DR. 2222

THE BROOKHAVEN BUILDINGS ENERGY CONSERVATION OPTIMIZATION MODEL

Steven C. Carhart, Shirish S. Mulherkar, and Yasuko Sanborn

January 1978

Prepared for the DIVISION OF BUILDINGS AND COMMUNITY SYSTEMS UNITED STATES DEPARTMENT OF ENERGY by the ECONOMIC ANALYSIS DIVISION DEPARTMENT OF ENERGY AND ENVIRONMENT

BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC.

UNDER CONTRACT NO. EY-76-C-02-0016 WITH THE

UNITED STATES DEPARTMENT OF ENERGY

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

BNL 50828 UC-95d (Energy Conservation – Buildings and Community Systems – TID-4500)

THE BROOKHAVEN BUILDINGS ENERGY CONSERVATION OPTIMIZATION MODEL

Steven C. Carhart, Shirish S. Mulherkar, and Yasuko Sanborn

Prepared for the DIVISION OF BUILDINGS AND COMMUNITY SYSTEMS UNITED STATES DEPARTMENT OF ENERGY by the ECONOMIC ANALYSIS DIVISION DEPARTMENT OF ENERGY AND ENVIRONMENT

BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

٤

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy (DOE), nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

> Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy \$6.00; Microfiche \$3.00

October 1978

٠<u>.</u>

p.

5

475 copies

ABSTRACT

The Brookhaven Buildings Energy Conservation Optimization Model is a linear programming representation of energy use in buildings. Starting with engineering and economic data on cost and performance of energy technologies used in buildings, including both conversion devices (such as heat pumps) and structural improvements, the model constructs alternative flows for energy through the technologies to meet demands for space heating, air conditioning, thermal applications, and electric lighting and appliances. Alternative paths have different costs and efficiencies. Within constraints such as total demand for energy services, retirement of existing buildings, seasonal operation of certain devices, and others, the model calculates an optimal configuration of energy technologies in buildings.

The penetration of the various basic technologies within this configuration is specified in considerable detail, covering new and retrofit markets for nine building types in four regions. Each market may choose from several appropriate conversion devices and four levels each of new and retrofit structural improvement.

The principal applications for which the model was designed include the following: market penetration anaylsis, showing the role of individual technologies within a system context; policy analysis, to show the effect of buildings sector policies on the technologies in the building stock; analysis of RD&D programs; analysis of the preferred configuration for sensitivity to changes in price or other variables; analysis of the effect of technology implementation rates on overall energy; and the environmental and supply system effects of buildings energy conservation.

- iii -

THIS PAGE WAS INTENTIONALLY LEFT BLANK

CONTENTS

Abstract iii							
1. Introduction 1							
2. Structure of BECOM 4							
2.1. Mathematical Structure 4							
2.2. Economic Structure 15							
2.3. Structure of the Equations 17							
3. Data Inputs 22							
4. Model Operation and Outputs 23							
5. Applications							
Acknowledgements							
References 58							
Appendix A: Residential and Commercial							
Inventory and Forecasts 59							
Appendix B: Theoretical Loads for							
Buildings							
Conservation Technology Costs							
and Savings							
First Costs of Conventional							
HVAC Equipment							

- v -

1. Introduction

The Brookhaven Buildings Energy Conservation Optimization Model (BECOM) is designed to provide a tool for projecting, analyzing, and evaluating the energy implications of conventional and proposed energy-related technologies in buildings. Starting with detailed cost and performance data for individual building technologies, the model assembles alternative combinations of these technologies within a linear programming framework. For any combination of building stocks, fuel prices and availabilities, and other constraints on technological availability, BECOM calculates the preferred technological configuration of the buildings sector. Because the basic elements of the model are specified in terms of technologies, this configuration is expressed in terms of levels of market penetration of specific technologies. BECOM is designed as an extension of the Brookhaven Energy System Optimization Model (BESOM).

-1-

BESOM is a representation of the technological and economic features of the energy system. It has been used for detailed analyses of energy resource allocation and technology implementation.¹ BESOM is a linear programming formulation of the Reference Energy System (RES). The RES, shown in Figure 1, is a specialized format for representing the detailed technological structure of the energy system. Solution of the BESOM model yields resource consumption, energy flows through the RES network, and emissions to air and water. Efficiency, cost, and environmental data are supplied by the Energy Model Data Base.^{2,3} Each flow through the network represents a process

- 1 -

Figure 1. Reference energy system, year.

٤

or mix of processes to convert some primary resource into a fuel to meet some end use. Demand is specified by a specially defined term - the basic energy demand - which is the amount of energy required to support an energy-utilizing activity such as space heat, automotive propulsion, etc., at some nominal level (assuming no changes in equipment operation or user behavior). For a given basic energy demand, all other levels in a particular model run of energy flows are characterized as changes in technical demand efficiency. Basic energy demands are converted to fuel requirements by adjusting for demand conversion efficiencies, and fuel requirements are converted to primary resource demands by adjusting via appropriate supply conversion efficiencies. This generates the fuel mix and the primary resource mix.

Though BESOM contains a detailed representation of the supply system, it has a highly aggregated representation of the demand portion of the system. The methodology for extension of this approach for energy utilization technology has been described elsewhere⁴ and is carried out in detail in the Buildings Energy Conservation Optimization Model (BECOM). BECOM extends BESOM to provide more end-use detail for residential and commercial buildings, explicitly modeling 25 energy conversion technologies and 8 structural technologies that can be used by 9 building types in each of 4 regions. The model covers all energy use in buildings including space heat, air conditioning, water heating, cooking, and appliance and illumination loads. As a result it is possible to measure in

- 3 -

detail the effects of technical changes in burners, motors, and other conversion devices* and in structural shells as well as the effects of governmental programs such as setting standards for building insulation and appliance efficiency.

BECOM thus allows an explicit and flexible formulation of the policy variables that the decision maker wishes to analyze. For a given set of inputs, the linear programming algorithm implements the lowest-cost technology in a particular market to the maximum level set by constraints. This decision can be made on the basis of very small cost differentials between technologies. Thus, technology implementation levels should be interpreted with care. However, this difficulty inherent in linear programming is mitigated in BECOM by the use of 72 separate building markets, which may be further subdivided by market share constraints.

2. Structure of BECOM

2.1. Mathematical Structure

Mathematically the model is formulated as a modified transportation/transshipment problem. A transportation problem is concerned with distributing a commodity from any group of supply centers (sources) to any group of demand points (destinations), subject to limitations imposed by supply, demand, and other constraints. Each supply point i (i = 1, 2, ...,m)

- 4 -

^{*}To simplify the exposition, the set of end-use energy conversion devices used in buildings by households, government activities, and commercial enterprises will be called conversion devices. This includes burners, heat pumps, electric motors, condensers, light bulbs and other illuminating equipment, blower fans, etc.

has a supply of S_i units to distribute to any destination j (j = 1, 2, ..., n), each of which has a demand for D_j units to be received from the sources. Assuming that the cost of distributing units from source i to destination j is proportional to the number of units shipped, the objective is to meet demands at all destinations at minimum cost.

The problem then becomes

$$\begin{array}{cccc} m & n \\ \text{Minimize } Z = \sum & \sum & C_{ij} X_{ij} \\ i=1 & j=1 \end{array}$$

where Z is the total distribution cost; C_{ij} is the cost of shipping each unit from source i to destination j; and X_{ij} is the number of units shipped from i to j. Since the total number of units shipped from source i cannot be greater than the supply available, and since the demand at each destination has to be met, the constraints given below are introduced. Supply constraint:

 $\sum_{j=1}^{n} a_{ij} X_{ij} \leq S_{i} \qquad \text{for } i = 1, 2, \dots, m$

Demand constraint:

 $\begin{array}{l} m \\ \Sigma & b_{ij} X_{ij} = D_{j} \\ i = 1 \end{array} for j = 1, 2, ..., n$

Also:

 $X_{ij} \ge 0$ for all i and j.

Here, a_{ij} and b_{ij} are the supply and demand efficiencies, respectively, for the fuel X_{ij} .

Besides the supply and demand constraints, there are various equations which reflect technological realities and market

- 5 -

behavior. These are treated in more detail in Section 2.3.

BESOM is basically a modified transportation problem where the X_{ij} 's represent the flow of energy (in 10^{15} Btu) from a resource to a demand at point of use. Each branch can be divided into two parts: a supply trajectory describing the conversion of a resource into an intermediate energy form (such as electricity or distillate oil delivered to the home) and a demand trajectory including all further processes on the branch. There are now 27 supply and 22 demand categories.

The structure of BECOM is similar to that of a transshipment problem, with the aggregate demand points from BESOM for residential/commercial space heat, air conditioning, water heating, and appliances serving as sources for the transshipment.

The destinations for this problem are the different buildings markets, each of which requires a certain amount of energy to provide an acceptable level of comfort or service. Shipments from sources to destinations are made through intermediate transfer points or transshipment points, which in this case are conversion devices and thermal shells.

Each conversion device is characterized by an efficiency coefficient representing the efficiency of conversion of the fuel in the device and a cost coefficient which is the annual-

- 6 -

ized capital cost for the device. Devices in existing buildings have a cost coefficient of zero since they are already in place. The thermal shell^{*} is similarly characterized by an efficiency coefficient which compares its heat-loss characteristics with those of a defined reference shell, and by a cost coefficient which is the annualized capital cost of upgrading a structure relative to the reference shell. Non-upgraded buildings and reference new buildings have an efficiency of

 Upgraded shells have higher efficiencies. The energy demand in each market can be met by any combination of firing device and thermal shell (represented schematically in Figures 2 to 7).

If the model is run as a cost minimization, it selects those combinations of conversion devices and thermal integrities that will satisfy demands in the various markets subject to the limitations imposed by the other constraints.

The operation of the model may be illustrated by following one example in the diagram for residential space heat. In the "fuel" column in Figure 2 all the BESOM gas to space heat variables are gathered in a pool to serve as the gas source for heating residential and commercial buildings. The gas or other fuel goes to two demand points: the detailed flow network representing technologies in buildings in one particular region, and an aggregated demand representing demand in the other three *The shell is a level of energy integrity. For space heating and air conditiong, the shell corresponds to the building envelope; for water heating it can be interpreted to be the pipe and heater insulation; and for the appliance sector it is

- 7 -

a representation of performance of improved appliance package.

1

Figure 2. BECOM: Structure of residential space heat.

- 8 -

÷.

io e.

. .

·••

Figure 3. BECOM: Structure of residential air conditioning.

~- (9 --

Figure 4. Structure of residential thermal, lighting and appliances.

Figure 5. BECOM: Structure of commercial space heat.

- 11 -

Figure 6. BECOM: Structure of commercial air conditioning.

Figure 7. Structure of BECOM commercial thermal, lighting and appliances.

- 13 -

regions. The output thus represents national energy flows to the buildings sector, with technological detail presented in one region at a time. The model is run successively with each region represented in detail in turn to develop a full national projection.

The detailed regional flows go as follows. Each unit of the new variable representing the total gas to residential space heat can flow either to a gas heat pump or to a gas burner. If it flows to a burner, upon coming out of the burner it is multiplied by the energy-conversion efficiency of the burner and incurs a cost equal to the annualized capital cost of the burner if it is a new burner, or a zero cost if it is an old burner. If it flows through the heat pump it is multiplied by the seasonal performance factor of the heat pump, and incurs a cost equal to the annualized capital cost of the heat pump.

From the conversion device, energy may flow to any of 8 levels of thermal integrity for each building type. In Figure 2, from the burner there are 32 possible paths (4 building types and 8 levels of thermal integrity).

Levels of thermal integrity are represented by 8 thermal shells for each building type. Shells 1 to 4 represent existing stock: shell 1 refers to an existing building without special conservation options and shells 2 to 4 refer to existing buildings with increasing levels of conservation features. Similarly, for new buildings, shell 5 refers to a base building without any special conservation technology options (see

- 14 -

Appendix B for building and conservation technology data).

A flow from the burner to a single family inherited shell with no additional insulation (shell 1) would be multiplied by the efficiency of the shell (1.0) and incur a cost of zero (since no energy-conserving capital stock has been purchased). A flow from the burner to an inherited shell retrofitted with energy-conservation features would have a higher efficiency and would incur a cost equal to the annualized capital cost of the conservation technologies implemented in that shell.

The flow from each shell enters the node representing total housing stock, where it is multiplied by the inverse of the theoretical load for that building type. This coefficient converts energy flow to actual numbers of housing units, or, conversely, it converts right-hand sides for the model, which are in physical units, (housing units in the residential sector and square feet in the commercial) to energy demands for each shell.

The air conditioning, thermal applications, and appliances for both the residential and commercial sectors are modeled in a similar way. Thermal applications include water heating, cooking and drying. The appliances category includes refrigeration, power loads (elevators, escalators, etc.) and miscellaneous electrical appliances.

2.2. Economic Structure

Flows of energy into the buildings network incur a cost equal to the price of the relevant energy form. The flow is allowed to take any of the paths corresponding to a conversion

- 15 -

device and shell combination as long as the total demand and other constraints described below are met.

When the energy flows through a node of the network (a conversion or shell technology), it is multiplied by the efficiency of that technology and charged the annualized capital charge for that technology. The optimization makes a lowestcost tradeoff to invest just the right amount in energy-conserving capital stock to improve efficiency to the point at which the lowest total cost of annualized capital plus the lowest total fuel cost is achieved.

Capital investments are charged an annual charge which is found by multiplying the initial investment by a capital recovery factor to calculate the annual payment required to retire the investment in a certain number of years.

Capital recovery factor = $\frac{1}{1 - (1 + i)^{-n}}$

where i is the long-term discount rate and n is the equipment lifetime in years.

Different equipment lifetimes and discount rates are used for residential and commercial markets and for new and retrofit technologies. These are input parameters in the model and can be easily varied.

The capital charges are applied to incremental investments from the 1975 base year building stock. That is, equipment existing in 1975 is not charged for capital cost, but post-1975 retrofits of existing buildings and investment in new construction are. This means that the optimized capital stock derived in this way represents a preferred investment strategy for the

- 16 -

period 1976 through the case year for which the model is programmed, on the assumption that decision makers act as though the case year prices are maintained from 1976 on.

2.3. Structure of the Equations

BESOM and BECOM are run simultaneously as a cost minimization problem. The BESOM equations will be described in detail elsewhere.⁵ They may be classified as follows.

1. Supply equations limit the amount of a given resource that may be used in the planning year, either in total use or for a specific purpose. The constraints are given in terms of the energy content of the primary fuel (minemouth and wellhead) input to that supply category. For synthetic fuels and pumped storage, the supply constraint equations represent the energy content of the synthetic fuel after manufacturing.

ŝ.

2. Demand equations specify the energy requirements that must be met in order to satisfy demands from the demand sectors. They are specified as basic energy demands; each basic energy demand is defined as the amount of energy required to support an energy-utilizing activity assuming that the energy could be used at a reference technical efficiency (after conversion). Basic energy demands are specified for each of the demand categories.

3. Electrical supply and peaking constraint equations limit the electrical generating capacity of plant types as well as accounting for peak electric demands and energy balances. The peaking equations are of two types, weekly and seasonal, and describe off-peak power availability.

- 17 -

4. Environmental constraints limit emissions of various types, such as SO_x or particulates. However, in most model runs these constraints are not binding and serve only to sum up environmental effects.

5. Market penetration equations limit the technology penetration of markets, and relate to minimum or maximum levels of fuel use or permitted capacity of a particular type.

BECOM constraints may be grouped in the following classes.

1. Demand constraints. For each type of demand and building type, the flow from all shells to final demand must equal the theoretical building load times the building stock in the year for which consumption is projected.

$$\sum_{j=1}^{8} \frac{1}{a_k} \chi_{jk} = b_k \qquad \text{for all building types } k$$

where

a_k = theoretical building load,

 $b_k = total stock, and$

 χ_{jk} = flow from shell j to building k.

2. Minimum constraints on residual stock. The optimization is conducted for a given year subject to the constraint that the number of dwelling units of a particular type heated by any given fuel must equal the number that actually existed in the base year (1975) minus the removals in the period from the base to the year for which the analysis is performed.

 $\begin{array}{ccc} \frac{4}{\Sigma} & \frac{1}{a_k} e^{d_i \chi}_{ij} = b_{ik} \\ j=1 & k \end{array} \begin{array}{ccc} \text{for each conversion device i} \\ and shell j, for each building \\ type k \end{array}$

- 18 -

where

- c = efficiency of shell j,
- b_{ik} = total inherited stock (in physical units) of building type k with conversion device i,
- a_k = theoretical load for building type k,

 χ_{ij} = flow from conversion device i to shell j.

3. Seasonal load balance. In order to ensure that the heating, air-conditioning, thermal, and appliance loads for each shell are balanced, an equation exists for each shell setting this balance.

 $\chi_{jk} - a_k \gamma_{jk} = 0$ for all shells j to building types k χ_{jk} = space-heating flow from shell j to total

where

ing type k.

4. Fuel mix in new construction. The market shares of oil, gas, electric, and solar heated units are set in these equations reflecting current construction trends or the results of housing models.

$$q_{ik}n_{k} \leq \sum_{i=1}^{r} \sum_{j=5}^{8} \frac{1}{a_{k}} d_{i}e_{j}\chi_{ij} \leq p_{ik}n_{k}$$
 for all building types k

- 19 -

where

where

 a_{ν} = theoretical load of building type k,

d, = fuel adjustment factor,

e, = efficiency of shell j,

 χ_{ij} = flow from conversion device i to shell j,

- p_ik = upper limit in percent market penetration
 for fuel i in building type k,
- q_{ik} = lower limit in percent market penetration for fuel i in building type k,

n_k = new construction of building type k, and r = number of conversion devices using fuel i.

5. Seasonal operation constraints on heat pumps. Electric and gas heat pumps are constrained to have a ratio of heating and cooling equal to the ratio of heating/cooling loads for the relevant shell, building type, and region.

> $e_{j}\chi_{ij} - kf_{j}\gamma_{ij} = 0$ for all heat pumps, for all shells in each building type

X_{ij} = space-heating flow from heat pump i to shell j, Y_{ij} = air-conditioning flow from heat pump i to shell j, e_j = efficiency of shell j in the heating season,

k = ratio of space-heating to cooling load.
6. Solar back up constraints. These equations require
that the use of solar energy be accompanied by a certain fraction

- 20 -

of back up from conventional energy sources to provide heating or cooling when insolation is insufficient. There is an equation for all new shells in each building type for solar space heating, air conditioning, and water heating. The fraction of back up varies depending on end use.

> $\chi_{bj} = f_1 \chi_{sj}$ for all shells j, for all building types, for each end use 1

where

 χ_{bj} = flow from backup device to shell j, χ_{sj} = flow from solar unit to shell j, and

 f_1 = fraction of load provided by backup device.

7. Solar AC constraints. These equations ensure that solar air conditioning can occur only in buildings that employ solar space heating, recognizing that solar air conditioning is never used by itself.

$$\begin{split} \chi_{\text{sj}} &\geq h \chi_{\text{aj}} & \text{for all shell j, for all building types} \\ \text{where} & & \\ \chi_{\text{sj}} &= \text{solar space heat to shell j,} \end{split}$$

 χ_{aj} = solar air conditioning to shell j, and

h = ratio of heating to air-conditioning loads.
8. Solar water heating. These equations ensure that
buildings employing solar space-heating systems derive their
hot water from the same system.

$$\begin{split} \chi_{tj} &\geq k \chi_{sj} & \text{for all shells j, for all building types} \\ \text{where} & \\ \chi_{tj} &= \text{solar water heating to shell j,} \\ \chi_{sj} &= \text{solar space heating to shell j, and} \end{split}$$

k = ratio of water-heating load to space-heating load.

- 21 -

3. Data Inputs

Within the network flow conception we have outlined, internally consistent performance and cost data are used, taken from the Arthur D. Little data base for buildings⁶ summarized in Appendices A and B. The main categories of data are the following.

1. Building stocks. These include inventory data for 1975 for four types of residences and five types of commercial buildings, removals in the period 1976-2000, new construction by type during 1976-2000, and total building stocks.

2. Theoretical building loads. These are defined as the energy required from any conversion device for the reference shell for various types of loads. They are different for different buildings types and different climatic conditions in various regions. They are specified for each region for reference structural technologies for the following categories: space heating, air conditioning, hot water, lighting plus power, and auxiliaries in commercial buildings.

3. Shell efficiencies. These are the percentage improvements in structural integrity, over a nominal 1975 value for new and existing buildings, which can be expected from implementation of certain technologies applicable to building envelopes.

4. Conversion-device efficiencies. These are the percentages of delivered energy which can actually be applied to the theoretical building loads. For heat pumps, for example, this corresponds to the seasonal performance factor.

5. Technology costs. These include the cost for conversion devices and structural technologies, both for new

- 22 -

buildings and for retrofit applications.

Other efforts have been made at BNL and elsewhere' to develop improved data for this model, and these will be continued. The ADL data base is being used currently because of its completeness and internal consistency and the extensive experience it embodies.

4. Model Operation and Outputs

The equations for the model are set up by using the Haverly Systems, Inc., general-purpose problem-description system (PDS/ MAGEN), which contains a bidirectional interface to the Control Data Corporation APEX III linear programming system. The model is run on the APEX III out-of-core system-1 under control of the SCOPE 2.1 operating system on Brookhaven's Control Data 7600 series computer.

Using PDS/MAGEN, a single control file generates the equations, with data inputs being stored in separate files (one for each region). Though each region uses the same control program, a run for any region is independent of the runs for the other regions.

For each case to be explored, the data inputs are total building stocks, bounds for building market shares by fuel, technology cost, and performance data, building loads for each end use (space heating, air conditioning, thermal, and appliances), and the relevant fuel prices. BESOM and BECOM are then run simultaneously as a cost-minimization problem. The combined problem has almost 3800 constraints and 6000 variables and takes almost 200 CPU seconds to solve.

- 23 -

Because of the complexity and size of the problem, a simplified format is used to present the output. This is written by using the report-generating features of PDS/MAGEN. The information flow is shown schematically below.

DATA INPUTS	PDS/MAGEN	APEX readable	APEX	III	<u>solu</u> - tion	PDS/MAGEN	 REPORTS
		inputs				L	

The output for each region is displayed at three different levels of aggregation. The first level, Figures 8 to 16, shows energy demand by building type. Conversion technologies with fuel are listed in the column at left. Structural technologies for both retrofitted and new buildings are listed across the top. Since each building option is in fact a combination of a conversion technology and a structural technology, each path represented by a given combination of fuel-firing device plus shell in the BECOM network is represented by a cell in this matrix. In the output, the fuel delivered ("over the fence") to each conversion device/shell technology combination is reported in the appropriate cell in the matrix. For each case year and policy scenario one of these matrices is prepared for each of nine building types. Retrofit i (or New i) is a category for a set of conservation technologies in buildings. The eight columns correspond to the eight shell definitions outlined earlier. The two-letter designation (SH, AC, TH, AP) in the third column from the left identifies the end use that the conversion device is satisfying. All the numbers are in units of 10^{12} Btu.

The second level of aggregation sums the energy flows separately in residential buildings (Figure 17) and commercial buildings

- 24 -

(Figure 18). This enables one to find the energy demand by conversion device or end use for all buildings in a sector. The third level of aggregation presents net energy demand by fuel and end use for each region (Figure 19).

The regional totals in Figure 19 sum residential and commercial sectors for each region. The sum of these regional tables yields national demand totals by fuels in the two sectors.

Coverage of Output

Regions: Northeast, North Central, South, West Building types: Residential-- Commercial--Single family Hospitals Low density Schools Multi-family Retail Mobile homes Offices Miscellaneous

In addition, the results of each run are presented in terms of physical units which use each technology combination, expressed in 10^9 square feet for commercial buildings and 10^6 units for residential structures. A sample of this output is included in Figures 20 to 31.

Finally, to facilitate calculation of investment requirements, the investment (in 1975 constant dollars) in energyrelated devices and structures during the period from 1976 through the case year is summarized. These data are presented by new and retrofit markets and building types for both devices and structures. These outputs are illustrated in Figures 32 to 35.

- 25 -

REGION		REGION NORTH EAST		AST	MARKET FCSPITAL			YEAR 1990			-E126TU-
	· · ·		RETROFIT NG	RETROFIT 1	RETROFIT 2	RETROFIT 3	N E W N O	NEN 1	N E W	NEW 3	
	•	- .	CONSERV.	CCNSERV.	CONSERV.	CONSERV:	CONSERV.	CONSERV.	CCNSERV.	CCNSERV.	TCTAL
GAS	BURNER CID	S L	14.065				÷				14.065
645	BURNER	5 F	· ITOLL					3,219			3,219
GAS	HEAT PUNC	S-					•	5.745			5.745
0.10	BURNER CLD	SF	55 . 356								55,356
OIL	BURNER NEW	SE						6.137			6.137
ELEC.	HEAT PUMP	SF									
ELEC.	RESISTANCE	SF	0.066								0.066
SCLAR	COLLECTOR	Sŀ						1.878			1.878
GAS	HEAT PUMP	AC						6.790			6.790
ELEC.	HEAT FUMP	AC									
ELEC.	RCOM	AC	. 3.423		•						3.423
SCLAR	COLLECTOR	A C			•			1.258			1.258
GAS	BURNER CLD	TH	3.307				,			•	3.307
GAS	BURNER NEW	ΤH		·				4.073			4.073
OIL	BURNER CLD	ΤE	8.832								8.832
OIL	BURNER NEW	Τŀ						1.609			1.609
ELEC.	RESISTANCE	T۲									
SCLAR	COLLECTOR	T٢						0.782			0.782
ÉLEC.	LIGHTING APP	ΑP	37.037					27.207			64.245

Figure 8. Buildings energy conservation optimization model. Case-base policy.

...

- 26:-

. -

.

	REGION NORTH EAST		MARKET SCHOOL			YEAR 1990			-E12ETU-		
	۰ ·		RETROFIT	RETROFIT	PETROFIT 2	RETROFIT	N E W N O	NEL 1	N E W 2	NEh Z	
			CGNSERV.	CCNSERV. ********	CCNSERV. *******	CCNSERV.	CGNSERV.	CONSERV.	CONSERV. *********	CONSERV.	TCTAL
GAS	BURNER CLD	SE	29,600								
GAS	BURNER NEW	51	2704000					10 546			29.EUU
GAS	HEAT PUMP	SF						0.800			10.546
0IL	BURNER CLD	SF		102.055				0.00			0 + C U U
OIL	BURNER NEW	s۲						4.845			1020000
ELEC.	FEAT PUMP	SF						10010			1.042
ELEC.	RESISTANCE	S۲	C•14C								0.140
SGLAR	COLLECTOR	54						1.569			1.569
GAS	HEAT PUMP	AC					/	0.728			0.728
ELEC.	HEAT, PUMP	АC									
ELEC.	RCCM	A C	0.757	2.232							2.985
SCLAR	COLLECTOR	A C						0.809			0.809
GAS	EURNER CLD	T٢	1.132	· .							1.132
GAS	EURNER NEW	T۲						0.785			0.789
0-IL	BURNER CLD	Τŀ	0.004	- 3.98E							3.985
0 I L	BURNER NEW	T۲						0.312			0.312
ELEC.	RESISTANCE	T٢		0.260							0.260
SCLAR	COLLECTOR	T٢			•			0.151	· •		0.151
ELEC.	LIGHTING APP	ΑP	7.039	24.868				12.624			44.530

Figure 9. Buildings energy conservation optimization model. Case-base policy.

- 27 -

1. . .

· ...

	REGION		NCRTH E	ST	MARKE	T CFFICE		YEAR 1990			-E12BTU-
			RETROFIT	RETROFIT	RETROFIT 2	RETROFIT	N E W N C	NEW 1	N E W 2	N E H 3	
			CCNSERV.	CONSERV.	CCNSERV.	CONSERV. *******	CCNSERV.	CONSERV.	CCNSERV.	CCNSERV.	TCTAL
				· · ·					•		
GAS	BURNFR CLD	SF		35.484							35.484
GAS	BURNER NEV	S۲						13.437			15.437
GAS	FEAT PUMP	S٢						6.295			6.295
OIL	BURNER CLD	51		75.615							75.615
'0 I L	BURNER NEW	S٢						6.002	4.016		10.018
ELEC.	HEAT PUMP	S⊦									
ELEC.	RESISTANCE	S۲	13.175								13.175
SCLAR	COLLECTOR	S۲							2.895		2.855
GAS	HEAT PUMP	AC						6.195			6.195
ELEC.	PEAT PUMP	ΑC									
ELEC.	ROCM	ΑC	3.673	5.830							9.E03
SOLAR	COLLECTOR	A C							1.514		1.514
GNG	BURNER CLD	T⊦	1.320								1.320
6 4 5	BURNER NEW	TH						1.460			1.460
	BURNER GLD	ΤE	0.966	3.418							4.384
GIL	PURNER NEW	тн тн	000000	••••				0.325	0.229		0.555
FIFC-	RESISTANCE	TF		0.277							0.277
SCLAR	COLLECTOR	Tŀ		••••					0.255		0.255
ELEC.	LIGHTING APP	٨P	17.857	32.563				17.308	ۥ130		73.858

.

Figure 10. Buildings energy conservation optimization model. Case-base policy.

- 28 -

.

.

.
						Ð					-
٠		REGIO	N	NCRTH EAST	MARKE	T RETAI	I L	YE	AR 1990		-E128TU
		· ,		RETROFIT RETROF	IT RETROFIT	RETROFIT 3	N E ₩ N C	N E W 1	N E W	N E W 3	
		. • •	•	CONSERV. CONSER	V • CCNSERV • ****	CCNSERV.	CONSERV.	CONSERV.	CONSERV.	CCNSERV.	TCTAL
	GAS	BURNER CLD	SF		11.864						11.80
	GAS	BURNER NEW	S⊦				·	5.415			5.41
	GAS	HEAT PUMP	SE					3.425			3.42
	OIL	BURNER CLD	SH		47.105						47.10
	OIL	BURNER NEW	12					5.040			5.04
	ELEC.	HEAT PUMP	SF				,				
	ELEC.	RESISTANCE	SF	° 0∙098		,					0.09
1	SCLAR	COLLECTOR	S⊦					1.455			1.45
N			•								
9	GAŚ	HEAT PUMP	AC		1			7.364			7.36
4	ELEC.	HEAT PUNE	AC								
	ELEC.	RGGM	A C	0.062	5.884						5.94
	SCLAR	COLLECTOR	ÀC								• •
	GAS	BURNER OLD	TE	0.023	0.507						0.53
	G.4 S	BURNER NEW	TH	00020				0.908			0.50
	OIL	BURNER CLD	T⊦		1,985			00,000			1.58
	OIL	BURNER NEW	T⊢	· ·	1.00			0.359			0.35
	ELEC.	RESISTANCE	TF		0,129						0.12
	SOLAR	COLLECTCR	T۲	•				0.174			0.17
	ELEC.	LIGHTING AF	A P	0.585	70.168			45.901			116.65

	Figure 11.	Building model	s energy conservation optimiz . Case-base policy.	ation	· · ·	~
x			-			

	REGIO) N	NCRTH EA	NST	MARKE	T MISC	•,	YE	AF 1990		-E12BTU-	
· .	i sta		RETROFIT	RETROFIT	RETROFIT	RETROFIT	N E W N C	NĘ¥ 1	NEW 2	NEK 3		
			COASERV.	CCNSERV.	CCNSERV.	CCNSERV.	CONSERV. ********	CCNSERV.	CCNSERV.	CGNSERV.	TOTAL	*
.		•										
GAS	BURNER CLD	SE	29.574								29.974	
GAS	BURNER NEW	ŚН						31.567			31.567	
GAS	HEAT PUMP	SF			•							
OIL	BURNER CLD	\$ F	11.789								11.785	
QIL	BURNER NEW	SF						10.044	•		10.044	
ELEC	PEAT PUMP	SF										
ELEC	RESISTANCE	SF	18.928					0.341		•	15.269	
SUĻAK	COLLECTOR	21										
GAS	HEAT DHND	٨٢										
FIFC.	HEAT PUMP	Δr						×				
ELEC.	ROOM	AC	14-807					5.940			20.747	
SCLAR	CCLLECTCR	AC										
GẤŞ	BURNER CLD	ΤF	1.233								1.233	
GAS	BURNER NEW	T۲						2.253			2.253	
OIL	BURNER OLD	TH	4.640								4.640	
OIL	BURNER NEW	TΗ						0.699			0.655	
ELEC.	RESISTANCE	T٢	0.303								0.303	
SGLAR	COLLECTOR	T۲						•				
FIFC.	LIGHTING AFE		54.174		ñ			60.324			154.498	
		~ 1							•		A C 1 W 1 / C	

Figure 12. Buildings energy conservation optimization model. Case-base policy.

÷ 30 -

.

¢

.

Α,

-E12E1		R 1990	YEA	E FAMILY	SINGL	MARKE	4 S T	NCRTH EA	N	REGION		
	NEW	N:EW	N:E L. 1	N E W N C	RETROF,IT	RETROFIT	RETROFIT	RETROFIT				
TCT/	CONSERV.	CCNSERV.	CONSERV. (CONSERV. (CCNSERV.	CCNSERV.	CCNSERV.	CCNSERV.				
453.5								453.507	S۲	BURNER OLD	GAS	
74.(•	74.076						Sŀ	BURNER NEW	5 A S	
									SF	FEAT PUMP	GAS	
963.8			15 445				963.880		SF cL·	BURNER LLU BIRNER NEU		
15•4			15.465						2 F 2 F	HFAT PHMP	ELEC.	
200t			230024					15.911	SF.	RESISTANCE	ELEC	
1303									-S F	COLLECTOR	SCLAR	I.
												31
			0 7 (F						AC	HEAT DUMP	GAS	I
2.3			2.345	•			7 410	2 745		RICM .	ELEC.	
t•1			U • 4 2 E				U + 412	60172	AC	COLLECTOR	SCLAR	
074 (274.066		TH	B IRNER CID	GAS	
55.0			55,525						TF	BJRNER NEW	GAS	
230.1			00.750					236.216	TH	BURNER CLD	OIL	
9.7			9.321						T۲	BURNER NEW	OIL	
70.3			21.054				26•2D8	23.124	T⊢	RESISTANCE	ELEC.	
									Tŀ	COLLECTOR	SCLAR	
167 4			36.975				92.521	67.374	ΔP	LIGHTING APP	ELEC.	

· ·

Figure 13.	Buildings	energy	conservation	optimization
	model.	Case-t	base policy.	

	REGICI	١	NCRTH E	AST	MARKE	T LCW	CENSITY	ΥE	AR 1590		-E128TU-
			RETROFIT NC CONSERV.	RETROFIT 1 Corserv.	RETROFIT 2 CONSERV•	RETROFIT 3 CCNSERV•	NEW AC CONSERV•	NEK 1 CONSERV•	NEW 2 CCNSERV•	NEW 3 CONSERV.	TCTAL
			*******	******	* * * * * * * * * *	********	* * * * * * * * * *				
GAS	BURNER CLD	S٢	181.919								181.919
GAS	BURNER NEW	S٢						22.351			22.351
GAS	HEAT PUPP	S٢				•					
OIL	BUPNER CLD	S⊦		377.177							377.177
CÌL	BURNER NEW	SĽ						4.666			4.666
ELEC.	HEAT FUMP	S 🗄						6.901			6.901
ELEC.	RESISTANCE	S۲	5.973								5.973
SCLAR	COLLECTOR	SF									
GAS	HEAT PUMP	A C									
ELEC.	HEAT PUMP	AC						0.615			0.615
ELEC.	ROCM	ΑC	1.336	1.656				0.182			3.173
SCLAR	COLLECTOR	A C									
GAS	BURNER CLD	T٢	29+116	24.656							53.772
GAS	BURNER NEW	TE						6.353			6.353
OIL	BURNER OLD	TH		45.169							45.169
0 I L	BURNER NEW	T٢						1.055			1.059
ELEC.	RESISTANCE	T۲	9.679					2.392			12.071
SCLAR	COLLECTOR	T۲									
ELEC.	LICHTING AFE	٨P	36.200	45.240				12.300			98.340

Figure 14. Buildings energy conservation optimization model. Case-base policy.

.

	REGIO	V	NCRTH E	AST	MARKE	T MULT	I-FAMILY	YE	AR 1590		-E12BTU-
			RETROFIT NC	RETROFIT 1	RETROFIT 2	RETROFIT 3	N E W N C	NEh 1	N E W	NE to	
			CONSERV.	CCNSERV.	CCNSERV.	CCNSERV.	CONSERV.	CCNSERV.	CCNSERV.	CONSERV.	TCTAL
			•								
GAS	BURNER CLD	SF			133.473						133.473
GAS	BURNER NEW	SH						7.453			7.453
GAS	HEAT PUMP	S٢						4.588	0.488		5.076
OIL	BURNER CLD	S۲		130.605							130.605
OIL	BURNER NEW	SH						1.387	2.439		3.827
ELEC.	HEAT PUMP	SF									
ELEC.	RESISTANCE	SF	2.363					4293			6.656
SCLAR	COLLECTOR	S٢						2.080			2•080
GAS	HEAT FUMP	AC						1.241	0.130		1.371
ELEC.	HEAT PUMP	AC									
ELEC.	RCCM	AC	0.140	1.392	0.919						2.452
SCLAR	CGLLECTCR	AC						0.319			0.319
GAS	BURNER CLD	T۲	3.012	30.278							33.291
GAS	BURNER NEW	TE						5.690			5.690
OIL	BURNER OLD	ΤH		5.777	17.285						27.063
OİL	BURNER NEW	T٢							1.282		1.282
ELEC.	RESISTANCE	T⊦			5.707			2.897			8.604
SCLAR	COLLECTOR	T٢		• • •				1.403	•		1.403
ELEC.	LIGHTING AFP	AF	2.502	. 33.315	21.688			15.151	1.407		74•0 6 4

Figure 15. Buildings energy conservation optimization model. Case-base policy.

t ယ ယ

	REGICI	\	NCRTH E	AST	MARKE	J MOEI	LE FOME	ΥE	AP 1990		-E12ETU-
			RETROFIT	RETROFIT	RETROFIT 2	RETROFIT 3	N E W N O	NEW 1	N E W 2	NEW 3	
•	• ,		CONSERV.	CONSERV.	CCNSERV.	CONSERV.	CONSERV.	CONSERV.	CONSERV.	CCNSERV.	TCTAL
GAS	RHRNER CLD	54		6.360							6.360
GAC	BURNER NEW	SF						6.124			6.124
GAS	HEAT PUMP	SE						3.951			3.951
OTL	BURNER OLD	SE		15.556							15.556
0 I L	BURNER NEW	SF						2.431			2.431
ELEC.	HEAT PUNP	S⊢									
ELEC.	RESISTANCE	SF	0.312					3.951			4.263
SCLAR	COLLECTOR	S۲								·	
GAS	FEAT FUMP	A C						1.360			1.360
ELEC.	FEAT PUMP	ΑC									
ELEC.	ROĊM	AC	0.005	0.156							0.165
SCLAR	COLLECTOR	AC									
GAS	BURNER CLD	T۲	0.217	2.001							2.218
GAS	BURNER NEW	T٢						3.406			3•40E
OIL	BURNER CLD	T۲		1.860		,					1.860
0 I L	BURNER NEW	Τŀ						0.805			0.809
ELEC.	RESISTANCE	TF		0.399	•			1.350			1.749
SCLAR	COLLECTOR	11									
FIFC.	ITCHTING APP	AF	0.221	4.371				7.364			11.956

. .

:

Figure 16. Buildings energy conservation optimization model. Case-base policy.

- 34 T

	REGIO	N	NCRTH E	AST	MARKE	T COMMI	ERCIAL	ΥE	AR 1990		-E12BTU-
			RETROFIT NC CONSERV.	RETROFIT 1 CONSERV.	RETROFIT 2 CONSERV.	RETROFIT 3 CONSERV.	NEL NO CCNSERV.	NEW 1 CGNSERV•	NEW 2 CONSERV•	NEW 3 CCNSERV.	TCTAL
			*******	* * * * * * * * * *	* * * * * * * * *	* * * * * * * * * *	* * * * * * * * *	******	*******	*****	*****
GAS	BURNER CLD	SF	73.640	75.484	11.864						120 528
GAS	BURNER NEW	SE						64-184			1200720
GAS	HEAT PUMP	SF						16.264			16 364
OIL	SURNER CLD	SE	67.145	177.670	47.105			104204			100207 001 010
CIL	BURNER NEW	SH		2,				32-067	4.016		36-093
SLEC.	HEAT PUMP	SF						020021	4001C		30.003
ELEC.	RESISTANCE	SF	32.407					0.341			30.748
SCLAR	COLLECTOR	SF						4.902	2.895		7.758
GAS	FEAT PUMP	AC						21.077			21.077
ELEC.	FEAT PUMP	ΔC									2100//
ELEC.	R00M	AC	22.722	8.061	5.884			5.940			42.607
SCLAR	COLLECTOR	AC						2.067	1.514		3.581
648	BURNERCLD	T۲	7.015		0.507						7.522
GAS	BURNER NEW	Τŀ						5.483			5.483
0 I L	BURNER CLD	T٢	14.441	7.404	1.985			_			23.830
OIL	BURNER NEW	T۲						3.304	0.2.29		3.534
ELEC.	RESISTANCE	T۲	8.393	0.537	0.129						0.969
SCLAR	CGLLECTOR	T٢				•		1 • 1.0 7	0.255		1.363
ELEC.	LIGHTING AFP	٩۵	156.695	57.431	70.168			163.364	ۥ130		453.789

Figure 17. Buildings energy conservation optimization model. Case-base policy.

1 ယ ပ

4

1

...

.

	REGION		NCRTH EA	N S T	MARKE	T RESI	DENTIAL	YE	AR 1990		-E128TU-
			RETROFIT NO CONSERV.	RETROFIT 1 CGASERV.	PETROFIT 2 CCNSERV•	RETROFIT 3 CCNSERV.	NEW NC CONSERV•	NEW 1 CONSERV•	NEW 2 CCNSERV•	NEW 3 CONSERV.	TCTAL
			*******	*******	* * * * * * * * * *	*******	*******	*********	********	*******	********
GAS	BURNER CLD	S٢	635-426	6.360	133+473						775.259
GAS	BURNER NEW	S٢						110.004			110.004
GAS	FEAT PUMP	S٢						8.539	6.488		5.02E
OIL	BURNER CLD	S۲		1487-218							1487.218
OIL	BURNER NEW	SF						23.949	2.435		26.388
ELEC.	HEAT FUMP	S٢						32.595			32.595
ELEC.	RESISTANCE	SH	24.559					8 • 2 4 4			32.803
SOLAR	COLLECTOR	5 -						2.080			2.080
GAS	HEAT PUMP	ΑC						2.601	0.130		2.731
ELEC.	HEAT PUMP	AC						2.960			2.960
ELEC.	RCCM	A C	4.234	€•€1€	0.919			0.608			12.377
SCLAR	COLLECTOP	ΛC						0.319			0.319
GAS	BURNER CLD	Ţŀ	32.345	331.002							363.347
GAS	BURNER NEW	TH						71.374			71.374
oti	BURNER CLD	T۲	230.216	56.806	17.285						304.307
ÛIL	BURNER NEW	Τŀ						11.188	1.282		12.471
FLEC.	RESISTANCE	TH	32.803	26.606	5.707			27.693			52.810
SCLAR	COLLECTOR	T۲						1.403			1.403
ELEC.	LIGHTING APP	AF	106.29Ė	180•446	21.688			71.790	1 • 4 0 7		381.629

Figure 18. Buildings energy conservation optimization model. Case-base policy.

-

-

- 36 -

•

		REGION	NCRTH EAST	SUMMARY	YEAR 199	00 -E156,TU
	,	C C M M E R C I A L	-			
	• •		SPACE HEAT	AIR CONDÍTIONNG	THERMAL	APPLIANCE
GAS OIL ELEC•		· · ·	0.1415 0.1676 0.0327	0.0255	0.0112 0.0140 0.0010	n 4538
SCLAR			0 • 0 7 8	0.0036	0.0014	
•		RESIDENTI4 *******	1L • *			
			SPACE HEAT	AIR CONDITIONING	THERMAL	APPLIANCE

-E156,TU-

	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *
GAS	0.5557	6.0023	0.2680	
CIL	0 .7594		0.1596	
ELEC.	0.0817	0.0322	0.0928	0.3816
SCLAR	0.0021	6.0003	0.0014	

Figure 19. Buildings energy conservation optimization model. Case-base policy.

· . . .

37 -

t

lä,

	REGION	N	NORTH E,	AST	MARKE	T HOSP	ITAL	YE	AR 1990		E9 SQ,FT,
			RETROFIT NC CCNSERV,	RETROFIT 1 CONSERV,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV.	NEW No Conserv,	NEW 1 CONSERV.	NEW 2 CONSERV,	NEW 3 Conserv,	TUTAL
GAS GAS GAS OIL OIL	BURNER OLD BURNER NEW HEAT PUMP BURNER OLD BURNER NEW	SH H H H SS	0.087					0,039 0,236 0,063		2	0,087 0,039 0,236 0,311 0,063
ELEC. ELEC. Solar	HEAT PUMP RESISTANCE Collector	SH SH SH	0,002					0,103			0,002 0,103
GAS ELEC. ELEC. Solar	HEAT PUMP HEAT PUMP ROOM Collector	AC AC AC	0,248					0,236			0,236 0,248 0,103
GAS GAS OIL OIL ELEC.	BURNER OLD BURNER NEW BURNER OLD BURNER NEW RESISTANCE	ТН ТН ТН ТН ТН	0.124 0.276					0,187			0,124 0,187 0,276 0,063 0,103
SOLAR ELEC.	COLLECTOR LIGHTING APP	TH AP	0.400					0,302			0,702

Figure 20. Buildings energy conservation optimization model. Case-base policy.

ŀ 38 I.

.

	REGIO	N	NORTH E	AST	MARKE	T SCHO	<u>p</u> L	YE,	AR 1990		E9 S0,FT,
	1		RETROFIT NC CONSERV,	RETROFIT 1 CONSERV,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV,	NEW No Conserv.	NEW 1 CONSERV.	NEW 2 Conserv.	NEW 3 CONSERV,	TUTAL
GAS GAS GAS OIL OIL	RURNER OLD RURNER NEW HEAT PUMP BURNER OLD RURNER NEW	SH SH SH SH SH	0,222	0,802				0,177 0,043 0,070			0,222 0,177 0,043 0,802 0,070
ELEC. ELEC. Solar	HEAT PUMP FESISTANCE COLLECTOR	SH SH SH	0,005	•				0,113			0,005 0,113
GAS ELEC. ELEC. Sola ^R	FEAT PUMP FEAT PUMP FOOM COLLECTOR	AC AC AC	0.057	0,201				0,043			0,043 0,257 0,113
GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD HURNER NEW BURNER OLD BURNER NEW RESISTANCE COLLECTOR	TH TH TH TH TH	0.226	0,709 0,093	•		·	0,206 0,070 0,113		•	0,226 0,206 0,710 0,070 0,093 0,113
ELEC.	LIGHTING APP	٨P	0.227	0,802	•			0,332			1,361

Figure 21. Buildings energy conservation optimization model. Case-base policy. · · ·

Ŀ 39 T

.

	REGIO	N	NORTH E	AST	MARKE	T OFFI	CE	YE	AR 1990		E9	SW,FT,
-			RETROFIT NO CONSERV.	RETROFIT 1 Conserv,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV,	NEW NO Conserv,	NEW 1 CONSERV.	NEW 2 Conserv,	NEW 3 CONSERV,		TUTAL
GAS GAS GAS OIL OIL ELEC.	BURNER OLD RURNER NEW HEAT PUMP BURNER OLD BURNER NEW HEAT PUMP	1 1 1 1 1 1 5 5 5 5 5 5 5		0,263 0,512				0,186 0,288 0,071	0,055	•		0,263 0,186 0,288 0,512 0,126
ELEC. Solar	RESISTANCE	SH Sh	0:425						0,204			0,425 0,204
GAS ELEC. ELEC. SOLA ^R	HEAT PUMP Heat Pump Room C ^o llector	AC AC AC AC	0.234	0,426				0,288	0,204			0,288 0,660 0,204
GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD BURNER NEW BURNER OLD BURNER NEW RESISTANCE COLLECTOR	TH TH TH TH TH TH	0.264 0.161	⁰ ,667 0,108				0.372 0.071	0,055 0,204			0,264 0,372 0,828 0,126 0,108 0,204
ELEC.	LIGHTING APP	AP	0.425	0,775				0,443	0,157			1,800

Figure 22. Buildings energy conservation optimization model. Case-base policy.

- 40

			RETROFIT NO CONSERV.	RETROFIT 1 Conserv,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV.	NEW No Conserv.	NEW 1 CCNSERV.	NEW 2 CONSERV,	NEW 3 CONSERV.	TUTAL
GAS	BURNER OLD	SH			0,184						0,184
GAS	BURNER NEW	SH	7					0,147			0,147
		SH			0.651			01000			0,030
OIL	BURNER NEW	SH			010-2			0,118			0,118
ELEC.	HEAT PUMP	SH									0.00-
ELEC.	RESISTANCE	SH	0,007								0,007
SOLAR	COLLECTOR	SH						0,190			0,190
GAS	HEAT PUMP	AC						0,336			0,336
ELEC.	HEAT PUMP	AC									•
ELEC.	ROOM	AC	0.004		0,417						0,421
SOLAR	COLLECTOR	AC	٩.								
GAS	RURNER OLD	тн	0.007		0.178						0.185
GAS	BURNER NEW	TH						0,347			0 347
OIL	BURNER OLD	TH			0,581			•			0,581
OIL	BURNER NEW	TH			0 0			0,118			0,118
ELEC.	RESISTANCE	TH	•		0,076			0 1-0		-	
SOLAR	COLLECTOR	-T H						0, 490			, 190
ELEC.	LIGHTING APP	AP	0.007		0,835			0,560			1,402

RETAIL

YEAR 1990

E9 SU,FT.

MARKET

Figure 23. Buildings energy conservation optimization model. Case-base policy.

I. 41 REGION

NORTH EAST

٠

T

	REGI	ION	NORTH E	AST	MARKE	T MISC	8	YE	AR 1990		E9	SQ,FT,
			RETROFIT NO CONSERV,	RETROFIT 1 Conserv.	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV,	NEW No Conserv.	NEW 1 CONSERV,	NEW 2 Conserv,	NEW 3 CONSERV,) 	TOTAL
0.45		с. Ц		********					******	*******		
GAD	BORNER OLD	24	0.36/		· .			1				0,36/
GAS	BURNER NEW	21						v, 859				v, 859
GAS OTL	HEAT FUMP	0 0	0 4 7 4									0 471
016		5H SH	0.1.21					0 234				0,131 0,234
ELEC.	UEAT PHMP	5M SH										-1-04
ELEC.	RESISTANCE	SH	1.183					0,022				1.205
SOLAR	COLLECTOR	SH										
GAS	HEAT PUMP	AC		•								
ELEC.	HEAT PUMP	AC										
ELEC.	ROOM	AC	0,840					0,670				1,510
SOLAR	COLLECTOR	AC										-
GAS	BURNER OLD	тн	0.370									0.370
GAS	BURNER NEW	тн						0.882				0.882
OIL	BURNER OLD	Ťн	1,160									1.160
OIL	BURNER NEW	тн						0,234				0,234
ELEC.	RESISTANCE	TH	0,151					•				0 151
SOLAR	COLLECTOR	TH						•				
ELEC.	LIGHTING AF	PAP	1.681					1,116.				2,797

.

Figure 24. Buildings energy conservation optimization model. Case-base policy.

1 42

	REGIO	N	NORTH E	AST	MARKE	T SINGL	E FAMILY	YE,	AR 1990		E6	UNITS
. •	·		RETROFIT NO CONSERV,	RETROFIT 1 CONSERV.	RETROFIT 2 CONSERV.	RETROFIT 3 CONSERV.	NEW NO CONSERV.	NEW 1 CONSERV1	NEW 2 CONSERV.	NEW 3 CONSERV	, , * * *	TUTAL
GAS GAS	BURNER OLD BURNER NEW	SH SH	2.895					0,836				2,895 0,836
GAS OIL OIL ELEC. SOLAR	HEAT PUMP BURNER OLD BURNER NEW HEAT PUMP RESISTANCE COLLECTOR	SH SH SH SH SH	0.312	4,423				0,150 0,774				4,423 0,150 0,774 0,312
GAS ELEC. ELEC. SOLA ^R	HEAT PUMP HEAT PUMP ROOM C ^o llect ^o r	AC AC AC AC	0,962	1,327				0.774 0,141		·		0,774 2,430
GAS GAS Otl	BURNER DLD BURNER NEW BURNER DID	TH TH TH	2.670	3,815				1.047				3,815 1,047 2,670
OIL ELEC. SOLAR	BURNER NEW RESISTANCE Collector	TH TH TH	0,536	0,608				0,150 0,563				0,150 1,708
ELEC.	LIGHTING APP	AP	3.207	4,423		· .		1,760				9,390

.

Figure 25. Buildings energy conservation optimization model. Case-base policy.

- 43 -

	REGIO) N	NORTH E	AST	MARKE	T LOW 1	DENSITY	YE,	AR 1990		E6 UNITS
•			RETROFIT NC CONSERV:	RETROFIT 1 Conserv,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV.	NEW NO Conserv.	NEW 1 CCNSERV:	NEW 2 CONSERV,	NEW 3 CONSERV.	TOTAL
GAS GAS	BURNER OLD Burner New	SH SH	1,629					0,292			1,629 0,292
OIL OIL ELEC. ELEC. SOLAR	HEAL FUMP BURNER OLD BURNER NEW HEAT PUMP RESISTANCE COLLECTOR	SHH Shh Sh Sh Sh Sh	0.181	2,492				0,052 0,271			2,492 0,052 0,271 0,181
GAS ELEC. ELEC. Solar	HEAT PUMP HEAT PUMP ROOM Collector	AC AC AC	0,561	0,773				0.271 0,080			0,271 1,414
GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD BURNER NEW BURNER OLD BURNER NEW RESISTANCE COLLECTOR	ТН ТН ТН ТН ТН	1.165 0.645	0,986 1,506				0,366 0,052 0,197			2,151 0,366 1,506 0,052 0,842
ELEC.	LIGHTING APP	P AP	1.810	2,492		×		0,615			4,917

Figure 26. Buildings energy conservation optimization model. Case-base policy.

'n

- 44 -

	REGIO	N	NORTH E	AST	MARKE	T MULT	I-FAMILY	YE.	AR 1990		E6	UNITS
			RETROFIT NO CONSERV:	RETROFIT 1 CONSERV.	RETROFIT 2 CONSERV:	RETROFIT 3 CONSERV,	NEW No Conserv,	NEW 1 CONSERV.	NEW 2 CONSERV,	NEW 3 CONSERV.	***	TOTAL ******
GAS GAS GAS OIL ELEC. SOLAR	BURNER OLD BURNER NEW HEAT PUMP BURNER OLD BURNER NEW HEAT PUMP RESISTANCE COLLECTOR	1 I I I I I I I I I I	0,139	1,851	1,205			0,163 0,472 0,026 0,294 0,285	0,057 0,052			1,205 0,163 0,529 1,851 0,078 0,433 0,285
GAS Elec. Elec. Solar	HEAT PUMP Heat Pump Room- Collector	AC AC AC	0.074	0,981	0,639			0,472 0,285	0,057			0,529 1,693 0,285
GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD BURNER NEW BURNER OLD BURNER NEW RESISTANCE COLLECTOR	ТН ТН ТН ТН ТН	0.139	1,459 0,392	0,726 0,479	,		0,405 0,294 0,285	0,078			1,598 0,405 1,118 0,078 0,774 0,285
ELEC.	LIGHTING APP	AP	0.139	1,851	1,205			0,842	0,078			4,115

Figure 27. Buildings energy conservation optimization model. Case-base policy.

1 45 1

	REGIO	N	NORTH E	AST	MARKE	T MOBI	ЦЕ НОМЕ	YE,	AR 1990		E6	UNITS
		,	RETROFIT NC CCNSERV,	RETROFIT CONSERV,	RETROFIT	RETROFIT CONSERV.	NEW NO CONSERV,	NEW CONSERV	NEW 2 CONSERV,	NEW 3 Conserv,	***	TUTAL
GAS GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD BURNER NEW HEAT PUMP BURNER OLD RURNEH NEW HEAT PUMP RESISTANCE COLLEGTOR	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0,013	0,102 0,155	:			0,108 0,208 0,037 0,139			•	0,102 0,108 0,208 0,155 0,037 0,152
GAS ELEC. ELEC. Solar	HEAT PUMP HEAT PUMP ROOM COLLECTOR	AC AC AC AC	0,003	0,064				0,208				0,208 0,068
GAS GAS OIL OIL ELEC. SOLAR	BURNER OLD BURNER NEW BURNER OLD BURNER NEW RESISTANCE COLLECTOR	ТН ТН ТН ТН ТН	0.013	0,122 0,094 0,040				0,245 0,050 0,139				0,135 0,245 0,094 0,050 0,179
ELEC.	LIGHTING APP	AP	0.013	0.257				0,433	· .			0,703

Figure 28. Buildings energy conservation cptimization model. Case-base policy.

â

.

- 46 1

	REGIO	N	NORTH E	AST	MARKE	T COMM	ERCIAL	YE,	AR 1990 _		E9 SU,	FT,
		94 	RETROFIT NG CONSERV,	RETROFIT 1 CONSERV,	RETROFIT 2 CONSERV,	RETROFIT 3 CONSERV,	NEW No Conserv,	NEW 1 CCNSERV.	NEW 2 CONSERV,	NEW 3 CONSERV	TUT	AL /.
GAS GAS GAS OIL	BURNER OLD BURNER NEW HEAT PUMP BURNER OLD	SH SH SH SH	0.676	0,263	0,184 0,651			1,408 0,903			1, 1, 0, 2,	123 408 903 407
OIL ELEC. ELEC. Solar	BURNER NEW HEAT PUMP RESISTANCE Collector	SH SH SH SH	1,622					0,556 0,022 0,406	0,055		0. 1. 0.	611 644 610
GAS ELEC. ELEC. Solar	HEAT PUMP HEAT PUMP RJOM Collector	AČ AC AC AC	1,383	0,627	0.417			0,903 0,670 0,216	0,204		0, 3, 0,	903 096 420
GAS GAS OIL OIL ELEC. SOLAR	BJRNER OLD BJRNER NEW BJRNER OLD BURNER NEW RESISTANCE COLLECTOR	TH TH TH TH TH TH	0.991 1.598 0.151	1,376 0,201	0,178 0,581 0,076	:		1,994 0,556 0,406	0,055		1. 3. 0. 0.	169 994 555 611 428 610
ELEC.	LIGHTING APP	A۶	2,740	1,577	0,835	:		2,753	0,157		8,	062

.

.

Figure 29. Buildings energy conservation optimization model. Case-base policy.

- 47 -

		RE	GION	NORTH E	AST ,	MARKE.	T RESI	DENTIAL	YE	AR 1990	E	6 UNITS
		n Na Start An		RETROFIT NC CONSERV.	RETROFIT 1 CONSERV,	RETROFIT 2 CONSERV:	RETROFIT 3 CONSERV,	NEW NO CONSERV,	NEW 1 CCNSERV.	NEW 2 CONSERV,	NEW 3 CONSERV.	TOTAL
	GAS	BURNER OL	D SH	4.524	0.102	1.205				·		5,831
	GAS	BURNER NE	W SH	• •		• -			1,400			1,400
	GAS	HEAT PUMP	SH						0,680	0,057		0,737
	016	BURNER OL	D SH		8,921							8,921
	OIL	BURNER NE	W SH	•					0,265	0,052		U . 317
	ELEC.	HEAT PUMP	SH						1,045			1,045
1	ELEC.	RESISTANC	E SH	0.645					0,433			1,078
48	SOLAR	COLLECTOR	SH						u,285			0,285
I	GAS	HEAT PUMP	AĊ						0.680	0,057		0,737
	ELEC.	HEAT PUMP	AC						1,045	- •		1 045
	ELEC.	ROOM	. AC	1,600	3,145	0.639			0,221			5,604
	SOLAR	COLLECTOR	ÁC	-	•				0,285			0,285
	GAS	RURNER DI	р тн	1.317	6.382							7.699
	GAS	BURNER NE	W · TH						2.063			2,063
	OIL	BURNER OL	D TH	2.670	1.993	0.726	,		•••			5,389
	OIL	BURNER NE	Ŵ ŤH			•			0,252	0,078		0,330
	ELEC.	RESISTANC	е тн	1,182	0,649	0.479			1,193			3,503
	SOLAR	COLLECTOR	TH		·	•			0,285			⁰ 285
	ELEC.	LIGHTING	APP AP	5.169	9,023	1,205			3,650	0,078		19,125
				• •	Figure 30.	Buildings e model.	energy conser Case-base po	rvation opti olicy.	mization			

.

.

model. Case-base policy.

. •

COMMERCIAL				
. •	SPACE HEAT	AIR CONDITIONING	THERMAL	APPLI

SUMMARY

PHY UNITS

YEAR 1990

	***************	*************	**************	***********
GAS	3,4340	0,9027	3,1634	
OIL Elec. Solar	3,0181 1,6443 0,6100	3,0964 0,4196	4,1660 0,4277 0,6100	8,0620

PRETDENTIAL	
RESIDENTIAL	

REGION

NORTH EAST

	SPACE HEAT	AIR CONDITIONING	THERMAL	APPLIANCE
C 4 C	***************************************	**************************************	***************************************	*****
OIL	9.2379		5,7188	
ELEC.	2,1229	6,6492	3,5025	19,1250
SOLAR	0,2852	0,2852	0,2852	,

Figure 31. Buildings energy conservation optimization model. Case-base policy.

		• NEW ***		0LD ***	
INGLE FAMILY	LEVEL I Level II	1.1483		3.3965	
	LEVEL III		1.1483		3.3965
OW DENSITY	LEVEL I	0.2968		1.4287	
	LEVEL III		0.2968		1.4287
JLTI-FAMILY	LEVEL I	0.1604		0.6864	
-	LEVEL II LEVEL III	0.0276	0.1880	0.6999	1.3864
DBIL HOME	LEVEL I LEVEL I	0.1714		0.9643	
	LEVEL III		0.1714		0.0643

.

Figure 32. Buildings energy conservation optimization model. Capital investment in structural technologies (1975 S).

6.2759

.

1.8044

TOTAL

.

*******	*****	****	*****	*****	*****
		NEW ***		0LD ***	
IOSPITALS	LEVEL I LEVEL II LEVEL III	0.1046	0.1046		
5CHOOLS	LEVEL I LEVEL II LEVFL III	0.1128	0.1128	0.5419	0.5419
DFFICES	LEVEL I LEVEL II LEVEL III	0.1054 0.0920	.0.1973	0.3664	0.3664
RETAIL	LEVEL I LEVEL II LEVEL III	0.1308	0.1308	0.7108	0.7108
ISC	LEVEL I LEVEL II LEVEL III	0.4503	0.4503		. ¹
TOTAL		0.9959		1.6191	

Figure 33. Buildings energy conservation optimization model. Capital investment in structural technologies (1975 \$).

- 51 -

- 52 -

REGION NORTH EA	ST RESID	ENTIAL YEAR 1990	UNIT - 8 BILLIC)N # # # # # # # # # # # # # # # # # # #
	SPACE HEAT	AIR Cond	THERMAL	APÞLIANCE & LIGHT
SINGLE FAMILY	7.3888	0.2551	1.4302	4.1442
LOW DENSITY	2.1610	0.0523	0.1625	1.3786
MULTI-FAMILY	2.9811	0.0896	0.2765	1.8559
MOBIL HOME	0.7026	· · · ·	0.0886	0.8254
LOW DENSITY MULTI-FAMILY MOBIL HOME	2.1610 2.9811 0.7026	0.0523	0.1625	1.37 1.85 0.82

۰.

TOTAL	13.2334	0.3969	1.9577	8.2041

Figure 34. Buildings energy conservation optimization model. Capital investment in conversion devices (1975 \$).

	SPACE HEAT	AIR Cond	THERMAL	APPLIANCE & LIGHT
	2 4 7 1 4	0 2122	0 1004	2.0762
HUSPITALS	3.4/10	0.2132	0.12.14	3.0702
SCHOOLS	1.6330	0.0932	0.0248	1.4273
OFFICES	4.3642	0.2012	0.0451	2.6500
RETAIL	2.7071		0.0267	5.1899
MISC	0.4517	1.8152	0.0354	6.8207
TOTAL	12.6275	2.3227	0.2553	19.1641

Figure 35. Buildings energy conservation optimization model. Capital investment in conversion devices (1975 \$).

5. Applications

The most important feature of the model from the point of view of the user is that BECOM consists of a multitude of individually specified building energy technologies which are selected and assembled in a systematic way to project a picture of the entire stock of energy technologies in buildings and the resulting energy consumption. The technologies currently included comprise the major classes of conventional equipment and also major types of equipment under development. Novel and conventional equipment types compete on an equal basis.

These structural characteristics of BECOM make it especially suited for certain types of analysis.

1. Market penetration analysis. Because all types of equipment compete simultaneously, meaningful analyses of the relative roles of various technologies can be developed. Furthermore, since all possible combinations of conversion devices (such as HVAC equipment and various structural improvements) are included, one can analyze the synergistic effects of combining various types of conversion devices and structural technologies. Unlike many other models of buildings energy demand, BECOM makes it is impossible to double-count energy savings.

Because it includes nine building types, two building classes (new and retrofit), and four regions, BECOM can be used to calculate the market penetrations of technologies in considerable detail and also on a national aggregate basis. Thus, the model identified both those technologies that have a

- 54 -

large national impact and those that may be highly desirable in a limited market.

2. Policy analysis. A major question before the nation in relation to energy consumption in buildings is the role of various policy measures such as price regulation of various forms of energy, tax incentives for investment in specific building technologies, implementation of various code improvements, and setting of performance standards for appliances, air conditioning, and buildings. BECOM can analyze effects of such measures in a high degree of detail. Various pricing policies can be represented through input prices, which can be varied for different regions and consuming sectors. Tax incentives or other measures for changing the economics of building investment can and have been entered through adjustments to the capital charges for various building types. These adjustments can be different for each type of building just as they are likely to be for different classes of building (Store owners will be treated differently than homeowners. owners, for example.) Finally, regulatory action can be represented through constraints requiring or prohibiting certain technologies in the various markets.

3. Analysis of research, development, and demonstration projects. Because BECOM makes projections of buildings energy demand by assembling an overall technological configuration from many individual technologies, it is particularly well suited to examining the role of these technologies in the context of total building energy consumption.

- 55 -

Within BECOM, a technology is a generic type. For example, the electric heat pump is one generic technology. DOE or other RD&D projects related to electric heat-pump market share for each region or building type (if the project were so directed) indicated by BECOM. If the project were directed at achieving a particular cost or efficiency improvement, these parameters could be entered in the model to estimate the degree to which a given cost or improvement would improve market penetration, and the particular building types and regions where the increased market penetration would occur.

A key feature of BECOM for RD&D assessment is that the simultaneous competition of all technologies precludes double counting of energy savings which could occur if energy savings from technologies were estimated without considering competing technologies. Also, since buildings are defined according to both conversion devices and structural technologies, savings are attributed to the <u>combined</u> effect of conversion-device improvements and structural improvements, as will actually occur in the field.

4. Sensitivity analysis. This type of analysis is closely related to the other areas outlined above. Because of the advanced programming system used for this model, one can quickly perform a series of evaluations of the types outlined, varying a single parameter (an energy price, for example, or the level of a tax credit) and produce a complete analysis of the entire buildings sector for each value of the parameter of

- 56 -

.

interest. Thus the full effects of a specific decision variable can be thoroughly analyzed.

5. Conservation implementation. BECOM is expected to be used in the near future to study the relationship between implementation of energy-conservation technologies (revealed, for example, through sales figures for insulation, heat pumps, and so forth) and yearly totals for energy consumption in buildings. By reconciling yearly sales totals of building energy technologies and total energy consumption within the BECOM framework, it will be possible to assess whether federal policies are having the anticipated effects on conservation-technology implementation and ultimately on energy consumption. If not, policy adjustments can be assessed.

6. Environmental effects of conservation in buildings. Reduced environmental impacts in the energy supply system as a whole are captured in BESOM. Detailed coefficients for emissions from the individual conversion devices included in BECOM are being developed. When this task is completed, detailed assessments of the environmental effects of buildings conservation policies can be performed.

- 57 -

Acknowledgements

Many persons have made essential contributions to this program. William Marcuse orginally conceived this approach to modeling energy conservation technologies, and he has provided continuing guidance and support. The overall building energy conservation program at BNL has been made possible by continuing interest and support from the Division of Buildings and Community Systems, particularly its director, Dr. Maxine Savitz, and Dr. S. Melvin Chiogioji and Joan Hock. Martin Glesk, leader of the Arthur D. Little case team on buildings, provided invaluable assistance in the form of data presented in the appendices to this report and also working suggestions. Comments from the Market Oriented Program Planning Study Residential and Commercial Working Group were helpful and essential, particularly those of Ed Blum and Eric Hirst.

Invaluable assistance was provided by Doreen Schneider and Marc Raisch of the BNL staff in assembling data and completing calculations. Barbara Nichols, Carmen Zopf, Marge Gallitelli, and Nancy Jesaitis provided their customary efficient and capable services in typing and assembly. Technical drawings were done by Stan Majeski. This effort has greatly benefited from the environment of Brookhaven's National Center for Analysis of Energy Systems, and especially from contact with several members who have worked in this general area - Kenneth Hoffman, Andy Kydes, Andres Doernberg, and Alan Hermelee. Responsibility for the paper remains, of course with the authors.

- 58 -

References

- 1. Cherniavsky, E.A., Brookhaven Energy System Optimization Model, Informal Report, BNL 19569, 1974.
- Goldberg, M.D., <u>An Energy Model Data Base</u>, Informal Report, BNL 19200, undated (1973).
- Beller, M., Editor, <u>Sourcebook for Energy Assessment</u>, BNL 50483, December 1975.
- 4. Marcuse, W., Carhart, S., and Mulherkar, S., <u>Residential</u> <u>energy demand analysis - Data and methodology</u>, Presented at Joint National Meeting Operations Res. Soc. Am. and Institute of Management Science, Miami, November 1976 (BNL 21920).
- 5. Cherniavsky, E.A., Kydes, A.S., et al., <u>Brookhaven Energy</u> <u>Systems Optimization Model</u> - <u>Methodology and Documentation</u> (Version 2.1), BNL report, in preparation.
- Glesk, M., et al., Report to Department of Energy on Building Technologies, Arthur D. Little, Inc., in preparation.
- 7. Daifuku, R., <u>Residential Space Heating and Cooling in</u> <u>New England 1972-2000, BNL 50614, December 1976.</u>

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX A

.

.

4

Residential and Commercial Inventory and Forecasts

RESIDENTIAL CONSTRUCTION INVENTORY FORECASTS

(thousand units)

,

	1975	NE	W CONSTRUCTI	ON	REMOVALS	2000
	INVENTORY	1976-1980	<u>1981-1985</u>	1986-2000	<u>1976-2000</u>	INVENTORY
Northeast Total	16,282	1,250	1,500	3,357	1,629	20,760
Single Family Detached	7,910	698	693	1,475	640	10,136
Low Density	4,544	156	246	648	397	5,197
Multi-Family	3,445	252	407	801	409	4,496
Mobile Homes	383	144	154	433	183	931
North Central Total	18,993	2,074	2,505	5,646	2,353	26,865
Single Family Detached	13,253	1,250	1,335	2,926	1,259	17,505
Low Density	2,840	161	235	616	321	3,531
Multi-Family	2,112	340	588	1,134	306	3,868
Mobile Homes	788	323	347	· 970	467	1,961
South Total	22,488	3,827	4,647	10,504	3,439	38,027
Single Family Detached	16,051	2,330	2,477	5,499	2,014	24,343
Low Density	2,315	280	442	1,106	255	3,888
Mult1-Family	2,428	580	1,045	1,988	236	5,805
Mobile Homes	1,694	637	683	1,911	934	3,991
West Total	13,067	2,149	2,628	5,926	1,629	22,141
Single Family Detached	8,379	1,140	1,175	2,553	846	12,401
Low Density	1,740	285	4 3 9	1,102	128	3,438
Multi-Family	2,098	428	698	1,385	209	4,400
Mobile Homes	850	296	316	886	446	1,902
U. S. Total	70,830	9,300	11,280	25,433	9,050	107,793

•

COMMERCIAL CONSTRUCTION INVENTORY FORECASTS

(million square feet)

	1975 INVENTORY	NEV 1976-1980	W CONSTRUCTI <u> 1981-1985</u>	ом <u>1986-20ро</u>	REMOVALS 1976-2000	2000 INVENTORY
Northeast Total	5,688	938	980	3,272	879	9,999
Office & Bank	1,321	193	203	660	198	2,179
Retail	928	179	190	636	139	1,794
Schools	1,150	114	107	342	199	1,514
Hospitals	440	94	101	368	66	937
Other	1,849	358	. 379	1,266	277	3,575
North Central Total	6,674	1,169	1,217	4,089	1,135	12,014
Office & Bank	1,317	198	207	675	224	2,173
Retail	1,517	334	354	1,195	258	3,142
Schools	1,812	190	179	576	308	2,449
Hospitals	511	113	122	448	87	1,107
Other	1,517	334	,355	1,195	258	3,143
South Total	7,320	1,273	1,379	4,783	1,464	13,291
Office & Bank	1,650	265	288	975	330	2,848
Retail	1,589	317	349	1,212	318	3,149
Schools	1,530	167	162	540	306	2,093
Hospitals	486	113	127	480	97	1,109
Other	2,065	411	453	1,576	413	4,092
West Total	4,781	. 811	891	3,106	813	8,776
Office & Bank	1,146	185	203	690	195	2,029
Retail	960	180	202	706	163	1,884
Schools	934	104	102	342	159	1,323
Hospitals	294	70	80	304	50	698
Other	1,447	272	304	1,064	246	2,842
U.S. Total	24,463	4,191	4,467	15,250	4,291	44,080

		NEW		RETROFIT		
		Built				
		<u>1976-2000</u>	<u>% A C</u>	<u>1976-2000</u>	<u>% A C</u>	
· · ·	0554	1.05/	<i></i>	1 199		
Northeast	Uffices	1,056	65	1,125	55	
	Ret. & Other	3,008	60	2,361	50	
	Schools	563	30	978	25	
	Hospitals	563	95	374	62	
North Central	Offices	1,080	· 65	1,093	50	
	Ret. & Other	3,767	60	2,518	45	
	Schools	945	50	1,504	32	
	Hospitals	683	97	424	56	
;		• ,				
South	Offices	1,528	95	1,320	70	
	Ret. & Other	4,318	90	2,923	65	
	Schools	869	- 75	1,224	60	
	Hospitals	720	100	389	75	
Veet	Office	1 078	85	, 051	60	
West	Ret. & Other	1,0/0		1 000	55	
; .	Schoole	2,725	80 70	.1,990	22	
	Hoepitale	545	70	115	52	
	noopitais	454	100	244	67	

Building Units and % Air Conditioned - 1976-2000 New - Non Residential 1976-2000

;

ţ

. . .

- 64 -
| | | New Units
1976-2000 | <u>% A C</u> * | Retro
Units | <u>% A_C</u> * |
|-------------|------------------|------------------------|----------------|----------------|----------------|
| Northeast | Single Family | 2,866 | 52 | 7,270 | 30 |
| | Low Density | 1,050 | 57 | 4,147 | 31 |
| | Multi-Family | 1,465 | 73 | 3,036 | 53 |
| | Mobile Home | 731 | 48 | 200 | 25 |
| North Centr | al Single Family | 5,511 | 70 | 11,994 | 43 |
| | Low Density | 1,012 | 73 | 2,519 | . 34 |
| • | Multi-Family | 2,062 | 87 | 1,806 | 67 |
| | Mobile Home | 1,640 | 45 | 321 | 30 |
| South | Single Family | 10,306 | 87 | 14,037 | 48 |
| | Low Density | 1,828 | 90 | 2,060 | 43 |
| | Multi-Family | 3,613 | 95 | 2,192 | 77 |
| | Mobile Home | 3,231 | 85 | 760 | 35 |
| West | Single Family | 4,868 | 70 | 7,533 | 35 |
| - | Low Density | 1,826 | 75 | 1,612 | 31 |
| | Multi-Family | 2,511 | 82 | 1,889 | 39 |
| | Mobile Home | 1,498 | 72 | 404 | 35 |

Building Units and % Air Conditioned - 1976-2000 New and Retrofit

* Central and Room

- 65 -

.

THIS PAGE WAS INTENTIONALLY LEFT BLANK

APPENDIX B

- Theoretical Loads for Buildings
- Conservation Technology Costs and Savings
- First Costs of Conventional HVAC Equipment

THEORETICAL BUILDING ENERGY LOADS

RESIDENTIAL - NEW CONSTRUCTION 1976-1980

		Но	a †		Light and				
Building Type	Region	Fossil	Electric	<u>Cool</u>	Thermal	Power	Aux.		
Single-Family	NE	81	65	8	19	21			
0 /	NC	102	81	13	19	23			
	S	39	36	59	19	21	NA		
	Ŵ	57	53.	60	19	ູ 23			
Low Density	NE	70	· 50	6	13	20			
Dow Denorey	NC -	102	62	11	13	21			
	S	38	28	47	13	20	NA		
	W	57	40	48	13	21			
Multi-Family	NE	46	21	3	11	18			
nuiti romily	NC	53	23	5	11	18			
	S	19	11	22	11	17	NA		
	Ŵ	23	15	21	11	18 .			
Mobile Homes	NE	57	41	8	8	17			
100220 110460	NC	66	47	12	8	20			
	S	31	22	38	8	20	NA		
	Ŵ	38	27	37	8	17			

All figures in 10⁶ Btu/unit

Assumes	the	following	conversion	efficiencies:
		Gas	0.7	
		0i1	0.6	
		Electric	2 1.0	
		A C CoP	2.1	

- 68 -

THEORETICAL BUILDING ENERGY LOADS

	Hea		and				
Region	Fossil	Electric	<u>Cool</u>	Thermal	Power	<u>Aux.</u>	
NE	68	44	23	3	24	15	
NC	68	51	23	3 [.] .	30	18	
S	. 42	24	53	3	30	20	
W	43	25	34	3	31	20	
NE	37	22	25	2	62	20	
NC	44	26	26	2	67	25	
S	18	14	61	2	69	· 30	
W	23	16	40	2	72	30	
NE	60	40	19	3	26	12	
NC	70	46	19	3	28	15	
S	31	18	43	3 .	28	18	
W	38	23.	25	3	31	18	
NE	73	54	19	17	60	30	
NC	86	54	19	17	74 [`]	[`] 30	
S	37	19	43	17	73	35	
W	46	25	25	17	86	35	
NE	37	24		2	34	20	
NC	44	27		2	35	25	
S	17	15	61	2	37	30	
W	22	16		2	39	30	
	Region NE NC S W NE NC S W NE NC S W NE NC S W NE NC S W	Region Fossil NE 68 NC 68 S 42 W 43 NE 37 NC 44 S 18 W 23 NE 60 NC 70 S 31 W 38 NE 73 NC 86 S 37 W 46 NE 37 W 46 NE 37 W 22	RegionFossilHeat ElectricNE6844NC6851S4224W4325NE3722NC4426S1814W2316NE6040NC7046S3118W3823NE7354NC8654S3719W4625NE3724NC4427S1715W2216	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RegionFossilElectricCoolThermalNE6844233NC6851233S4224533W4325343NE3722252NC4426262S1814612W2316402NE6040193NC7046193NC7046193NC7046193NC73541917NC86541917S37194317W46252517NE37242NC44272NC44272NC44272NC44272NC44272NC44272NC44272NC44272NC44272NC44272NC44272N22162	Heat Heat Cool Thermal Power NE 68 44 23 3 24 NC 68 51 23 3 30 S 42 24 53 3 30 W 43 25 34 3 31 NE 37 22 25 2 62 NC 44 26 26 2 67 S 18 14 61 2 69 W 23 16 40 2 72 NE 60 40 19 3 26 NC 70 46 19 3 28 S 31 18 43 3 28 W 38 23 25 3 31 NC 86 54 19 17 74 S 37 19 43 17 73	

COMMERCIAL - NEW CONSTRUCTION 1976-1980

All figures in 10³ Btu/square foot

Assumes the following conversion efficiencies:

Gas	0.7
0il	0.6
Electric	1.0
A C CoP	2.1

.

- 69 -

THEORETICAL BUILDING ENERGY LOADS

.

RESIDENTIAL - RETROFIT 1975 INVENTORY

			Неа	t			Light and	
Building Type	Region	Gas	011	Electric	<u>Cool</u>	Thermal	Power	<u>Aux</u> .
Single-Family	NE	94	128	51	6	22	21	
	NC	118	114	64	19	22	23	
	S	43	79	31	63	22	21	NA
	W	57	102	44	74	22	23	
Low Density	NE	67	89	33	5	15	20	
•	NC	87	84	45	11	15	21	
	S	30	54	. 21	36	15	20	NA
	W	37	65	30	54	15	20	
Multi-Family	NE	43	58	17	4	13	18	
·	NC	50	49	24	9	13	18	
	S	16	29	• 10	34	13	17	NA
	W	20	35	14	33	13	18	
Mobile Homes	NE	44	59	24	6	10	17	
	NC	54	53	29	10	10	20	
	S	21	53	15	40	10	20	NA
	W	27	48	20	46	10	17	

All figures in 10⁶ Btu/unit

Assumes the following conversion efficiencies: Gas 0.6

Oil	0.5
Electric	1.0
A C CoP	2.1

- 70 -

THEORETICAL BUILDING ENERGY LOADS*

COMMERCIAL - RETROFIT 1975 INVENTORY

Building Type	Region	Gas	<u>Hea</u> 011	<u>Electric</u>	Cool	Thermal	Light and Power	<u>Aux</u> .
Office and Bank	NE	91	83	. 31	33	3	24	18
	NC	84	68		36	-	30	20
	S	64	60	. 19	87	3	30	22
	W	66	59	20	57	3	31	22
Retail	NE	50	47	14	37	2	62	22
	NC	46	37	·	41	· _	67	27
,	S	29	26	10	99	. 2	69	33
	W	35	32	13	68	2	72	33
Schools	NE	80 .	74	28	28	3	26	15
	NC	74	60		30	-	28	18
	S	50	44	14	70	3.	28	20
	W	58 _.	52	19	39	3	31	20
Hospitals	NE	97	89		42	16	60	32
	NC	90	73		45		74	32
	S	55	51	14	106	· 16	- 73	37
~	W	68	61	20	76	. 16	86	37
Other	NE	49	45	16	. 37	.2	34	22
	NC	46	.37		41	-	35	27
	S	27	24	11	99	2	37	33
	W	33	30	13	68	2	39	33
•					•	•	4	

All Figures in 10³ Btu/square foot

. .

Assumes the	following	conversion	efficiencies:
	Gas	0.6	
• •	0il ·	0.5	
	Electric	: 1.0	
	A C CoP	2.1	
,			

BUILDING TYPE: SINGLE FAMILY 1560 SQ. FT. UNIT

			CONS	SERVATION LEV	'EL I	
		First Cost	• :	i of load sav	red	
		<u>\$/unit</u>	Heating	Cooling	Hot Water	<u>L&P</u>
New Construct	ion NE	220	23	20	5	5
	NC	220	25	22	5	5
	S	240	23	25	5	5
	W	240	25	23	5	5
Retrofit	NE	260	15	10	0	· 0
	NC	260	17	10	0	0
	S	200	12	15	0	0
	W	200	14	13	0	0
			CONS	SERVATION LEV	EL II	
New Construct	ion NE	800	50	35	5	5
	NC	800	52	37	5	5
	S	770	44	35	5	5
	W	770	46	33	5	5
Retrofit	NE	1,130	43	20	0	0
	NC	1,130	45	20	0	0
	S	1,070	37	25	0	0
			CONSE	RVATION LEVE	L III	
New Construct:	ion NE	.2,140	58	40	10	5
	NC	2,140	60	42	10	5
	S	1,760	50	40	10	5
	W	1,760	52	38	10	5
Retrofit	NE	1,860	52	25	5	0
	NC	1,860	54	25	5	0
	S	1,770	44	30	5	0
	W	1,770	46	28	5	0

- 72 -

.

BUILDING TYPE: LOW DENSITY 1000 SQ. FT. UNIT

			CO	NSERVATION LEV	EL I	
		First Cost	•	% of load sav	ed	
		\$/unit	Heating	Cooling	Hot Water	<u>L&P</u>
New Construction	NE	- 165	23	20	5	5
	NC	165	25	22	5	5
	S	180	23	25	5	5
	W	180	25	23	5	5
Retrofit	NE	195	15	. 10	0	0
	NC	195	17	10	0	0
•	S	150	12	15	0	0
	W	150	14	13	0	0
•			COI	SERVATION LEVI	EL II	
New Construction	NE	600	50	35	5	5
	NC	600	52	37	5	5
	S	580	44	35	5 ·	5
	W	580	46	33	5	5
Retrofit	NE	850	43	20	0	0
	NC	850	45	20	0	0
	S	800	37	25	0	0
	W	800	39	23	0	0
		· ·	CONS	SERVATION LEVEI	. III	
New Construction	NE	1,600	58	40	10	5
	NC	1,600	60	42	10	5
	S	1,320	50	40	10	5
	W	1,320	.52	38	10	5
Retrofit	NE	1,400	52	25	5	0
	NC	1,400	54	25	5	0
	S	1,330	44	30	. 5	0
	W	1,330	46	28	5	0

- 73 -

BUILDING TYPE: MULTI-FAMILY 900 SQ.FT. UNIT

			CON	SERVATION LE	VEL I		
		First Cost		% of <mark>loa</mark> d sa	ved		
		\$/unit	Heating	<u>Cooling</u>	Hot Water	<u>L&P</u>	Aux.
New Construction	NE	65	30	25	15	5	10
	NC	65	. 33	25	15	5	10
	S	65	25	30	15	5	10
	W	65	27	28	15	5	10
Retrofit	NE	126	18	25	8	5	0
	NC	126	21	25	8	5	0
	S	126	17	18	8.	5	0
	W	126	20	16	8	.5	0
			CON	SERVATION LE	VEL II		
New Construction	NE	120	38	35	15	5	10
	NC	120	40	35	15	5	10
	S	120	35	42	15	5	10
	W	120	37	40	15	5	10
Retrofit	NE	198	24	25	15	5	0
	NC	198	28	25	15	5	0
	S	198 ^{.,}	25	22	15	5	0
·	W	198	29	20	15	5	0
			CONSI	ERVATION LEV	EL III		
New Construction	NE	260	45	44	20	5	10
	NC	260	48	44	20	5	10
	S	260	40	50	20	5	10
	W	260	42	47	20	5	10
Retrofit	NE	324	24	25	23	5	0
	NC	324	29	25	23	. 5	0
	S	324	25	22	23	5	0
	W	324	30	18	23	5	0

BUILDING TYPE: MOBILE HOME 720 SQ. FT. UNIT

		CONSERVATION LEVEL 1						
		First Cost		% of load save	ed			
		<u>\$/unit</u>	Heating	Cooling	Hot Water	<u>. L&P</u>		
New Construction	NE	1	30	30	5	0		
	NC	1	30	30	5	0		
	S	1	20	20	5	0		
	W	. 1	20	20	5	0		
Retrofit	NE	85	15	15	3	0		
	NC	85	. 15	. 15	3	0		
,	S	85	15	15	3	0		
	W	85	15	15	3	0		
			CON	SERVATION LEVE	EL II			
New Construction	NE	330	45	45	5	0		
	NC	330	45	45	5	0		
	S	230	30	30	5	· 0		
	W	230	30	30	5	0		
Retrofit	NE	435	. 30	25	7	0		
	NC	435	30	25	7	0		
	S	335	25	30	7	0		
	W	335	25	30	7	0		
	· .	· · ·	CONS	ERVATION LEVEL	, III			
New Construction	NE	790	61	61	7	0		
	NC .	790	61	61	7	0		
,	S ·	490	46	46	7	0		
:	W	490	46	46	. 7	0		
Retrofit	NE	655	37	28	·* 7	0		
	NC	655	37	28	7	0		
	S	475	30	33	7	0		
	W	475	30	33	7	0		

1

BUILDING TYPE: OFFICE

		CONSERVATION LEVEL I								
		First Cost		ሪ of load sa	ved					
		\$/1000 ft ²	<u>Heating</u>	<u>Cooling</u>	Hot Water	L&P	Aux.			
New Construct	tion NE	80	25	20	0	15	10			
	NC	80	. 27	20	0	15	10			
	S	80	28	35	0	15	10			
	W	80	30	32	0	15	10			
Retrofit	NE	160	11	13	0	25	17			
	NC	160	13	13	0	25	17			
	S	160	6	8	0	20	14			
	W	160	8	7	0	20	14			
			CONS	ERVATION LE	VEL II					
New Construct	tion NE	200	35	35	5	25	16			
	NC	200	38	35	5	25	16			
	S	200	38	45	5	25	16			
	W	200	41	42	5	25	16			
Retrofit	NE	330	15	17	· 0	50	28			
	NC	330	17	17	0	50	28			
	S	330	13	11	0	40	23			
	W	330	15	10	0	40	23			
			CONSE	RVATION LEV	EL III					
Ne / Construct	ion NE	465	. 40	47	10	25	20			
	NC	465	43 ·	47	10	25	20			
	S	465	45	50 [°]	10	25	20			
	W	465	48	47	10	25	20			
Retrofit	NE	580	23	34	0	50	38			
	NC	580	26	34	0	50	38			
	S	580	19	24	0	40	32			
	W	580	22	22	0	40	32			

/6 -

BUILDING TYPE: SCHOOL

			CONS	SERVATION LE	VEL I		
	,	First Cost		% of load say	ved		
`		<u>\$71000 ft²</u>	<u>Heating</u>	<u>Cooling</u>	Hot Water	L&P	<u>Aux.</u>
New Construction	NE	115	30	25	5	15	20
	NC	115	33	25	5	15	20
	S	115	35	20	5	15	20
	W	115	38	17	5	15	20
Retrofit	NE	230	14	16	0	12	26
	NC	230	16	16	0	12	26
	S	230	13	9	0	11	20
	W	230	13	8	0	11	20
		. ·	CONS	ERVATION LEV	EL II		
New Construction	NE	355	42 [·]	35	5	20	25
	NC	355	45	35	5	20	25
	S	355	48	35	5	20	25
2	W	355	51	32	5	20	25
Retrofit .	NE	` 590	21	26	0	30	33
	NC	590	24	26	. 0	30	33
	S .	590	19	14	0	28	25
•	W	590	22	12	0	28	25
			CONSE	RVATION LEVE	LÍIIÍ		
New Construction	NE .	880	50	41	10	20	30
-	NC	880	53	41	10	20	30
	S	880	55	40	10	20	30
	Ŵ	880	58	37	10	20	30
Retrofit	NE .	1,100	29	56	30	42	53
	NC	1,100	° 32 .	56	30	42	53
	Ş	1,100	30	28	30	39	40
	W	1,100	33	25	30	39	40

77 -

BUILDING TYPE: HOSPITAL

			CON	SERVATION LE	VEL I		
		First Cost		% of load sa	ved		
		\$/1000 ft ²	Heating	<u>Cooling</u>	Hot Water	L&P	Aux.
New Construction	NE	140	20	15	10	10	10
	NC	140	23	15	10	10	10
	S	140	20	20	10	10 .	10
	W	140	23	17	10	10	10
Retrofit	NE	280	7	7	12	8	19
·	NC	280	9	7	12	18	19
	S	280	11	8	12	7	16
			CON	SERVATION LE	VEL IT		
		155	22	25	15	16	15
New Construction	NE	455	32	25	15	. 15	10
	NC	455	35	25	15	15	15
	S	455	35	30	15	15	15
	W	455	38	27	15	15	12
Retrofit	NE	760	15	24	24	12	25
	NC	760	18	24	24	12	25
	S	760	23	13	24	10	22
	W	` 760	26	11	24	10	22
			CONS	ERVATION LEV	EL III		
New Construction	NE	1.040	40	33	20	15	15
	NC	1.040	43	33	20	15	15
	S	1,040	45	35	20	15	15
	Ŵ	1,040	48	32	20	15	15
Retrofit	NE	1,300	16	28	31	17	30
	NC	1,300	19	28	31	17	30
	S	1,300	23	- 15	. 31	14	27
	W	1,300	26	12	31	14	27

- 78 -

BUILDING TYPE: RETAIL STORE

		CONSERVATION LEVEL I								
		First Cost	First Cost % of load saved							
		\$/1000 ft ²	Heating	Cooling	<u>Hot Water</u>	L&P	Aux.			
New Construction	NE	80	30	25	0	15	10			
	NC	80	32	25	0 .	15	10			
	S	80	28	35	0	15	10			
•	W	80	30	32	0	15	10			
Retrofit	NE	160	8	12	· 0	13	18			
	NC	160	10	12	0	13	18			
	S	160	11	7	0	12	12			
	W	160	13	6	0	12	12			
			CONS	SERVATION LE	VEL II					
New Construction	NE	175	42	37	5	24	16			
	NC	175	45	37	5	24	16			
· ·	S	175	45	40	5	24	16			
• •	W	175	48	37	5	24	16			
Retrofit	NE	290	23	20	0	25	36			
	NC	290 ·	26	20	0	25	36			
	S	290	25	11	0	23	24			
	W	290	27	10	0	23	24			
			CONSE	RVATION LEVI	EL III					
New Construction	NE	420	50	46	10	30	20			
	NC	420	53	46	10	30	20			
	S	420	55	50	10	30	20			
	W	420	58	45	10	30	20			
Retrofit	NE	520	25	20	0	25	45			
	NC	520	28	20	0	25	45			
	S	520	29	13	0	23	30			
	W	520	32	1.1	0	23	30			

- 79 -

BUILDING TYPE: N	(ISCEI	LLANEOUS					
			CONS	ERVATION LE	VEL I		
		First Cost	T. /5	of load say	ved		
		<u>\$/1000 ft²</u>	<u>Heating</u>	<u>Cooling</u>	Hot Water	L&P	Aux.
New Construction	NE	150	30	25 [*]	5	15 .	15
	NC	150	33	25	5	15	15
	S	150	35	35	5	15	15
	W	150	38	32	5	15	15
Retrofit	NE	300	9	5	0	9	. 14
	NC	300	11	5	0	9	14
•	S	300	8	4	0	8	13
	W	300	10	3	0	8	13
			CONS	ERVATION LE	VEL II		
New Construction	NE	400	42	35	10 '	15	20
new oonotraction	NC	400	45	35	10	15	20
	S	400	42	42	10	15	20
	Ŵ	400	45	39	10	15	20
Retrofit	NE	660	15	12	0	15	23
	NC	660	18	12	0	15	23
	S	660	20	7	0	14	23
	W	660	23	6 .	0	14	23
			CONSE	RVATION LEV	EL III		
New Construction	NE	1,040	50	40	10	20	20
	NC	1,040	53	40	10	20	20
	S	1,040	45	45	10	20	20
	W	1,040	48	42	10	20	20
Retrofit	NE	1,300	26	24	0	24	32
*	NC	1,300	30 .	24	0	24	32
	S	1,300	40	13	0	22	31
	W	1,300	44	12	0	22	31

		FIRST	COSTS O	F CONVE	NTIONAL	HVAC EC	ULPMENT			
						с [,]	~	L2	сл 1	ц?
			•			, ų	ب	<u>ب</u>	Ĩ	Ŧ
		e P t	ît ît	1.5.4	بې به ب	e o	-1 G	o ĥ	o t	. <u>o</u>
		19 11 11	ni si	11.	n i s i	· 국 보 O	ai 00	88	i OO	er 00 er
		, and in	/n	, a L	, 4 6 7	/l	,⊔et	가라	0S /1	다
		S H S	ν <u>μ</u> μ	Σ H v	γ <u>Σ</u> Ξ γ	QÃÝ	<u> </u>	v v	ΗŞ	<u>\$</u>
Α.	Gas Heat									
	NE	2,980	2,650	2,322	577	5,170	3,500	4,280	5,140	3,500
	NC	3,073	2,750	2,412	599	5,360	3,640	4,430	5,320	3,640
	S	2,730	2,410	2,115	528	4,720	3,200	3,920	4,700	3,200
	w	3,073	2,750	2,412	600	5,360	3,650	4 430	5,330	3,650
		-,						4,450	2,200	.,
в.	011 Heat			0.000		5 1 2 0				
	NE	3,026	2,660	2,205	817	5,130	3,490	4,250	5,130	3,490
	NC	3,120	2,760	2,376	848	5,320	3,630	4,400	5,310	3,630
	S	2,777	2,320	2,088	748	4,680	3,190	3,890	4,690	3,190
	W	3,120	2,760	2,385	850	5,320	3,650	4,400	5,320	3,640
с	Flec Heat									
···	NF	2 808	2 770	2.367	504	5.240	3.557	1. 060	5 180	3 5 5 7
	NE	2,886	2,880	2 457	522	5 4 30	3,700	4,000	5 360	3, 700
	NC	2,000	2,000	2,407	1.61	1,780	3,700	4,490	J, J00	3,700
	5 /	2,000	2,000	2,100	401 50/	5 / 20	2,200	3,970	4,740	3,230
	W	2,880	2,000	2,457	524	5,450	3,710	4,490	5,370	3,710
D.	Gas Heat W/AC									
	NE	4,705	3,239	3,780	1,978	8,940	5,940	7,720	14,667	5,940
	NC	4,682	3,360	3,870	2,051	9,150	6,080	7,600	13,500	6,080
	S	4,308	2,949	3,636	1.810	8,610	5,730	7.140	11.900	5,730
	Ŵ	4.866	3,362	3.888	2.056	9,180	6.095	7 620	13,520	6.095
		,			,		•	.,020		-,
E.	Oil Heat W/AC									
	NE	4,751	3,249	3,663	2,218	8,900	5,930	7,690	14,657	5,930
	NC	4,909	3,370	3,834	2,301	9,110	6,069	7,570	13,490	6,069
	S	4,355	2,859	3,609	2,029	8,570	5,720	7,110	11,890	5,720
	W	4,913	3,372	3,861	2,305	9,140	6,085	7,590	13,510	6,085
F	Floc Heat W/AC									
* •	NE NE	- / 533	3 350	2 825	1 005	0 010	6 000	7 500	12 0/0	6 000
	NE .	4,555	2,00	2 015	1,905	9,010	6,000	7,500	12,040	6 1/0
	NC	4,075	3,490	3,913	1,970	9,220	0,140	7,000	13,540	5 700
	S	4,130	3,069	3,681	1,743	8,670	5,780	7,190	11,940	5,780
	W	4,679	3,492	3,933	1,980	9,250	6,170	7,680	13,560	6,170
G.	Elec. Heat Pump									
	NE	4,833	3,654	3,975	2,205	9,310	6,150	7,800	13,040	6,150
	NC	5,125	3,790	4.065	2.276	9.520	6.290	7,960	13,840	6,290
	S	4,436	3,219	3,831	2,143	8,970	5,930	7,490	12.390	5.930
	W .	5,129	3,642	4,083	2,280	9,550	6,320	7,980	13,860	6,320
	· · · · · · · · · · · · · · · · · · ·			-	-		-	2		
н.	Gas Heat Pump	(705	1 0/5		0 705					7 050
	NE	0,123	4,965	5,255	2,/35	11,810	7,850	10,345	18,680	7,850
	NC	1,275	5,110	5,375	2,820	12,060	8,015	10,200	17,280	8,015
	S	5,890	4,260	4,725	2,890	11,050	7,595	9,290	15,000	7,595
	W	6,920	5,115	5,025	3,190	11,735	8,035	9,865	16,945	8,035

0

ı

- 81 -