to perform the matrix-vector multi-
plication x = Mv.

kernel void mul (float a<>, float b<>, out float c<>) {
c = a * b;

}
reduce void sum (float a<>, reduce float r<>) {

r += a;
}

float M<50,50>;
float v<1,50>;
float T<50,50>;
float x<50,1>;
...
mul(M,v,T);
sum(T,x);

mul

v

M

v
v
v

sum
T x

In this example, we first multiply M by v with the mul kernel.
Since v is smaller than T in the first dimension, the elements
of v are repeated in that dimension to create a matrix of
equal size of T. The sum reduction then reduces rows of T
because of the difference in size of the 2nd dimension of T
and x.

3.4 Additional language features

In this section, we present additional Brook language fea-
tures which should be mentioned but will not be discussed
further in this paper. Readers who are interested in a com-
plete language specification are encouraged to read [Anony-
mous 2004].

• The indexof operator may be called on an input or
output stream inside a kernel to obtain the position of
the current element within the stream.

• Iterator streams are streams containing pre-initialized
sequential values specified by the user. Iterators are
useful for generating streams of sequences of numbers.

• The Brook language specification also provides a col-
lection of high-level stream operators useful for manip-
ulating and reorganizing stream data, such as grouping
elements into new streams and extracting subregions
of streams and explicit operators to stride, repeat, and
wrap streams. These operators can be implemented on
the GPU through the use of iterator streams and gather
operations. Their use is important on streaming plat-
forms which do not support gather operations inside
kernels.

• The Brook language provides a parallel indirect read-
modify-write operators called ScatterOp and GatherOp
which are useful for building and manipulating data
structures contained within streams. However, due to
GPU hardware limitations, we must perform these op-
erations on the CPU.

4 Implementation on Graphics Hardware

The Brook compilation and runtime system maps the Brook
language onto existing programmable GPU APIs. The sys-
tem consists of two components: the compiler, brcc, a
source-to-source translator, and the Brook Runtime (BRT),
a library that provides runtime support for kernel execution.

The compiler is based on cTool [Flisakowski 2004], an
open-source C parser, and was modified to support Brook
language primitives. The compiler builds a parse tree, ap-
plies transformations to map Brook kernels into GPU as-
sembly, and emits C++ code which uses BRT to invoke the
kernels. Appendix A provides a before-and-after example of
a compiled kernel.

BRT is an architecture-independent software layer which
provides a common interface for each of the backends sup-
ported by the compiler. BRT and brcc currently sup-
ports three backends; an OpenGL backend for the NVIDIA
GeForceFX, a DirectX 9 backend targeting ATI 9800 hard-
ware, and a reference CPU implementation. Creating a run-
time for both DirectX and OpenGL has a number of benefits.
NVIDIA’s extensions to OpenGL allow us to implement less
expensive stream gathers and exceed 64 instructions in a
fragment shader, while DirectX allows us to render directly
to textures with low overhead. Implementing Brook on two
graphics APIs also demonstrates the portability of the lan-
guage.

The following sections describe how Brook maps the
stream, kernel, and reduction language primitives onto the
GPU.

4.1 Streams

Brook maps streams to floating point textures on the graph-
ics hardware. Some Brook language features have obvious
implementations under this mapping; the streamRead and
streamWrite operators upload and download texture data,
gather operations are expressed as dependent texture reads,
and the implicit repeat and stride operators are achieved
with texture stretching and sub-sampling. Current graph-
ics APIs, however, only provide float, float2, float3 and
float4 texture formats. To support streams of user-defined
structures, BRT stores each member of a structure in a dif-
ferent hardware texture.



A greater challenge is posed by hardware limitations on
texture size and shape. Floating-point textures are limited
to two dimensions, and a maximum size of 4096 by 4096 on
NVIDIA and 2048 by 2048 on ATI hardware. If we directly
map stream shape to texture shape, then Brook programs
can not create streams of more than two dimensions or 1D
streams of more than 2048 or 4096 elements.

To address this limitation, brcc provides a compiler op-
tion to virtualize this constraint by wrapping stream data
across multiple rows of a texture. This allows the user to al-
locate streams of up to four dimensions that contain as many
elements as texels in the largest 2D texture. Unfortunately,
when using this approach the texture coordinates of a stream
element no longer coincide with its position in the stream.
In order to translate between stream positions and texture
coordinates, brcc introduces address-translation code into
kernels. Specifically, address translation is applied to all
gather operations and stream arguments that may differ in
shape from the output stream. Cg code used for stream-to-
texture address translation is shown below.

float2 __calculatetexpos( float4 streamIndex,
float4 linearizeConst, float2 reshapeConst ) {

float linearIndex = dot( streamIndex, linearizeConst );
float texX = frac( linearIndex );
float texY = linearIndex - texX;
return float2( texX, texY ) * reshapeConst;

}

Our address-translation implementation is limited by the
precision available in the graphics hardware. In calculat-
ing a texture coordinate from a stream position, we con-
vert the position to a scaled integer index. If the unscaled
index exceeds the largest representable sequential integer
in the graphics card’s floating-point format (16,777,216 for
NVIDIA’s s23e8 format, 131,072 for ATI’s 24-bit s16e7 for-
mat) then there is not sufficient precision to uniquely address
the correct stream element. Thus our implementation effec-
tively increases the maximum 1D stream size for a portable
Brook program from 2048 to 131072 elements. This limita-
tion points to the need for higher floating-point precision or
integer instruction sets in future programmable GPUs.

4.2 Kernels

Kernels are mapped to shaders for the GPU fragment proces-
sor. brcc transforms the body of a kernel into shader code.
Stream arguments are initialized from textures, gather op-
erations are replaced with texture fetches, and non-stream
arguments are passed via constant registers. The NVIDIA
Cg compiler or the Microsoft HLSL compiler is then applied
to the resulting Cg/HLSL code to produce GPU assembly.

To execute a kernel, the BRT issues a single quad contain-
ing the same number of fragments as elements in the output
stream. The kernel outputs are rendered into the current
render target. The DirectX backend renders directly into the
textures containing output stream data. OpenGL, however,
does not provide a lightweight mechanism for binding tex-
tures as render targets. OpenGL Pbuffers provide this func-
tionality, however, as Bolz et al. [2003] discovered, switch-
ing between render targets with Pbuffers can have significant
performance penalties. Therefore, our OpenGL backend ren-
ders to a single floating-point Pbuffer and copies the results
to the output stream’s texture.

The task of mapping kernels to fragment shaders is com-
plicated by the limited number of shader outputs available in
today’s hardware. When a kernel uses more output streams
than are supported by the hardware (or uses an output

Program Instructions MFLOPS Slowdown
texld arith

Mat4Mult4 8 16 8686
Mat4Mult1 20 16 3884 45%
Cloth4 6 54 6445
Cloth1 12 102 4031 63%

Table 1: Instruction counts and effective throughput with
and without hardware support for multiple outputs. The
texld and arithmetic instruction counts illustrate the total
number of instructions to produce all kernel outputs on the
DirectX 9 backend. The MFLOPS results are the effective
performance of completing all of the operations as specified
in the original kernel source. The “slowdown” is the relative
performance of the non-multiple output implementation.

stream of structure type), brcc splits the kernel into multiple
passes in order to compute all of the outputs. For each pass,
the compiler produces a complete copy of the kernel code,
but only assigns a subset of the kernel outputs to shader out-
puts. We take advantage of the aggressive dead-code elimi-
nation performed by the CG and HLSL compilers to remove
any computation that does not contribute to the outputs
written in that pass.

To confirm the effectiveness of our pass-splitting tech-
nique, we applied it to two kernels: Mat4Mult, which mul-
tiplies two streams of 4x4 matrices, producing a single 4x4
matrix (4 float4s) output stream; and Cloth, which simu-
lates particle-based cloth with spring constraints, producing
updated particle positions and velocities. We tested two ver-
sions of each kernel. Mat4Mult4 and Cloth4 were compiled
with hardware support for 4 float4 outputs, requiring only
a single pass to complete. The Mat4Mult1 and Cloth1 were
compiled for hardware with only a single output, forcing the
runtime to generate separate shaders for each output.

As shown in Table 1, the effectiveness of this technique de-
pends on the degree of correlation between kernel outputs.
For the Mat4Mult kernel, the outputs are not strongly corre-
lated, and the HLSL compiler correctly identified that each
row of the output matrix can be computed independently, so
the total number of arithmetic operations required to com-
pute the result does not differ between the 4-output and 1-
output versions. However, the total number of texture loads
does increase since each pass must load all 16 elements of
one of the input matrices. For the Cloth kernel, the posi-
tion and velocity outputs both depend on most of the kernel
code (a force calculation), and are thus strongly correlated.
Thus, there are nearly twice as many instructions in the
1-output version as in the 4-output version. Both applica-
tions perform better with multiple-output support, demon-
strating that our system efficiently utilizes multiple-output
hardware, while transparently scaling to systems with only
single-output support.

4.3 Reductions

Current graphics hardware does not have native support
for reductions. BRT implements reduction via a multipass
method similar to Kruger, Westermann [2003]. The reduc-
tion is performed in log2 n passes, where n is the ratio of the
sizes of the input and output streams. For each pass, the
reduce operation reads pairs of adjacent stream elements,
and outputs their reduced values. Since each pass results
in half as many values, Brook reductions are a linear-time
computation.
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Figure 2: Comparing a variety of applications between the
Brook GPU, hand coded GPU, and CPU versions.

We have benchmarked a sum reduction of 220 float4
elements as taking 21.2 and 6.6 milliseconds, respectively,
on our NVIDIA and ATI backends. An optimized CPU
implementation performed this reduction in only 14.6 mil-
liseconds. The performance difference between the ATI and
NVIDIA implementations is largely due to the cost of copy-
ing results from the output Pbuffer to a texture, as described
above, after each pass in the OpenGL backend. The pro-
posed Superbuffer specification [Percy 2003], which permits
direct render-to-texture functionality under OpenGL, should
alleviate this performance penalty.

With our multipass implementation of reduction, the
GPU must access 3 times as much memory as an optimized
CPU implementation to reduce a stream. If graphics hard-
ware provided a persistent register that could accumulate
results across multiple fragments, we could reduce a stream
to a single value in one pass. We simulated the performance
of graphics hardware with this theoretical capability by mea-
suring the time it takes to execute a kernel that reads a single
stream element, adds it to a constant and issues a fragment
kill to prevent any write operations. Benchmarking this ker-
nel on the same stream as above yields theoretical reduction
times of 8.1 milliseconds for NVIDIA hardware and 3.6 mil-
liseconds for ATI hardware with our proposed modification.

5 Evaluation and Applications

We now examine the effectiveness of general-purpose com-
puting on GPUs using Brook. For each of our tests, we eval-
uated Brook using two backends, ATI, a DirectX 9 backend
running on the ATI Radeon 9800 XT and NVIDIA, an
OpenGL backend running on the NVIDIA GeForceFX 5900
Ultra. Both systems use a 3 GHz Intel Pentium 4 proces-
sor, Intel 875P chipset with 8x AGP, running Windows XP.
These same systems were used whenever comparing to the
CPU performance unless otherwise noted.

5.1 Applications

We implemented an assortment of real-world algorithms in
Brook. The following applications were chosen for three rea-
sons: they are representative of different types of operations
performed in numerical applications; they are important al-
gorithms used widely both in computer graphics and general

scientific computing; optimized CPU- or GPU-based imple-
mentations are available to perform performance compar-
isons with our implementations in Brook.

BLAS SAXPY and SGEMV routines. The BLAS (Basic
Linear Algebra Subprograms) library is a collection of low-
level linear algebra subroutines [Lawson et al. 1979]. SAXPY
performs the vector scale and sum operation, y = ax + y,
where x and y are vectors and a is a scalar. SGEMV is a
single-precision dense matrix-vector product followed by a
scaled vector add, y = αAx + βy, where x, y are vectors,
A is a matrix and α, β are scalars. Matrix-vector opera-
tions are critical in many numerical applications, and the
double-precision variant of SAXPY is a core computation
kernel employed by routines in the LINPACK Top500 bench-
mark [2004] uses to establish the top supercomputers in the
world. We compare our performance on vectors of length
20482 against that of the optimized commercial Intel Math
Kernel Library available at [Intel 2004].

FFT: Our Fourier transform application performs a 2D
Cooley-Tukey fast Fourier transform (FFT) [1965] on a 4
channel 1024 by 1024 complex signal. The fast Fourier
transform algorithm is important in many graphical ap-
plications, such as fast post-processing of images in the
framebuffer, as well as scientific applications such as the
SETI@home [W.T. Sullivan et al. 1997] project. Our im-
plementation uses three kernels: horizontal and vertical 1d
FFT, each called 10 times, and a bit reversal kernel called
once. The horizontal and vertical FFT kernels each per-
form 5 floating-point operations per output value. The
total floating point operations performed, based on the
benchFFT [Frigo and Johnson 2003a] project, is equal to
channels∗5∗(w∗h)∗log2(w∗h). To benchmark Brook against
a competitive GPU algorithm, we compare our results with
the custom NVIDIA GPU implementation released by More-
land and Angel [2003]. To compare against the CPU, we
benchmark the FFTW-3 software library 1 [1998; 2003b].

Segment performs a 2D version of the Perona and Malik
[1990] nonlinear diffusion based seeded region-growing algo-
rithm, as presented in Sherbondy et al. [2003], on a 2048 by
2048 image. Segmentation is widely used for medical image
processing and digital compositing. We compare our Brook
implementation against hand-coded GPU and CPU imple-
mentations executed on our test systems. Each iteration of
the segmentation evolution kernel requires 30 floating point
operations, reads 10 floats as input and writes 2 floats as
output. The optimized CPU implementation is specifically
tuned to perform a maximally cache-friendly computation
on the Pentium 4.

Ray Tracer is a simplified version of the GPU ray tracer
presented in Purcell et al. [2002]. This application consists
of three kernels, ray setup, ray-triangle intersection (shown
in section 3), and shading. For a CPU comparison, we com-
pare against the Wald [2004] C ray-triangle code which av-
erages 41 million ray-triangle intersections per second for
a Pentium 4 3.0GHz processor. We also compare against
Purcell’s ray-triangle intersection rates presented at SIG-
GRAPH 2002 which were measured on a Radeon 9700, which
has a 28% slower clock rate.

Figure 2 provides a breakdown of the performance of
our various test applications. For each application, we
compare Brook performance against hand-optimized native

1compiled with the Intel C++ compiler [INTEL 2003]



GPU code on both ATI and NVIDIA, as well as against the
CPU implementation. We compute the effective MFLOPS
of the application based on application timings and the num-
ber of floating point operations as specified in the original
source, not the final assembly. These results do not include
any streamRead and streamWrite costs. The bars represent
the performance normalized by the CPU results.

The Brook ATI versions of all the applications perform
roughly 2-3 times faster than the equivalent CPU implemen-
tations. In addition, Brook achieves performance close to
that of the hand-coded GPU implementations (92% SAXPY
(ATI), 82% FFT (NVIDIA), 97% Segment (ATI)). The two
outlier applications were SAXPY and SGEMV with the
NVIDIA backend. This was largely due to the need to copy
the output data from the OpenGL pbuffer into a texture (re-
fer to 4.2. The hand coded versions use application specific
knowledge to avoid this copy).

The NVIDIA OpenGL and the ATI DirectX Brook imple-
mentations significantly differ in performance, despite both
cards being the latest models from their respective vendors.
In addition to the previously mentioned OpenGL copy is-
sue, the NVIDIA implementation seems to perform poorly
on the large kernels used in Segment. Labonte et al. [2004]
illustrates how the number of live registers in a kernel can
severely impact performance on NVIDIA hardware. Seg-
ment compiles to use 8 32-bit floating point registers which,
according to Labonte, can limit the NVIDIA hardware to a
peak performance of only 4,000 MFLOPS. Given the num-
ber of gather operations required for the Segment kernel, our
results are in line with his results.

In addition, we derive some conclusions from analysis of
the individual applications. SAXPY illustrates that even a
kernel executing only a single MAD instruction is able to
out-perform the CPU due to the additional internal band-
width available on the GPU. Segment demonstrates that a
straightforward Brook implementation of an algorithm can
outperform a time-consumingly hand-optimized CPU ver-
sion.

The Brook FFT implementation benchmarks compara-
bly to Mooreland and Angel’s GPU FFT implementation
and outperforms the native FFTW rate shown in Figure 2.
However, the FFTW implementation experiences enormous
gain when configured to benchmark the CPU and choose the
most cache-friendly read/write patterns. FFTW includes a
large repository of hand-optimized assembly code and bench-
marks the hardware to select the fastest path. This “super-
optimization” can raise the performance of FFTW from
204 MFLOPS to 1,224 MFLOPS, which outperforms both
GPU implementations. A similar trend is observed when we
use the hand-optimized assembly of Wald’s ray tracer code,
which can achieve up to 100M rays per second (13,500 ef-
fective MFLOPS). These two applications indicate that, in
some cases, hand-optimized assembly code for today’s CPUs
can still outperform the Brook GPU code. It is possible
that through expert knowledge of the GPU architecture, we
could apply the same labor intensive optimizations to our
GPU code and outperform these applications. This points to
possible future work revolving around automatically bench-
marking and optimizing GPU kernels based on texture cache
and kernel call patterns, which are needed to better compare
against hand-optimized CPU code.

These applications provide perspective on the perfor-
mance of general-purpose computing on the GPU using
Brook. The performance numbers do not, however, include
the cost of streamRead and streamWrite operations to trans-
fer the initial and final data to and from the GPU which can

FFT: Edge Detect Segment: Lung CT

Ray Tracer: Glassner

Figure 3: These images were created using the Brook appli-
cations FFT, Segment, and Ray Tracer

significantly affect the total performance of an application.
The following section explores how this overhead affects per-
formance and investigates the conditions at which the overall
performance using the GPU exceeds that of the CPU.

5.2 GPU vs. CPU

The general structure of many GPU applications consists of
copying data to the GPU with streamRead, performing a
sequence of kernel calls, and copying the result back to the
CPU with streamWrite. Executing the same computation
on the CPU does not require these extra data transfer opera-
tions. A simple execution time model assumes that at peak,
kernel execution time and data transfer speed are linear in
the total number of elements processed / transferred.

Tgpu(i, lr, lw) = lr/R + i/Kgpu + lw/W

Tcpu(i) = i/Kcpu

where Tgpu and Tcpu are running times on the GPU and
CPU respectively, R and W are the bandwidth rates for
streamRead and streamWrite, lr and lw are the number of
floats transfered, i is the total number of instructions exe-
cuted, and Kcpu and Kgpu are the execution rates.

The GPU will outperform the CPU when Tgpu < Tcpu,
i.e. when the work performed per float transferred is suf-
ficient that the GPU’s computational advantage hides the
data transfer cost. This relationship is the arithmetic inten-
sity, α ≡ i/l, of the algorithm. The higher the arithmetic
intensity of an algorithm, the better suited it is for comput-
ing on the GPU.

We created a synthetic workload to easily explore the pa-
rameters of the model. It is designed as follows:

float4 inStream<length, length>, outStream<length, length>;

streamRead(inStream, inData);
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Figure 4: The minimum observed arithmetic intensity re-
quired for the GPU to complete faster than the CPU (includ-
ing data transfer). The horizontal lines are the calculated
expected arithmetic intensities.

for (i = 0; i < numIters, i++) {
runKernel(float4(1.0f, 1.0f, 1.0f, 1.0f), inStream, outStream);

}
streamWrite(outStream, outData);

runKernel is a simple kernel that executes many floating
point operations on a stream. We benchmarked against the
same number of SSE instructions on the CPU.

With our synthetic workload, lr and lw are equal (l = lr =
lw) and i is the product of l * (kernel length) * (number of
iterations). We derive the arithmetic intensity where we
expect the GPU to outperform the CPU as:

α >
R−1 + W−1

Kcpu
−1

− Kgpu
−1

With a 220 element stream and 1000 kernel iterations,
we experimentally determined Tcpu, Tgpu, W , R, Kcpu, and
Kgpu. 2 3

ATI NVIDIA CPU

R Mfloats/sec 138.2 151.8 –
W Mfloats/sec 13.5 44.1 –
K MFLOPS 10384 4148 943
α FLOPs/float 84.3 35.7 –

We also experimentally obtained the arithmetic intensity
required for Tgpu < Tcpu by increasing the number of itera-
tions for varying l and comparing times. Figure 4 shows the
required arithmetic intensity against the line y = α.

Both runtimes trend, albeit noisily4, towards the values
predicted by the model. This indicates that our simple linear
model is reasonable for evaluating the CPU versus the GPU
with large datasets.

2The ATI W and R timings were particularly noisy. As a
result, we chose the median value over 20 different test runs.

3The MFLOPS numbers reflect this particular workload, not
the peak hardware performance. The NVIDIA numbers in par-
ticular suffer dramatically from using multiple distinct registers
per calculation.

4The noise is due to the correlation between the transfer cost,
a function of the stream length, and the kernel execution time,
which is also dependent on the stream length.
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Figure 5: The average cost of a kernel call for various stream
lengths and 1000 iterations with out synthetic kernel. At
small sizes, the fixed CPU cost to issue the kernel domi-
nates total execution time. The stair-stepping found in both
graphs is assumed to be an artifact of the rasterizer.

There are two reasons why our cost model does not work
for short streams. The first, and less significant, is that
streamRead and streamWrite are not linear. GPUs are more
efficient at transferring data in mid to large sized amounts.
The major factor in the degradation is that the overhead of
issuing a kernel limits the overall GPU’s performance, pre-
venting the GPU from outperforming the CPU. Every kernel
invocation incurs a certain non-trivial amount of CPU time
to setup and issue the kernel on the GPU. With multiple
back-to-back kernel calls, this setup cost on the CPU can be
done in parallel with kernel execution on the GPU. For ker-
nels operating on large streams, the GPU will be the limiting
factor. However, for kernels which operate on short streams,
the CPU may not be able to issue kernels fast enough to keep
the GPU busy. Figure 5 shows the average execution time of
1,000 iterations of our synthetic kernel with the respective
runtimes. As expected, both runtimes show a clear knee
where issuing and running a kernel transitions from being
limited by CPU setup to being limited by the GPU kernel
execution. For our synthetic application, the NVIDIA run-
time crosses above the knee when executing around 61,000
floating point operations, and ATI, using DirectX, crosses
around 670,000 floating point operations.

Our analysis shows that there are two key application



properties necessary for effective utilization of the GPU.
First, the arthimetic intensity, the amount of work per-
formed compared to the amount of data transfered, must
be high enough to outperform the CPU (35.7 vs. 84.3 float-
ing point operations per float transfered for our NVIDIA
and ATI test hardware). Second, the amount of work done
per kernel call should be large enough to hide the setup cost
required to issue the kernel (670K vs. 61K floating point
operations per kernel call for NVIDIA and ATI). We antic-
ipate that while the specific numbers may vary with newer
hardware, the arthimetic intensity and kernel overhead will
continue to dictate effective GPU utilization.

6 Discussion

The Brook programming environment enables programmers
to use the GPU as a streaming coprocessor. As the hard-
ware continues to advance, it will be interesting to examine
potential GPU modifications to improve its effectiveness as
a streaming coprocessor. Our arithmetic intensity analysis
demonstrated that read/write bandwidth is critical for es-
tablishing the types of applications that perform well on the
GPU. Ideally, future GPUs will perform the read and write
operations asynchronously with the computation. This so-
lution changes the GPU execution time to be max of lr/R,
i/Kgpu, and lw/W , a much more favorable expression.

Virtualization of hardware constraints can also bring the
GPU closer to a general purpose streaming processor. Brook
virtualizes two aspects which are critical to stream comput-
ing, the number of kernel outputs and stream dimensions
and size. Multiple output compilation could be improved
by searching the space of possible ways to divide up the
kernel computation to produce the desired outputs, similar
to a generalization of RDS algorithm proposed by Chan et
al. [2002]. This same algorithm would virtualize the num-
ber of input arguments as well as total instruction count.
However, there are some improvements which can only be
made in hardware, specifically improved floating point pre-
cision for ATI hardware and support for integer operations
in general.

In addition, several features of Brook should be consid-
ered for future streaming GPU hardware. Variable outputs
allow a kernel to conditionally output zero or more data for
each input. Variable outputs are useful for applications that
exhibit data amplification, e.g. tessellation, as well as ap-
plications which operate on selected portions of input data.
Currently, we support this capability in Brook through a
multipass algorithm, but it is conceivable that future hard-
ware could be extended to include this functionality thus
enabling entirely new classes of streaming applications. Sec-
ondly, stream computing on GPUs could benefit greatly from
added support for vertex textures and floating point blend-
ing operations. With these capabilities, we could implement
Brook’s parallel indirect read-modify-write operators, Scat-
terOp and GatherOp, which are useful for working with
and building data structures stored in streams. One fea-
ture which GPUs support and we would like to expose in
Brook is the ability to predicate kernel computation. For
example, Purcell et al. [2002] is able to accelerate computa-
tion by using the GPU’s depth test to prevent the execution
of some kernel operations.

In summary, the Brook programming environment pro-
vides a simple but effective tool for general purpose comput-
ing on GPUs. Brook for GPUs has been released as an open
source project and our hope is that this effort will make it
easier for application developers to capture the performance

benefits of stream computing on the GPU for the graphics
community and beyond. By providing easy access to the
computational power within consumer graphics hardware,
stream computing has the potential to redefine the GPU as
not just a rendering engine, but the principle compute engine
for the PC.

A BRCC Code Generation

The following code illustrates the compiler before and af-
ter for the SAXPY Brook kernel. The __fetch_float and
_stype macros are unique to each backend. brcc also inserts
some argument information in the end of the compiled Cg
code for use by the runtime. The DirectX 9 assembly and
CPU implementations are not shown.

Original Brook code:

kernel void saxpy(float alpha, float4 x<>, float4 y<>,
out float4 result<>) {

result = (alpha * x) + y;
}

Intermediate Cg code:

void saxpy (float alpha, float4 x, float4 y, out float4 result) {
result = alpha * x + y;

}
void main (uniform float alpha : register (c1),

uniform _stype _tex_x : register (s0),
float2 _tex_x_pos : TEXCOORD0,
uniform _stype _tex_y : register (s1),
float2 _tex_y_pos : TEXCOORD1,
out float4 __output_0 : COLOR0) {

float4 x; float4 y; float4 result;
x = __fetch_float4(_tex_x, _tex_x_pos );
y = __fetch_float4(_tex_y, _tex_y_pos );
saxpy(alpha, x, y, result );
__output_0 = result;

}

Final C++ code:

static const char* __saxpy_fp30[] = {
"!!FP1.0\n"
"DECLARE alpha;\n"
"TEX R0, f[TEX0].xyxx, TEX0, RECT;\n"
"TEX R1, f[TEX1].xyxx, TEX1, RECT;\n"
"MADR o[COLR], alpha.x, R0, R1;\n"
"END \n"
"##!!BRCC\n"
"##narg:4\n"
"##c:1:alpha\n"
"##s:4:x\n"
"##s:4:y\n"
"##o:4:result\n"
"##workspace:1024\n"
"##!!multipleOutputInfo:0:1:\n"
"",
NULL};

void saxpy (const float alpha,
const ::brook::stream& x,
const ::brook::stream& y,
::brook::stream& result) {

static const void *__saxpy_fp[] = {
"fp30", __saxpy_fp30,
"ps20", __saxpy_ps20,
"cpu", (void *) __saxpy_cpu,
NULL, NULL };

static __BRTKernel k(__saxpy_fp);

k->PushConstant(alpha);
k->PushStream(x);
k->PushStream(y);
k->PushOutput(result);
k->Map();

}
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