Broose: a Practical Distributed Hashtable based on the De-Bruijn Topology

Anh-Tuan Gdi Laurent Viennot
INRIA Rocquencourt INRIA Rocquencourt
anh-tuan.gai@inria.fr laurent.viennot@inria.fr
Abstract Most protocols for distributed hashtables split the key

space among nodes according to their identifiers. This re-
Broose is a peer-to-peer protocol based on the De-Bruijnsults in a very strict topology which is hard to make reliable

topology allowing a distributed hashtable to be maintained With regard to node failures. (This is the case for previ-
in a loose manner. Each association is stored on k nodesous distributed hashtables based on the De Bruijn topol-
to allow higher reliability with regard to node failures. Re- 09y [7, 5, 2, 1].) The major breakthrough of Kademlia [6]
dundancy is also used when storing contacts avoiding com-is to select the nodes storing an association for a given
plex topology maintenance for node departures and ar- key in a loose manner: on thieclosest nodes to the key
rivals. It uses a constant size routing table of O(k) con- for some metric at the moment when the association is in-
tacts for allowing lookups in O(log N) message exchange serted. Contacts populating the routing table are also se-
(where N is the number of nodes participating). It can lected in a similar loose manner. The paraméter tuned
also be parameterized for obtaining O(log N / log log N) according to a probability,, of node failure within the next
steps lookups with a routing table of size O(k log N). These hour. Some experiments [6] show that approximately 70
bounds hold with high probability. Moreover, the protocol percents of nodes with uptime at least one hour stay con-
allows load balancing of hotspots of requests for a given nected one more hour. This suggest < 0.3 if nodes
key as well as hotspots of key collisions. The goal is to participate in storing associations only after the first hour
obtain a protocol as practical as Kademlia based on the of uptime. The authors of Kademlia suggést 20. The
De-Bruijn topology. probability that all the nodes storing an association quit the

network is then less than0—'°. An association is then
keywords: peer-to-peer, ditributed hashtable, De Bruijn republished every hour. (As a node stores all the contacts

topology. which are close to its identifier, republication is made lo-
cally.)
1. Introduction Kademlia uses a topology similar to the hypercube re-

sulting in a routing table oD (log V) buckets for lookups

in O(log N) steps. (A bucket stordscontacts which can
equivalently participate in a given lookup.) However the
same lookup efficiency can be achieved using a constant
size routing table with the De Bruijn topology. The De-
Bruijn graph overN = 2™ nodes is defined as follows.
Every nodeu with identifier u[1,n] has two successors

s = u[2,n]0 ands’ = u[2,n]|1 obtained by shiftingu

to the left @ <« 1) and adding a bit on the right (one of
these successors may betself), and thus two predeces-
sorsp = Ou[l,n — 1] andp = 1u[l,n — 1]. This simply
defined graph has the property of having constant in-degree
and out-degree 2 and logarithmic diameteOne can eas-

ily find a route fromu to any nodev = vy -+ v, u —
u[2,nlvy — u[3,njvive — -+ — un,nfor v —

v. Note that another route can be similarly found by fol-
lowing edges backward. This topology can be adapted for
*Research supported by the PairAPair project, ACl Masse dedgsnn @ varying numbetV of nodes for getting a very efficient
fDomaine de Voluceau, B.P.105, 78153 Le Chesnay cedex, France. distributed hashtable [7, 5, 2, 1]_ Lookups can be made

Broose is a peer-to-peer protocol based on the De Bruijn
topology allowing a distributed hashtable to be maintained
in a loose manner. More precisely, conversely to previ-
ous distributed hashtables based on the De Bruijn topol-
ogy [7, 5, 2] and similarly to Kadmelia [6], it stores an
association ot nodes instead of one, for getting high re-
liability with regard to node failures. Similarly to other De
Bruijn based hashtables it uses a constant §ige) rout-
ing table instead oD (klog N) (whereN is the number
of nodes) for Kademlia. Lookups are then performed by
contactingO(log N) nodes. Similarly as Kademlia, the
protocol can be tuned to obtain(log N/ loglog N) steps
lookups with a routing table of siz@(k log V) instead of
O(klog® N) for Kademlia (see Table 1 in Section 4 for a
more detailed comparison).

by shifting bits to the right from predecessor to predeces-
sor as in [7] or to the left from successor to successor as

in [2]. However, these solutions split the key space very
strictly among nodes, inducing complex topology mainte-
nance when nodes join and quit the network.

e R, stores thé' closest nodes tbu[1,n — 1],
e R, stores thé' closest nodes tou[1l,n — 1].

k' is a protocol parameter lying betweky2 andk. See
Section 4 for more details. The reader may first assume

Broose generalizes both approaches (shifting left or right)., _ ;.

and offers a very simple routing table consisting of three

To make a lookup for a key, a nodeu first esti-

buckets. As in Kademlia, no topology maintenance is needef, 5tes the distancé in number of hops to a node storing

with regard to node arrival and departure thanks to redun-
dancy in contacts. Reenforcement of buckets through re-

guests is also achieved by using both types of lookups.

w. The idea is to contact any nodg_; in R,,,, and then
any nodev,_» in the R,,, , bucket ofv,_;, and so on
until finding some nodey. If d was chosen sufficiently

The rest of the paper is organized as follows. Section 2 |56 4, should have an identifier sufficiently close o
presents the Broose protocol in detail. Some simulations , gtore information associated4a The intuition behind
are presented in Section 3. Finally, the protocol is analyzedthis process is that eaah will have an identifier close to

and its correctness is proved in Section 4.

2. Broose Protocol
2.1. The xor metric and identifiers

All node identifiers and hash table keys arbits pos-
itive integers. Each node chooses its identifier randomly.
n should be sufficiently large for making collisions very
unlikely (n = 128 or n = 160 for example). A key, value
association will be stored on tleclosesinodes, i.e. on the
k nodes with closest identifier to the key for the xor metric.

As in Kademlia, we use the xor metric because it mea-
sures whether identifiers have long common prefix: two
identifiers are at xor distance less trtr! if and only if
they share at least the sarniérst bits. (Identifiers are read
as positive integers as well as the distance v between
two identifiersu andv.) The xor distance verifies the trian-
gular inequality since: © w = (u ® v) ® (v @ w) for any
u,v,wandx @y < xz+y foranyz,y. Aninteresting prop-
erty of the xor metric is that there are exactlydentifiers
at xor distance less thanfrom any given identifier.

For alleviating notations, we will equally denote by
nodeu and its identifien = u[1, n]. u[1] is the high order
bit of w. w[é,j] = wu[i]-- - u[j] will denote thej — i + 1
bits portion ofu beginning at position. If x andy are
two bit sequencesgy will denote the sequence obtained
by concatenating them. i = z[1,4] is a bit sequence,
T = z[1] - - «[¢] will denote the sequence where each bit
isnegatedf @z =1---1). x < d = z[d+ 1,n]0---0
will denote the identifier obtained by shiftingby d bits to
the left and padding with zeros.

2.2. Right shifting lookup
Each node maintains two buckdfy, R; storing con-

tacts with identifier close to the right shifted identifier of
the node. More precisely, for a node with identifier

wli + 1,du[l,n — d + i]. The bits ofw are inserted on
the left and shifted to the right until a node sharing a long
common prefix withw is reached. (A more detailed proof
of correctness is given in Section 4.1.)

As shown in Section 4.1d can be estimated frorR,
or Ry: if [is the length of the longest common prefix of the
identifiers contained ik, thend = [+ 1 is almost surely
sufficient. (Notice that is an estimation ofog,, %.)

More precisely, the right shifting lookup procedure for
key w by nodeu consists in the following process. ini-
tializes a lookup buckek with {«} and estimated distance
dx = d hops.u then repeats the following steps untjt
reaches zero:

e 1 contacts one tex nodes inK for a right lookup
onw atdx hops, each contacted node should reply
with its Rde bucket;

o if u receives a reply fotli hops,K is replaced by
the bucket contained in the message @pds decre-
mented by one;

o if u receives a reply fodx + 1 hops, the contacts
contained in the message are addedto

o if u receives a reply for more thaty, + 1 hops, it
ignores the message.

« is a protocol parameter allowing speedup of lookups
with regard to node failure. If no answer is received,
may contacty more nodes inK (each node ink should
be contacted only once). Notice that the paramgtes
chosen such that it is unlikely that no nodefhanswers.
(K always contains at least contacts except for the first
iteration wherey contacts itself.)

To find one of the:’ closest node to the kay, the right
shifting lookup should be sufficient. This is often sufficient
for finding an existing association with key. However, if
no association has been stored or for storing an association,
all the k. closest nodes te must be found.

2.3. Brother lookup

Each node maintains larother bucketB storing con-

tacts with identifiers close to the identifier of the node (called

brothers:
e B stores the closest nodes ta.

The sized of B is chosen so that one of tieclosest
nodes to some kew will almost surely know all thek
closest nodes t@. We will see in Section 4.1 that= 7k
is sufficient.

To make a brother lookup for key a nodeu must
know a set of noded(with identifiers close tav. The
k closest nodes taw are queried. Each node should an-
swer with thek closest nodes te in its B bucket. If some
node do not answet, queries further nodes untéil nodes
answer.

To make a complete lookup, a node first makes a right
shifting lookup and terminates with a brother lookup. Any

query for a lookup at 0 hops should be considered as a

brother lookup. Alternatively, it can begin with a left shift-
ing lookup.

2.4. Left shifting lookup

To allow reenforcement of buckets through requests, a
left shifting lookup is provided. It is precisely the reverse
of a right shifting lookup.

Each node maintains left bucketZ storing contacts
with identifier close to the left shifted identifier of the node.
More precisely, for a node with identifier.

e [stores any node such that. is among thé’ clos-
est nodes ta[1]v[1,n — 1].

Notice thatu can test whether it is among tté clos-
est nodes to some identifier by computing #feclosest
nodes to the identifier i? U {u}. If the bucket is lexico-
graphically sorted, thé’ closest nodes to can be found
by scanning the bucket symmetrically around the insertion
position ofv.

The left shifting lookup procedure is very similar to the
right shifting lookup procedure except that each contacted
node for a left lookup onw at dx hops replies with the
k' nodesv with v < dx closest tow. As we will see in
Section 3 and 4.1 a node should preferentially query the
k" < k' closest nodes to < d. k" is a protocol param-
eter (typically,k” ~ k/2). If thesek” nodes fail to answer,
the node may query the closest nodes ta < d (resp.

v < —d) among the remaining’ — k" contacts at the risk
of lookup failure with higher probability.

A nodevw is in the L bucket ofu whenw should be in
one of theR buckets ofv. This symmetry implies that right

shifting lookups allowZ buckets to be refreshed while left
shifting lookups allowR buckets to be refreshed. Both
lookups procedures should be used equally.

2.5. Unified lookup queries

All types of lookups described above can be unified
with the same query format. Each node definegight
bucketR asR = Ry U R;. Each node has thus mainly
three buckets:R, L and B. Each lookup query message
should contain a key and an estimated hop distanée
which is positive, negative or zero. Such a query is called
a lookup query fow atd hops. A node receiving a lookup
guery message should reply with:

e thek’ closest contacts tw in B if d = 0,
e thek’ closest contactste < din Rif d > 0,

e the k' nodesv in L with v <« —d closest tow if
d < 0.

A right shifting lookup consists in a sequence of lookup
queries with decreasing hop distance and terminates with a
lookup query at O hops. A left shifting lookup consists in
a sequence of lookup queries with increasing hop distance
and terminates with a lookup query at O hops.

2.6. Accelerated lookups : shifting more than one
bit at a time

To minimize traffic and allow faster lookups, the pro-
tocol shifts more than one bit at a timg, a parameter of
the protocol, denotes the number of bits shifted. The
bucket of node: thus contain2®%’ nodes: the:’ closest
nodes to each identifier, composed of any prefix of b
bits followed byu[1,n — b] . The size of buckeB does
not depend orh. We defineu <, i = u < bi to sim-
plify notations. A node is in the L bucket ofu whenw is
among the:’ closest nodes to <, 1. The average size of
L will thus be2bk’. We will see that it is very unlikely that
L contains more tha@(2°%’) contacts. More precisely for
k' = 20 andb = 4 orb = 5 it is very unlikely that a node
will have more thant.3 2%k’ contacts in itd. bucket. (See
Section 4.2 for more details.)

With b = loglog N the routing table size thus becomes
O(klog N) and lookups are performed in less tf‘Ega}mgQ %Jr
1 = 0O(log N/loglog N) steps as detailed in Section 4.1.

2.7. Physical proximity

Notice that anyx nodes among’ (resp.k/2) for right
(resp. left) shifting lookups are queried in each lookup

step. Some heuristic for choosing physically close con- mon prefix withw[bi + 1, n], the2A next associations are
tacts should be used (for example by selecting contactssearched on nodes with prefix closed —b+1, njw|[bi+

with longest common prefix of IP address). More sophisti- 1,n — b] andw[n — b+ 1,n] w[bi + 1,n — b], and so on.
cated strategies as in [8] could eventually be used. A sim- If an association block is not found, the tree is searched
ple heuristic may reside in storing the minimum response with root prefix close tav[b(i — 1) + 1,n — b] and a copy
time for each neighbor. As several nodes are queried at theis stored on one of thg’ corresponding nodes of the tree
same time in each lookup step, we can expect that the clos-rooted atw([bi + 1, n]. If a block is still not found, the tree
est one answers first. Assuming that the physically closestrooted atw[b(i — 2) + 1, n — 2b] is searched, and so on until
neighbors from a close node are close too, querying the searching the original tree rooteckat In any case, a copy
closest neighbors from the first answering node could be ais cached in the previous tree. When no association exists

good heuristic. for some block (due to limited number of associations), an
empty block is cached. Notice that the necessary contacts
2.8. Balancing hotspots are always found in th& buckets of queried nodes.

A similar strategy can be used for exploring the bi-

As Kademlia, Broose uses caching for solving hotspots nary tree when the retrieval first began with a left shift-
of requests for a given key. When a node performs a lookup N9 lookup. If the A first associations are found in the
for key w and gets an answer when querying noget i cache of a node with _|d¢nt|f|er close td1, bi] w([l,n —
hops, it should store the key, value association on the nodebi], the 2A next associations are searchedwin — b +
v;_, that answered for— 1 hops. (If a brother lookup was 1> 7Ju[1, biJw[1,n—b(i+1)] andw[n — b+ 1, n] u[L, bilw(l, n—
necessary, it stores the association on the ngdgieried (i + 1), and so on. A similar tree searching is then per-
for the brother lookup.) The association is cached during a formed as for right shifting lookups using buckets. L -
duration decreasing exponentially with buckets allow the selection of a tree closer to the original

An advantage of the De Bruijn topology is that it also tree rooted atv.
offers a solution for balancing hotspots of key collisions. It
may happen that many associations have the samarkey 2.9. Node insertion and bucket creation
Associations are supposed to be sorted according to some

total order of the associated values. Thelosest nodes to A new nodeu must know an entry point: node R
w will store theA first associations4 is a protocol param- is constructed by performingf complete lookups starting
eter (for exampled = 1000). The2A next associations are with a lookup buckefX = {v}, one for each identifiex,,
stored on thé&’ closest nodes t@[n — b+ 1, nJw[1l,n — b composed of any prefix of b bits followed byu[1,n — b]
and thek’ closest nodes to[n — b + 1, n|w[l,n — b] de- . B can then be constructed wifhbuckets of nodes iR
pending on the first bit of the associated value. Notice that and L can be constructed with buckets of nodes .

all these nodes are in the bucket of thek closest nodes Alternatively, B can be initialized with the closest

to w. (These associations will be replicatedimes at the nodes to the own identifier af. Letw[1,!] be the longest

first republication.) Thetk next associations are similarly common prefix of thesé nodes. B is then further com-

stored ondk’ contacts found in thé& buckets of thesek’ pleted with thek closest nodes ta[1,! — 1ju[l]u[l + 1, n].

nodes according to the two first bits of the associated value Retrieving theB buckets of thes@k nodes should be suf-

and so on in a binary tree fashion. Notice that storing an as-ficient.

sociation consists in descending this tree according to the As soon as a node has iBsand R buckets initialized,

first bits of the value. On the other hand, retrieving the it can participate to the network and |etbe constructed

(2¢ — 1) A first associations requires to query all the tree online. However,L could be constructed from scratch by

up to depthi. However, this only consists in pushing fur- exploring the prefix trie of identifiers rooted afp + 1,1].

ther ahead a right shifting lookup. Porting this strategy on The details of such construction cannot be included here

another topology than De Bruijn would result (2’ — 1) due to space limitation.

lookups, a cost which is prohibitive. If an importance of

associations can be estimated, a good choice for ordering2.10. Refresh policy

associations would be to place more important associations

first. _ _ _ _ Broose policy for refreshing buckets is similar to Kadem-
Both strategies may cohabit. When the retrieval begins |ig policy for thek closest nodes. Intuitively, Broose only

with a right shifting lookup, the binary tree is explored in stores close contacts (allowing routing table size to be re-

the cache of a node with an identifier sharing a long com- pand, Kademlia has a different policy (keeping contacts

with long uptime) for long range contacts.
As soon as a new alive contact is discovered in one of

the bucket range during any message exchange, it should

be inserted in the corresponding bucket. This continuous
process allows new contacts to be discovered. However,
node departure is harder to detect. A possibility is to ping

contacts when they have not been refreshed during a cer-

tain period of time. To reduce the ping traffic, each lookup
query for a node; at hop distancécould contain the iden-
tifier of the nodev,,; that has responded at the previous
step for hop distance+ 1.

Alternatively, a node may periodically repeat the pro-
cedure for constructing its buckets from scratch.

Similarly to Kademlia, an association is republished
every hour. This is done efficiently thanks to a brother
lookup. To avoid redundant re-publications a node repub-

lishes an association if no other node has republished the

association during the previous hour and it is still among
the k closest nodes to the key. To allow association expi-

ration, an association is republished at most 24 times, and

the source of an association must republish it every day.

3. Simulation

The size of bucket®? and L depends o andk’. A
larged (b = 4 or b = 5) is necessary for speeding up
lookups. A smallk’ (k' < k) allows the size of buckets to
be minimized. A large value fot' makes the system more
robust. We propose some simulations for finding the best
compromise fork’. (We will useb = 4.) A critical situa-
tion occurs when a large fraction of nodes changes during
the refresh time period. We make simulations where nodes
leave the network at the same rate as new nodes enter it
We start with a one million nodes network/(= 10°) in a
stable situation (i.e. buckets are accurate). Th€modes
are deleted andV inserted.r denotes the node renewal
fraction . The arrival and departure process are continu-
ous.

We distinguish three different types of nodes: dead, old
and new. The N first arrived nodes are dead, and 7€
last arrived nodes are new.

e Old nodes are not aware of dead nodes departure.

An old nodeu have a new node in its buckets with
p_robabilitypv = ”f];a. a denotes the arrival posi-
tion of v. (An old node has more chances to learn
about new nodes with longer uptime.)

A new nodeu considers a dead nodsstill alive if v
leaves the system after the arrivakofu knows new
nodes inserted before itself in addition to old nodes.
u also knows a new nodeinserted after itself with
probability p,,.

¢ Alookup fails if thek’ nodes returned during a lookup
step are dead nodes, or if none of #idinal nodes
are among the: closest to the key. (No brother
lookup is performed at the end.)

This model grabs the effects of inconsistency between nodes:
each node has its own view of the network.

100

K=6 .
k'=10 ——
k'=14 —— B
10 | 7
1 / — A
/
7 /
01 R S
0 0.1 0.2 0.3 04 0.5 0.6

Figure 1: Percentage of lookup failures as a function of
the node renewal fractionfor ¥’ = 6, 10, 12, 15 when the
furthest alive contact at hop distanciom the shifted key

w <K 1 is selected at each lookup step.

Figure 1 shows the percent of right shifting lookup fail-
ures as a function of for different values oft’. (1000
simulations of lookups are performed for each ratio and
for each curve.) Notice that a log-scale is used for percent-
ages. These simulations are further pessimistic since the
worst alive contact with respect to the bits of the key is se-
lected at each step among thieknown contacts. For left
shifting lookups, the worst contact among #iebest con-
tacts is selected (if thede¢’ contacts are dead, the best one
among known alive contacts is selected). The parameters
have been tuned for a ratio< 0.3 (yielding a probabil-
ity p, = 0.3 of node failure). However, a larger ratio is
needed for being able to observe some failures. Note that
a failure was observed fér' = 15 only forr = 0.6. As a
comparison-*" becomes greater than'1000 for » = 0.3
whenk’ = 6, r = 0.5 whenk’ = 10, » = 0.63 when
k' = 15. This is consistent with the expected probability
of failure ¥ shown in Section 4.1. Much better results
are obtained with a random choice of contacts and a final
brother lookup.

Figure 2 shows the percentage of left shifting lookup
failures as a function of for ¥’ = 15. The simulation
assumes that the worst alive contact amongithelosest

100

~x =
1|
[e~

Il

10 | k'=

0.1 ‘ ‘ ‘ ‘ [
02 03 04

0.6

Figure 2: Percentage of lookups failures as a function of
the node renewal fraction for ¥’ = 15 when thekth
furthest alive contact (with respect to the key) is selected
for the next lookup step fak” = 7,9, 11.

known nodes (with respect to the bits of the key) is cho-

sen at each step. We observe that left shifting lookups are

less reliable than right shifting lookups when the furthest
contacts are chosen. Choosing the worst alive node amon
the k' closest nodes gives poor results. However, satisfy-
ing results are obtained when th& closest contacts are
preferred withk” < k’. The proof in Section 4.1 will give
some hints about the reasons for that. For towhis is the
main reason for lookup failure. For largethe probability
of loosing thek” closest contacts becomes preponderant.
As we are going to see in the following section, a larger
value ofb would also enhance reliability.

4. Protocol analysis
4.1. Correctness of lookup procedures

We are going to show that the probability that a lookup
fails is in the same order of magnitude that the probability
that thek nodes storing the information fail. H,, is the
probability that a node fails, the probability thatnodes
fail is p. (We will give numerical values for protocol pa-
rameters assuming, = 0.3 andk = 20.)

However, Broose has two independent lookup proce-
dures. We are going to show that a right shifting lookup
fails with probability less tham;ﬁ/ and that a left shifting
lookup fails with probability less thapl:~*" (for appropri-
ate value of”). This avoids to double the size of routing
tables and still ensures that the probability of failure of both
lookup procedures is approximately less thp§n

are exactlyr positive integers at xor distance less than
These properties allow the following lemma which is a di-
rect implication of Chernoff bounds [4].

Lemma 1 Consider a normalized distanee= dy (u) de-
fined bydy (1) = p * 2" /N and an identifiers (IV is the
number of nodes). Then the numi?éy of nodes at dis-
tance less thamr from v is ©(u) with high probability.
More precisely, there exist some increasing functigns
and f_ such thatP[N, > m] < exp(—pfy(m/p—1))
andP[N, < m/] <exp(—pf_(1—m'/n)).

Notice that the average number of nodes at distance
is E[N,] = p since the probability that a random identifier
falls at distance less thanis i /N. Whenp = log N, the
above probabilities thus get smaller thigtiV™ wherer is a
constant depending on the valuesfaefand f_. (Note that
k = 20 for example is greater thdng N for N < 103.)

The Chernoff bounds state that there existand f_
suchthatP[N, > (1+€)u] < exp(—fi(e)p) andP[N, <
(1 —€)u] < exp(—f—(e)p). The bounds of the lemma are
obtained fore = m/u — 1 ande = 1 — m//u respec-

Q&ively. The classical Chernoff bounds uge(e) = €2/2

and f_(¢) = €2/3. However, we will use the sharper
bounds obtained witlf, (¢) = (1 + €)log(1 + €) — e and
f-(e) = (1 — €)log(1 — €) + €. See [4] for more details
about Chernoff bounds. Notice finally that the above prob-
abilities fall down exponentionally gsincreases.

As a first application of Lemma 1, consider the nodes
at distance less thaty (ck) = ck+2™/N from some iden-
tifier for some constant > 1. The probabilityp. that there
are less thai such nodes is bounded byp(—ck f_(1 —
1/c)). Fork = 20, we getp, < 0.3%Y for ¢ = 3.5. In the
sequel, let denote the constant such that< p* (we will
usec = 3.5 for numerical applications).

Let ! = [log, &1 denote the prefix length such that
18 < 20 < X There exists almost surely at ledst
nodes whose identifier shares thérst bits of any given
key w. (It is equivalent to share thefirst bits ofw and to
be at xor distance less thai—! > ck * 2" /N = dy(ck)
fromw.)

Brother lookup. First consider theB bucket of a node
u. We have to prove that knowing tlieclosest nodes ta
is sufficient for knowing thé: closest nodes to some key
whenw is one of thek closest nodes t@. Almost surely,
the k closest nodes ta share the same prefix[1,!]. If
there are less thannodes with prefixu[1,], thenB con-
tains all the nodes sharing this prefix includimgnd thek

Our proofs are mainly based on the fact that nodes choosg8gsest nodes to.

their identifier randomly and that the probability of choos-
ing an identifier of» bits at xor distance less tharfrom a
given identifier isz:/2™. (This is due to the fact that there

Now suppose that more th&modes have prefiw[1, [].
Then we can show that almost surely, more thamdes
have prefixw[1,741]. Considew nodes with prefix[1,I].

As theirl + 1th bit is random they have prefix[1,[+ 1]
with probability1/2. Applying the lower Chernoff bound,
the probability that less thannodes have prefi[1, 1+ 1]
is less tharexp(—uf_(1 — k/w)) with p = §/2. Itis
typically very low for§d = 2ck. (At least, it is less than
0.320 for § = 7k with k& = 20.)

Now suppose that more tha&modes have prefiw[1, [+
1]. Again if there are less thahnodes with prefixv[1, [+
1], then B contains all the nodes sharing this prefix. The
probability thatB does not contain thé closest nodes to
w is thus bounded by the probability that there are more
than§ nodes at distance less thah='~! < dy(ck) =
ck % 2" /N from w. This probability is again bounded
thanks to Lemma 1. It is also very low for= 2ck. (It
is less thar®).32° for § = 7k with k£ = 20.)

In any case, we have proved that the probability fBat
does not contain thie closest nodes t is very low. (Take
0 = Tk whenk = 20 andp,, = 0.3.)

with prefix w[1,! + 1] and more thad nodes with prefix
w1,] which happens again with probability less th#p
This achieves the proof of right shifting lookups correct-
ness.

Notice that we can deduce from this proof an estimation
of d: b(d — i,,) > I andi,, > 1 allow initiation of the
proof. d > 1 + % is thus sufficient. Notice also that the
length of the longest prefix of theclosest nodes to a node
u is greater or equal tbwith high probability.« may thus
obtain an upper bound dffrom its B bucket. A better
bound can even be obtained from tRdbucket: as’ < k,
thek’ closest nodes to some identifier share the safingt
bits with high probability. For each prefix df bits, an
estimation of an upper bound 6tan be obtainedd can
be computed from the smallest estimation.

Left shifting lookup. Due to space limitations, the proof
of correctness of left shifting lookups is omitted here. How-
ever, the arguments are similar to previous proofs and the

Right shifting lookup. Now consider a right shifting lookup interested reader may consult [3]. Fgf = 9 it can be

procedure fromu for a keyw. With probability greater
thanl — p’;/, a nodev; will answer for each iteration at
an estimated distance ofhops. Consider this sequence
u = vg,...,vy Of nodes that answer.

Let us first show that; shares thé(d — i) first bits
of w <, ¢ as long as at least’ nodes share this pre-
fix. This is true forvg (empty matching prefix). Suppose
v[1,0(d —)] = (w <p i)[1,b(d — i)] = w[bi + 1,bd].
The R bucket ofv; contains the:’ closest nodes tw[b(i —

1) + 1, bi]v;[1,n — b] andv;_; is one of them. If there
are at least’ nodes with prefixw[b(i — 1) + 1, bd)
wb(i — 1) + 1, bi]v;[1, b(d —)], then thek’ closest nodes
tow[b(i — 1) + 1, bi]v;[1, n — b] must share this prefix im-
plying thatv; _; has prefixw[b(i — 1) 4+ 1, bd]. The above
property is thus true by induction.

Consider the first index,, such that less thakl nodes
have prefixw(bi,,,bd — 1]. If d was chosen sufficiently
large, i, > 1. Indeed, the probability that less thah
nodes have prefiw[1,] (wherel = [log, &-1) is less than
pk. As there are at leagt nodes with a given prefix of
bits with rather high probabilityy; A shares thé first bits
of w <4 1,,. For the same reason; will share the] first
bits of w <, i for i,,, > ¢ > 1. vy thus shares théfirst
bits of w <, 1 with high probability.

Finally, with probability less tharl — O(pk), v, is
among thek closest nodes tav[1, blv,[1,n — b] which
shared + b bits with w. We can then use the following
arguments of the proof concerning brother lookupsulf
shares at leadt+ 1 bits with w, then theB bucket ofwv,
almost surely contains theclosest nodes ta. As thek
closest nodes te almost surely share the prefi{1, /], the
final step may thus fail only if there are less thanodes

shown that the appropriate value ©&fis ¥’ = 18 when
b =3,k = 15whenb = 4 andk’ = 14 whenb = 5.
Again, the hop distance from the first nodeerforming
the lookup can be estimated from thebucket : d should
be sufficiently large so thatis among the:" closest nodes
to u[l, djw[l,n — d]. We haved < [log, 2] + 1 with
high probability.

4.2. Routing table size

b |7k [2°% | k" | 2%k’ | Broose| Kademlia
1| 140 | 40 20 | 40 180 400
2140|800 | 20| 80 220 600
31140| 160 | 18 | 144 | 428 933
41140 | 320 | 15| 240 | 620 1500
51140 | 640 | 14 | 448 | 1036 2480

Table 1: Average number of contacts for Broose and
Kademlia for various values @fwith k = 20 andk” = 9.

The L bucket will contain an average @fk’ contacts.
With similar arguments as before we can prove that it will
contain more thar2’k’ contacts (for some smat) with
probability less thalpf;/. More precisely, foik’ = 15 and
b =4 (resp.k’ = 14 andb = 5), we getc = 4.3 (resp.c =
4). and less than one percent of the nodes will have more
than2.4 * 2°k’ contacts. TheR bucket contains exactly
2L’ contacts.

Table 1 compares the average number of contacts for
Broose and Kademlia for various valuestof Kademlia
uses a parameter similar édidentifiers are considered by

chunks ofb bits) allowing similar lookup complexity. For 1st International Workshop on Peer-to-Peer Systems
b < 3, Broose should only use the buckets since thé (IPTPS) 2002.

bucket becomes reliable for > 3. Forb > 3, the best
values ofk’ according to the proof of correctness of left
shifting lookup are used fdt” = 9.

[7] M. Naor and U. Wieder. Novel architectures for
p2p applications: the continuous-discrete approach.
In Proceedings of the fifteenth annual ACM sympo-

. sium on Parallel algorithms and architectures (SPAA
5. Conclusion g (SPAA)

2003.
With it's novel symmetricized De Bruijn topology and [8] Keith W. Ross, Ernst W. Biersack, Pascal Felber, Luis
its optimized contact list, Broose improves the loose frame- Garces-Erice, and Guillaume Urvoy-Keller. Topology-
work for distributed hashtables introduced by Kademlia. centric look-up service. l®Proceedings of COST264

We have shown how Broose can obtain significantly smaller ~ Fifth International Workshop on Networked Group
routing tables than Kademlia. It has been proven that lookups Communications2003.
succeed with high probability under the model of constant
node failure probability and bucket consistency. This proof
is confirmed by simulations for some degree of bucket in-
consistency between nodes with a continuous node arrival
and departure model.
Broose allows physical proximity to be taken into ac-
count. However, further work is needed to estimates how
much it can gain from this flexibility with regard to physi-
cal proximity. Finally, Broose is the first peer-to-peer sys-
tem introducing a solution for balancing key collision hotspots
and is thus a good candidate for peer-to-peer file sharing
with keyword indexing.

References

[1] I. Abraham, B. Awerbuck, Y. Azar, Y. Bartal,
D. Malkhi, and E. Pavlov. A generic scheme for build-
ing overlay networks in adversial scenarios1itth In-
ternational Parallel and Distributed Processing Sym-
posium (IPDPS’2003)april 2003. Nice.

[2] P. Fraigniaud and P. Gauron. The content-addressable
network d2b. Technical Report LRI 1349, Univ. Paris-
Sud, 2003.

[3] A.T. Gai and L. Viennot. Broose: A practical dis-
tributed hashtable based on the de-brujin topology.
Technical report, INRIA, june 2004.

[4] T. Hagerup and C. Bb. A guided tour of chernoff
bounds. Inform. Process. Lett.33(6):305-308, Feb.
1990.

[5] M. Frans Kaashoek and David R. Karger. Koorde:
A simple degree-optimal distributed hash table. In
2nd International Workshop on Peer-to-Peer Systems
(IPTPS) 2003.

[6] P. Maymounkov and D. Mazieres. Kademlia: A peerto
-peer information system based on the xor metric. In

