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The accumulation in various laboratories of large numbers of multi-

component analyses of archaeological artifacts has required the development
of increasingly more sophisticated methods for intercomparing these data and
analyzing them statistically. There are two basic aspects to the newly

rs

applied methods of data handling. One relates to the practical problems of

dealing with large quantities of data. When one is handling literally

thousands of analytical results it is no longer practical to compare specimen

to specimen manually in order to determine whether these specimens can be

separated into statistically significant individual groups. Rather one can
resort to computer based procedures such as clustering techniques which can
rapidly generate matrices of similarity characteristics between all pairs of
specimens being considered and then groﬁp the specimens together upon the
basis of greatest mutual similarity. The second basic aspect relates to the
need for the application of true multivariate statistical analysis to these
multicomponent data. Such methods take into account correlations between
elements in calculating probability contours for specimen groups in multi-
component spaces. Both clustering techniques and a variety of multivariate

statistical methods have been applied extensively in other fields involing

multiparameter data, such as numerical taxometryﬂk ixi the biological scienceM AST

and intercomparison of specimens in classical archaeology itself. However,
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the application of

methods of these types in the field of archaeometry has been a relatively
recent development. A number of different methods of both clustering of
specimens into groups and multivariate evaluation of group membership are
being applied in several different archaeometric laboratories. This paper,
however, will deal exclusively with methods we have found to be practical
and useful in the evaluation of our multicomponent neutron activation analyses
and related studies of archaeological artifacts at Brookhaven National
Laboratory. These methods have been developed and tested by a group of co-
workers working under ;he general supervision  of Dr. Garman Harbottle and
myself. The methods have been applied most extensively and successfully to

data on pottery and related clays.

The Use of Log Normal Distributiomns

We have fairly consistently throughout our treatments assumed that our
data are log normally distributed and hence,as a rule,have worked with the
logarithms of concentrations of elements in our specimens rather than the
concentrations themselves. There are two reasons for this choice. First,
when we have plotted for compositionally consistent groups of specimens
histograms of frequency of occurrence versus logarithms of concentrations or
versus concentrations themselves, we have indeed observed that the data more
often are more normally distributed in the log concentration plots. This has
been observed, particularly for trace elements, in a number of geological and
forensic studies. The second reason is that working with logarithms of
concentration in a sense standardizes ome's data without having to make any
arbitrary g_priofi assumptions as to how one's data is grouped. In logarithm
of concentration space one observes for a compositionally matching group of

specimens that the spread of data is approximately the same for each of the
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individual components independent of the magnitude of the concentrations

of these components. For example, in pottéry the standard deviations in log
concentrations for iron and potassium oxides which usually are present in
concentrations of several percent are roughly the same as for europium and
lutetium oxide which are usually present at only the parts per million level.
This means that when the positions of specimens are plotted in log concentration
space the compositionally similar groups of specimens will group together in
glusters with roughly spherical symmetry, unless, of course, a high degree of
correlation exists between certain of the elements present. Such spherically
symmetric groups will not occur in ordinary concentration space unless all
elements concernmed are present at the same level of concentration or the data
are standardized. However, the quasistandardization that occﬁrs in log
concentration space is achieved automatically without making any assumptions
concerning the degree or nature of grouping within the assembly of specimens
being studied. It is fairly obvious that this automatic near standardization
and the approximately spherical groups it can produce much facilitates the
application of clustering and other multivariate methods. Thus it can be seen

that it is very convenient to work in log concentration space.

Clustering Methods

Our first step in determining whether a large assemblage of data,
involving the analyses of many specimens for a sizable number of components,
contains within it statistically meaningful compositional groups is to resort
to computer programs that produce cluster analysis of the data. Such clustering,
which is wusually carried out in the log concentration space of most if not
all of the elements determined, provides a preliminary indication of grouping
within these data. For a variety of reasons we do not feel that clustering

provides a fully reliable definition of the groups present. The final assignment




of individual specimens into groups is best based upon multivariate probability

calculations. Clustering, however, is a rapid and usually quite reliable

method of determining how a large set of specimens are likely to be subdivided.
For clustering we first resort to one of two computer programs written

at B:ookhaven by A. M. Bieber, Jr., NADIST and DISCMI. These programs calculate

dissimilarity matrix elements for all pairs of specimens upon the basis of

one of several different dissimilarity or distance parameters. These include

six distance parameters which in different ways describe the proximity of

specimens plotted as points either in elemental concentration or log concentration

space. They are:

1) The normal Euclidian Distance between specimen points in this space

n 9 1/2
ED = |} (A, -B,)

. 1 1
i=1

where n is the number of variates and Ai and Bi the coordinates for the two
specimens being compared;

2) The square of this distance, the Squared Euclidian Distance;

3) The Mean Squared Euclidian Distance, that is, the Squared Euclidian
Distance divided by the number of.variates; In instances where data are
missing for individual specimens the Mean Squared Euclidian Distances involving
these specimens,which are calculated for a lower than normal number of
coordinates, will be clése to what they would have been had no data been
missing by virtue of the distance being averagéd over the number of coordinates
actually employed;

4) The Mean Euclidian Distance;

5) The "City Block" Distance, which is just the linear sum of the

differences of the coordinate positions for a pair of specimens




There are also two correlation parameters available, 1) the Pearson CGorrelation
Coefficient R, and 2) Cosine Theta, where theta is the angle positions between
lines drawn from an arbitrary origin to the position points of a pair of
specimens.

Clustering is carried out by the computer program AGCLUS which was
written by D. C. Olivier at the Department of Psychology and Social Relations,
Harvard University. With this program, clustering can be carried out in a
number of ways. Each method starts with those specimens which are most
similar, i.e., which have the least dissimilarity parameter relative to each
other, clustered together. Additional specimens (or eventually

or clustered together
clusters) are then added to existing clusterg&upon the basis of one of several
criteria, e.g., the clustering together of units with least remaining mitual
dissimilarity parameters, or units which when clustered together will form
the most compact new clusters. Eventually all specimens will be clustered
together and the level of the dissimilarity parameter at which each joining
together of subunits has occurred recorded.

Eventualiy a éomputer plotted dendrogram of the clustering is produced,
which is a display of the order in which specimens were clustered together
and the levels at which clustering occurred. This is done by a plotted

series of horizontal and vertical lines which link together successive clusters.

Such a dendrogram showing the cluster analyses of 63 Aegean pottery sherds




upon the basis of Mean Squared Euclidian Distance is shown in Figure 1. The
distance toward the right of which the horizontal lines are terminated and
joined is an indication of the level of the distance parameter at which

grouping into clusters occurred.

Preliminary Univariate, Element by Element, Evaluation

of the Groups Indicated by Clustering

Although univariate statistical techniques do not provide as definitive
a basis for final assignment of specimens into groups as do multivariate
techniques, they can be applied much more easily and rapidly to the data and
they can confirm some significant divisions between groups of specimens. If
two groups of specimens are found to be significantly separated on the basis of
single variate they will remain significantly separated as more variates
are taken into account. Hence significant separations into subdivisions

probability

established upon the bases of element by elemeng&consideration should persist
when true multivariate procedures are applied to the sample of specimens.
However, as shall be demonstrated later, subsequent multivariate analysis
can determine that what, upon the basis of wmivariate analysis, appear to be
single groups of specimens can sometimes be meaningfully divided into distinctly
separate subgroups. Such additional subdivision can occur only when a significant
degree of correlation occurs between some of the variates. Hence, univariate
techniques can indicate and confirm valid subdivision within the statistical
sample but these subdivisions may not be single normally distributed groups.

We have found it to be quite convenient and useful to resort at this
stage to a computer program ADSTAT, written by me at Brookhaven,‘which
converts concentration data to logarithms and calculates averages and

standard deviations for each variate. Tables are printed in which the data

itself is tabulated together with the mean values, the standard deviations




expressed, in effect, as a percentage of the mean, standard deviation ranges
and the ranges defining 95 percent probability limits (or other limits if so
requested) for group membership based upon Student's t statistic. All.
individual concentrations lying outside of these limits are flagged in the
table.‘ It is obvious that if several concentrations for an individual
specimen are so flagged the specimen very probably does not fit the group in
which it has been included.'

A computer output printer plot of the statistical analysis is produced
in which on a iogarithmic scale the mean values for each component are plotted
bracketted with a standard deviation range indicated by plus signs and the
Student's t probability range by an extending set of minus signs. Figure 2
shows such a plot. Because the concentration ranges of different components
can differ by as muchvas four or even five orders of magnitudes, it has been
expedient in these plots to shift the points for some low concentration
components over toward higher values by fixed numbers of decades so that high
concentration and low concentration components appear in nearly overlapping
positions. This éermits the plots to be accommodated conveniently in only
three decades of concentration along the abscissa. Since for an individual
component the same shift is made in all plots which are to be compared, this
shift is in no way confusing.

In practice it has been found to be very helpful to compére two or more
of these plots by superimposing them over a light box. One can théﬁ see at a
glance which elements differ in the groups of data being compared and whether
the deviations are significant. One can also use ADSTAT to produce analogous
plots for individual specimens. These plots can then be compared to‘each
other by superposition or to group plots to ascertain, again at a glance, how

closely the specimen resembles the group in all components.




Since these plots are on a logarithmic scale, a wmiform shift of one
plot relative to another in a horizontal direction is equivalent to altering
all components of the specimen being compared by a constant multipliéation
factor. Hence if two specimens differ from each other by just a dilution
factor, which might be approximately the case if two pieces of pottery made
from the same clay contained substantially different amounts of a relatively
pure temper, their plots could be brought into near superposition By such a
horizontal shift.

The program ADSTAT allows for the same sort of shift to be made
mathematically. This data treatment, which I have called "best relative fit",
allows one set of data to be adjusted to another set through alteration of
all items in it by a constant multiplication factor so chosen as to achieve
a best least-squares matching between the log concentration values for the

two sets. This is done by calculating‘the factor
A
_ (& _i\l/n
£ = (.77 B,
i=1 "1/

where n is the number of variates being matched, Ai are the actual concentrations
. for the specimen being adjusted and Bi the corresponding concentrations in the
set chosen for comparison. If now all values Ai are divided by this factor

the least squares fit in log concentrations will have been achieved. The
process has some interesting properties such as the fact that if one adjusts

all specimens within a group to the meaﬁ values of that group, then the mean
values for the adjusted group will be the same as those of the original group.
The computer program allows one to select arbitrary sets of variates for such
fitting and to leave the remaining data either unchanged or altered along

with the fitted variates. A somewhat tricky but quite useful application

of this option is to make a best relative fit adjustment for a group of




specimens upon the basis of one element alone. The concentrations for all
other adjusted elements will then be transformed into concentrations relative

to concentrations of this element.

Multivariate Probability Calculations

When one is working with a single variable parameter and is attempting
to determine 1) whether a given set of specimens represents a sampling of one
or more than. one population,Aor 2) whether a given specimen can be assigned
with confidence to a given population-one usually resorts to the concept of
a normal distribution as characterizing the frequency of occurrence of
specimens within a single population. One first either tests to determine
whether the sample of specimens presumed to represent the population is
reasonably normally distributed, or for small samplings assumes it to be so
upon the basis of having experienced this when examining larger groups of
specimens. One then calculates upon the basis of normal distribution the
probabilities that the separation between RFoposed different groups are
indeed significant or the probabilities that individual specimens would
j belong to specified groups.

It is of course quite possible to carry out the same calculations on
a multivariate basis. Statisticians have for many years worked with
nmultivariate normal distribution functions. There even exists a multivariate
parameter, Hotelling's Tz,which is analogous to the univariate Student's t
parameter in that it brings into account in a probability calculation the
additional uncertainties arising from having a small pumber of specimens in
a sample. In both the univariate and multivariate case the normal distribution

function can be written in the same basic form




10

f = K e_uz/2
In the univariate c;se K is the constant /2 and u is the standardized distance
(x - ;D/c, where x isfthe coordinate of an individual data point, x is the
_coordinaté of the centroid of a normally distributéd group to which the data
‘point is being compared and o the standard deviation of that group. 1In the
multivariate case K is a constant that depends upon the number of variétes
and u is a multidimensional standardized distance which is equal to ;he
Euclidian Distance from the center ofba group to the data point in question
divided by the standard deviation for the group in that direction. 1In
general in multivariate space the standard deviation for a population will
be a continuously varying function of direction relative to the centroid of
the population sample. The square of this standardized distance has been

called by statisticians the Mahalanobis Distance, MD, and can be calculated

as follows:

n n
v o= M =} ) (x, - %)L (x =X
i=1 j=1 - + M3

where Xi and X. are the coordinates for the_variates i and j for a data point,
ii and ij are the corresponding coordi§ateé for the centroid of the population
inverse of the
sample, Iij is the ith-jth element of theAvariance covariance matrix for the
group, i.e., population sample, and n is the number of variates. I have
written a computer program ADCORR which among other operations calculates the
variance~-covariance matrix and the centroid for any group of specimens and
then determines from these the Mahalanobis Distances from the centroid of the
group for all members of the group and for any additional specimens one might
wish to compare to the group. From these the probabilities that the

individual specimens could belong to the group and yet deviate from the centroid

by as great a Mahalanobis Distance as they do are calculated. 4An option of
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the program is that group member specimens showing a low probability of belonging
to the group can be deleted from it, with this elimination process being
reiterated after the statistics for the reduced group are calculated until a
fully internally consistent group is reached.

There are two practical problems that can complicate the calculation
of these probabilitiesQ One is that one must have more specimens included
within the group than the number of variates used in the calculation. The
variance-covariance matrix calculated for a group whose number of members
is less than or equal to the number of variates will necessarily be singular
and hence cannot be inverted. The Mahalanobis Distance calculation requires the
inverse of this matrix. What this means mathematically is that in an n
dimensional variate space one needs at least n + 1 independent data points
to define variance in all discussions. If one has only n + 1 specimens in
the group the calculation will of necessity show all specimens to be equally
probable members of the group regardless of their relative coordinates. As
is true in all calculations of statistical probabilities, the results become
more meaningful as the number of specimens increases and ideally one should
have at least several times the number of specimens defining a group as the
number of variates. However, in practice this is often not possible and
fortunately a statistic,Hotelling's f{ which is a multidimensional generalization
of Student's t, has been developed which allows one properly to adjust
probability éalculations for the additional uncertainty introduced by relatively
small samples. The probabilities by program ADCORR are all based upon the
distribution of Hoteliing's T%. However, this does not solve all of one's
problems for if ome is working with a smaller than ideal number of specimens
the inclusion of an additional specimen will tend to alter the variance-

covariance matrix in such a way as to accommodate the specimen within the group.
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Therefore, unless the number of group members is adequately high the calculated
probability of an individual specimen belonging to a group will be
significantly higher when that specimen is included within the group than

when it is excluded from the group. When refining. a group with this method

one encounters some specimens which show low probability of belonging to a
group when they are included within it, and therefore can.be excluded from

the group with confidence, and some specimens which show a high probability of
belonging to the group even when excluded from it and hence.can be included
within the group with confidence. However, one also‘can encounter intermediate
specimens for which cne calculates a reasoﬁably high probability of belonging
to a group when the calculation is made including them within the group and

a significantly low probability of belonging to the group when they are
excluded from it. One, of course, feels uncertain about such specimens and'
tends to exclude them from the group one is defining. It is a wise procedure
therefore to test all marginal group members to see if they fall in the
ambiguous category.

In a multivariate space all points of equal probability will, of course,
have equal Mahalanobis Distances relative to a population centroid and will
define a hyperellipsoidal surface in that space. Figure 3 is a correlation
diagram for the elements scandium and iron upon which is plotted the distributions
of specimens from three regions of the Middle East. In each inétance the
specimens include clay samples from the three.regions and pottery sgerds which
because they were found in the same regions as and were closely similar in
composition to the clays could be presumed to have been fabricated from these
local clays. The clays in question are the Rea Field Clays which typify the
deposits of the Palestinian coastal plain, the Limestone Hill Clays which

are found in the central upland of Israel, and the geologically recently




deposited Alluvium from a number of sites along the Nile, ranging from Aswan

to Cairo. Around each of the data sets is plotted the probability ellipsis which

define, upon the basis of Hotelling's Tzdistribution, the ninety~five percent
compositional

confidence limits of containment of each of theltypes. Such correlation

diagrams with probability ellipsis can be computer plotted through use either

of the program ADCORR or a program RAPLOT, which is yet to be discussed.

The Need for Multivariate Data Handling

In Figure 3 one can see that the elements iron and scandium are highly
correlated in each pottery group. This is to be expected because the
elements iron and scandium tend to be highly correlated in nature, as many
geological studiés of rock and mineral compositions have shown. However,
because the two Palestinian clay and pottery groups are primafily only offset
from each other along nearly parallel correlation regression lines, the
individual iron concentrations and scandium concentrations in the two groups
of specimens largely overlap. Hence if one were to analyze this assembly of
data only element by element upon the basis of iron and scandium, one would
fail to observe that the Red Field Clays and the Limestone Hill Clays are
significantly different in composition from one another. One must use a
method of analysis that fully takes into account the correlation occurring
between variates as well as the absolute values of the coordinates of the
variates to achieve a full resolution of omne's data. A Mahalanoﬁis Distance
calculation automatically takes into account all of the correlations existing
between variates for a group being analyzed. 1In the case shown in Figure 3
a Mahalanobis Distance calculation showed that the Limestone Hill Clay
specimens all had less than 0.001 percent probability of belonging to the
Red Field Clay group. Thus it can be seen that when correlation between

variates is involved, significant separations between groups of specimens can
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occur which would be missed in univariate, element by element, analysis but

observed and shown to be signficant in a true multivariate analysis.

Use of Characteristic Vectors of the

Variance—~-Covariance Matrix

It can be shown that the axes of the probability hyperellipsoids
generated in a Mahalanobis Distance calculation for a normally distributed
group are the characteristic vectors, i.e., eigenvectors, of the variance-
covariance matrix of that group. The calculation of characteristic vectors
and their corresponding characteristic values are well described in almost all
standard references dealing with matrix algebra, and I shall therefore not
comment upon the methods of their calculation here. I shall simply describe
the characteristic vectors as a set of n mutually orthogonal coordinate

vectors in an n dimensional multivariate space with origins at the
centroid of a data group which are oriented in the multivariate space along
regression lines of correlation to the extent that these exist for the data

‘ basis for a

points of the group. Hence they provide %Ndescription of the distribution of
the group from which all correlation has been removed. That is to say, the
characteristic vectors constitute a new set of variates between which no
correlation exists for the data group being analyzed. The set of characteristic
basis vectors are similar to the original orthonormal set of elemental basis
vectors with the exceptions only that their origin have been transferred to
the centroid of a group and their directions in multivariate have been
rotated to conform to the directions of maximum and minimum variances within
the group. Hence a transformation to characteristic vectors in no way alters

the relative positions of data points in a multivariate space but only provides

a new description of this distribution.
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In Figure 3 the characteristic vectors for the group of the Palestinian

Red Field clay specimens are drawn through the group and marked A and B. It

1)

can be seen that the vector Ailies along the regression line for correlation
[N 2)

between iron and scandium for the group, alsgdis in the direction of maximum

3)

variance within the group and alquis the major axis of the probability ellipse
for the group. The vector B is perpendicular to A, is in the direction of
least variance for the group and is the minor axis of the probability ellipse
of the group. It is interesting to note that the elongations of the other two
groups in Figure 3 are ﬂearly parallel to each other so that the characteristic
vectors of all three sets and indeed that of the composite of all of these
data points would be nearly parallel. This is a state of affairs which we
have come to expect to be quite common in clay and pottery analyses. The
elemental correlations occurring in different clays tend to be similar even
in instances in which the mean relative abundances of the correlating elements
are significantly different. The parallel placement of groups with internal
correlation is in part the result of working in log-concentration space because
to the extent that the ratios of concentrations of a pair of correlating
elements in data sets are constant within each set the correlation regression
lines for each set whén plotted in log concentration space will have a
slope of one. This tendency for groups with pronounced correlation to be
parallel to one another in log concentration space and hence haQe characteristic
vectors that are parallel to one another is another advantage of using the
logarithms of concentrations rather than the concentrations themselves.

Those familiar with factor anmalysis will recognize that working with the
characteristic vectors of the variance-covariance matrix is similar to the
method of principal component analysis. However, there is a significant

difference between the applications normally made of the characteristic vectors
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in principal component analysis and the applications that are useful in this
instance which stems from the fact that one is usually using principal component
analysis to clarify the relationships between variates while in our investigations
we are more concerned with the relationships between specimens. In principal
component analysis one obtains the characteristic vectors of the variance-
covariance matrix or the correlation matrix and then concentrates one's
attention upon those vectors that explain most of the variance or correlation.
stually the vectors with little variance are ignored. Figure 3, however, makes
it clear that in our studies, where we are attempting to discriminate between
significantly different groups of data, there is no a priori reason to expecﬁ
any of the characteristic vectors to be more discriminating than others. It is
apparent in Figure 3 that the characteristic vector of greatest variance, A,

for the Red Field Clay group would discriminate between this group and the
Nile Alluvium but fail to discriminate between it and the Limestone Hill Clays.
In contrast to this the characteristic wvector of least variance, B, discriminates
well between the two Palestinian groups but would fail to discriminate between
the Red Field Clays and Nile Alluvium. Accordingly in our investigétion we
llook at all characteristic vectors equally carefully to ascertain which if any
of them will discriminate between groups. As aids in determining whether
individual characteristic vectors are discriminating, the program ADCORR will
print out the coordinates for each specimen 'along the characteristic vectors
and also histograms of the distributions of these Coordinates for the total
assembly of specimens along the characteristic vectors. Histograms showing the
distributions of specimens of the groups shown in Figure 3 along the two
characteriétic vectors calculated from the iron and scandium data for the group
formed by combining all of the specimens together are shown in Figures 4 and 5.

The subdivision of the specimens into three separate groups is apparent in these

histograms. .
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Once one has determined which of the characteristic vectors are
discriminating it is easy to determine in turn which of the original component

elements are most involved in this discrimination because one of the tables

lists compositional
printed by ADCORR#Fx the components of the original basigjelemenﬁsprojected

onto the characteristic vectors. From this table one can infer which elements

are most involved in the constitution of an individual characteristic vector.

Standardized Multivariant Coordinates

When one calculates the characteristic vectors for a variance-covariance
matrix one transforms the matrix into a simple diagonal omne,
that is, one for which all off diagonal covariant terms are zero. The
transformed matrix is the variance-covariance matrix for the characteristic
vectors. The diagonal matrix elements, which are referred to as the characteristic
values of the original variance-covariance matrix, are the variances for the
characteristic vectors. The fact that the covariance terms of the matrix
are all zero results from the fact that there is no correlation between the
characteristic vectors.

It is, of course, possible to define the position of all data points
in the multivariate hyperspace. by coordinates along the characteristic vectors.
Such coordinates are the projections of data point positions upon the characteristic

basis
A‘vectors. These coordinates will defineé vectors between the cent;oid of the group
and the data points in question, and the sum of the squares of sets of these
coordinates for each specimen will be equal to the squared Euclidian‘distances
between the centroid and the data point for that specimen. If one now divides
each of the characteristic vector coordinates for a data point by the square
by

root of the corresponding characteristic value, i.e.,Athe square root of the

characteristic variance, one obtains a set of standardized coordinates which

will define a standardized vector from the centroid of the group to the data

.
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point whose length is the Euclidian Distance between these points divided
by the standard deviation of the group in that direction. The sum of the
squares of these standardized characteristic vector coordinates for a data
point will therefore be the Mahalanobis Distance for that point. The
characteristic vectors for a group are a unique set of basis vectors for
achieving the transformation to standardized dimension throughout a multi-
variate space iIn the manner just described.

When one does transform to multivariate coordinates which are standardized
with respect to a particular group, the hyperellipsoids of equal probability
for that group are transformed to hyperspheres. One can say that the group
plotted in this transformed space will have''spherical' symmetry. All other
groups which are similarly shaped and oriented paréllel to the group which
forms the basis of the transformation will be similarly transformed into
spherically symmetric clusters.

Such a transformation of elongated, highly correlated groups into
roughly spherical internally uncorrelated groups is shown in Figure 6. The
three data groups plotted in Figure 6 are the same ones, Palestinian Red Field
Clays, Limestone Hill ¢lays and Nile Alluvium, plotted for the elements iron
and scandium in Figure 3. In this instance we first calculated the variance-
covariance matrix for the Palestinian Red Field Clay group, determined the
characteristic vectors of this matrix, and then calculated standardized
characteristic vector coordinates for all specimens. In Figure 6 the
specimens have then been plotted in terms of their standardized characteristic
vector coordinaﬁes.

The clustering procedures based upon distance or size parameters as
measures of similarity rarely take into account correlation. Accordingly these

procedures do not serve to separate well adjacently situated highly correlated
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groups such as the Red Field Clay and Limestone Hill Clay groups as plotted

in Figure 3. However, after the data for such groups have been transformed as
they have for Figure 6, they clearly can be separated int§ clusters much more
definitely and unambiguously. We have found it to be very useful to transform
an assemblage of specimen analyses into standardized characteristic vector
coordinates by means of program ADCORR as a preparatory step for cluster
analysis. Inmany instances when we have carried out such transformations on

pottery data the subsequent clustering has been significantly improved.

The Handling of Missing Data

When one is analyzing many specimens for a sizable number of components,
it is almost inevitable that for a variety of practical reasons some of the
concentrations will be missing for some specimens. If one, however, has the
determined values for, let us say, twenty-two or twenty-three out of twenty-
four components of a specimen, one would quite sensibly try to make as much
use as one could of the existing data. One would be loath to eliminate such a
specimen from consideration in forming or calculating the properties of
related groups simply because its data set is not fully complete.

There are several ways one can proceed in surmounting this difficulty.
It has been mentioned that in calculating a similarity matrix for clustering one
can use the Mean Euclidian Distance or Mean Character Differencerwhere the
distances are divided by the number of variates actﬁally used in calculating
a distance between two specimens and hence the effect of a missing set of
coordinates is reasonably averaged out. One can use a;sémewhat analogous
approach in calculating a vériance—covariance matrix by calculating each
matrix element for the total number of specimens within a group for which data
exists for both of the two variates of that matrix element. In this approach

the number (n-1), that occurs in the denominator of each variance or covariance
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matrix element and is one less than the number of specimens, might be different
for different matrix elements. Those matrix elements for pairs of variates
for which a full set of data exists will be calculated upon the bases of the
full set of specimens. Those matrix elements for pairs of variables for
which some data is ﬁissing will be calculated just as they would be for that
subset of the group of speciﬁens which has complete data for this pair of
variates., This would seem to be a reasonable approach and one of the optioms
in ADCORR is to compensate for missing data in this way when calculating a
variance~covariance matrix. However, we have found this approach to lead to
some rather peculiar results in praétice, including even the calculations of
negative Mahalanobis Distances for some specimens. We have tended to aveid
the use of this optiom.
Another approach would be to substitute4for a missing datum a value
that would have a minimal effect upon the calculation concerned. One might
for the missing variate

thlnk that the average value{for the group would be a satisfactory substitution.
However if significant correlation exists between variates within the group
the substitution of group average value for one or more of the correlating
variates might be a very distorting choiceﬁ Consider again Figure 3 with the
very elongated distribution of the Red Field Clay group in iron-scandium
spaces. If only an irom value were available for a specimen and this value
differed significantly from the mean of the iron values, then the substitution
of a mean scandium value might well place the specimen completely outside of the
group. In fact one can see in the case cited that the arbitrary replacement
of scandium values for those Red Field Clay specimens lying within the ninetyf

five probability ellipse would transfer a good half of those specimens to

positions outside of that ellipse.
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A considerably more sensible value to substitute for a missing datum
would be one chosen so that the specimen Would conform to the

group with greatest probability. This means choosing the missing datum or
daté to minimize the Mahalanobis Distance for the specimen. This can be done
in a very straightforward way by setting the partial derivatives of the
expanded Mahalanobis Distance function with respect to the missing variates
equal to zero. If there are n variates for which data is‘missing for a
specimen the n partial derivatives with respect to these variates will form
a set of n linear equations, fhe simultaneous solution of which would be the
substitution coordinates which would most closely fit the specimen to the
group.’ To make this process more clear I shall develop éhé equations for the

cases of a single missing datum and two missinyg data.

Let us write the function for the Mahalanobis Distance in the form

MD = :Ztgxilijxj

where Xi = (xi - ii) and X, = &. = x) are the deviations of specimen coordinates
for variates i and j from the ceﬁtroid of a group, Iij is the ith, jth matrix
element of the inverse of the variance—covariance matrix for the group and

both summations are made over all variates. If a missing datum is designated

Xa the criterion that its selection lead to a minimum value of the Mahalanobis

Distance lead to the equations

i
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5x. OP) = 5y (Z Z XiIinj)
a a 1 ]
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Since I _, . the last equation reduces to
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21X +2y I_.X, = O
aa a . air 1
i#a
Y I_.X,
X _ i#a al
a I i
aa

in which the X for ifa are all existing data for the specimen in questionm.
In the case of two missing data for a specimen, Xa and Xb’ one has a

pair of partial derivatives set equal to zero

3 -
oX D) = 2T X, +2D,.% * . 2} T4% = 0
a i#a or b
) _ ' .
5y (D) = 2I;X + 2L X + 2y X =0
ifa or b

resulting in the pair of linear equations

_Z I

aiXi
i#a or b

IaaX'a + Iabxb

]

-l Lg%

IbaXa + Ibeb .
i#a or b

the simultaneous solution of which will provide the substitution values for
the two missing data. The sets of linear equations one obtains for greater
numbérs of missing data are, of course, closely analogous to these.

Program ADCORR provides as one ofvits options the calculation of
substitutions for missing data upon this basis of minimizing the Mahalanobis
Distance for specimens, In doing this the program first calculates a
variance—covariance matrix for which group average values are substituted for

data missing for specimens of the group. Having calculated a new set of

missing data values from the inverse of this matrix a new variance-covariance
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matrix is calculated using the new missing data values, which in turn allows
one to calculate an improved set of missing data values. This process is
iterated until the missing data substitution values and the corresponding
variance-covariance matrix have effectively become. constant. Based upon our
experience in using it we are of the opinion that this method is the most

logical and effective one for compensating for missing data.

Auxiliary Programs

Alan Bieber, Jr. has written a series of computer programs which have
supplemented our more basic programs well and have proven to be quite useful.
The first of.these is RAPLOT which plots correlation diagrams between pairs of
variates using a normal printer for producing these plots, thus avoiding the
need to use auxiliary equipment such as a Calcomp plotter. Pfobability
ellipses may be plotted around groups of data points. The program also
calculates and tabulates 1) the ratios between pairs of variates for each
specimen, 2) the means and standard deviations of these ratios for separate
groups as well as 3) the means and standard deviations for the separate
variates themselves, and 4) the Pearson product—-moment coefficient R for pairs
of variates.

A second program HISTEL produces a printer output histogram of the
distributions of specimens upon the basis of their concentrations or log-
concentrations of selected compound. A third program SKWURT analyzes in one
dimension the skewness or kurtosis of group of data which one is testing to
determine whether it can be regarded as a sample of a normally distributed
population.

Summary
Clearly this set of procedures do not begin to exhaust the methods which

can be effectively applied to the classification of specimens into compositionally
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consistent and significantly different groups. They have, however, provided
an effective approach to this problem, and one that takes into account the
interdependence between concentration levels of some components as well as

the individual magnitudes of these concentrations. . Because strong correlations
do frequently exist between elements present in pottery, we believe that
multivariate techniques which take such correlations into account ultimately
nust be employed in order to fully resolve a set of data. However, much can
be accomplished by more simple element by element methods, and we continue to
use monovariate techniques along with the multivariate ones. In general, it
has been found to be both more convenient and accurate to work with logarithms
of concentrations rather than concentrations themselves. We have usually

found clustering techniques to be our most useful preliminary tool for grouping
large amounts of data, and multivariate probability calculations to provide

the most reliable final criteria for the assignment of specimens to groups.
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Figure Captions
Figure 1
Dendrogram of the cluster analysis of 63 Aegean sherds generated by
Program AGGLUS, using type 5 dusting with Mean Squared Euclidian Distance.
Figure 2
Plot generated by Program ADSTAT of mean concentrations, standard
deviation ranges, and 95 percent confidence ranges for various components in

69 Palestinian Red Field Clay specimens.

Figure 3
Iron-scandium correlation plot generated by Program RAPLOT for three
groups of Middle Eastern Pottery. 95 percent probability ellipses are plotted

around each data group.

Figure 4
Distributions of Middle Eastern clay and pottery specimens along the
characteristic vector of Greater Variance based upon iron and scandium

concentrations in all specimens.

Figure 5
Distributions of Middle Eastern clay and pottery specimens along
characteristic vector of Lesser Variance based upon iron and scandium

concentrations in all specimens.

Figure 6

Distributions of the three Middle Eastern pottery groups of Figure 3
plotted in the two dimensional standardized characteristic vector space based
upon irén and scandium concentrations of the Palestinian Red Field Clay

specimens.
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