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The past decade has seen the rapid evolution of small-
molecule gene-silencing strategies, driven largely by
enhanced understanding of gene function in the
pathogenesis of disease. Over this time, many genes
have been targeted by specifically engineered agents
from different classes of nucleic acid-based drugs in
experimental models of disease to probe, dissect, and
characterize further the complex processes that un-
derpin molecular signaling. Arising from this, a num-
ber of molecules have been examined in the setting of
clinical trials, and several have recently made the
successful transition from the bench to the clinic,
heralding an exciting era of gene-specific treatments.
This is particularly important because clear inadequa-
cies in present therapies account for significant mor-
bidity, mortality, and cost. The broad umbrella of
gene-silencing therapeutics encompasses a range of
agents that include DNA enzymes, short interfering
RNA, antisense oligonucleotides, decoys, ribozymes,
and aptamers. This review tracks current movements
in these technologies, focusing mainly on DNA en-
zymes and short interfering RNA, because these are
poised to play an integral role in antigene therapies

in the future. (Am J Pathol 2007, 171:1079–1088; DOI:

10.2353/ajpath.2007.070120)

Over the past century, our appreciation of the pathogen-
esis of human disease has continued to evolve with cor-
responding therapeutic developments. In particular,
more recent significant advances in genomics have led
to a substantial shift away from conventional perceptions
and dogma to focus on intricate molecular and cellular
pathways regulated by an array of key genes. It is at this
interface that nucleic acid molecules are emerging as a
potent force in further characterizing important molecular
pathways and in defining themselves as a sustainable
therapeutic class of agent. The ability to selectively at-
tenuate the expression of specifically targeted genes
represents an appealing method of therapy and a means
of dissecting molecular function. As such, strategies to
specifically knockdown gene expression have received
considerable attention.

Paterson et al1 demonstrated the utility of nucleic acids
in modulating gene expression approximately 30 years
ago. Zamecnik and Stephenson2 soon after showed the
capacity of antisense molecules to inhibit viral replication.
The field of nucleic acid therapeutics has since evolved
considerably with numerous gene targets and methods
comprising both naturally occurring and synthetic mole-
cules that have been applied in vitro and in vivo in a
variety of contexts with varying degrees of success. Al-
though target selection is clearly vital, the method used in
achieving this is of equal importance. Strategies have
included DNA enzymes (DNAzymes), siRNA, antisense
oligonucleotides, decoys, ribozymes, and aptamers, all
of which attenuate gene expression by interfering with
cytosolic mRNA or translated protein. Currently, a num-
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ber of these approaches are being evaluated in human
and higher animal trials and are poised to offer consid-
erable inroads and additions to our current therapeutic
armamentarium where an unmet clinical need exists. Is-
sues that underpin the clinical feasibility of “antigene”
nucleic acid strategies are many and include i) that the
agent is gene specific and functionally active with tem-
poral relevance to the particular disease process; ii) that
the target gene should play a key role in the disease
process and that its role should not readily be compen-
satable by other genes; iii) that target gene inhibition
should not adversely influence normal physiological pro-
cesses; iv) local versus systemic delivery routes; v) the
choice of endogenous (eg, gene/viral transcription) or
exogenous (eg, synthetic nucleic acid) nucleic acid de-
livery; vi) the choice of delivery agent (eg, naked DNA,
polymer, cationic lipid, PEGylated liposome, protein/nu-
cleic acid chimera, or complex); and vii) that nucleic acid
modification/stabilization made to avoid degradation of
the agent may contribute to nonspecific (off-target) ef-
fects. This review will focus mainly on DNAzyme and
siRNA strategies and briefly cover recent developments
in antisense oligonucleotides, decoys, ribozymes, and
aptamers.

DNAzymes

DNA enzymes (DNAzymes or deoxyribozymes), like ri-
bozymes, may be perceived as gene-specific molecular
scissors. Catalytic DNA has not been observed in nature,
and all existing molecules have been derived by in vitro
selection processes similar to those used to identify
aptamers (see below). The most well-characterized
DNAzyme is the “10-23” subtype comprising a cation-
dependent catalytic core of 15 deoxyribonucleotides3

that binds to and cleaves its target RNA (Figure 1) be-
tween an unpaired purine and paired pyrimidine through
a de-esterification reaction, producing a 2�,3�-cyclic phos-
phate terminus and a 5�-hydroxyl terminus. Sequence con-
servation in the border regions of the catalytic core is im-
portant for the maintenance of catalytic activity.4 This core is
flanked by complementary binding arms of 6 to 12 nucleo-
tides in length that confer target mRNA specificity.

The 10-23 DNAzyme, named by virtue of its selection
process in vitro, catalyzes sequence-specific RNA cleav-
age in a manner akin to the hammerhead ribozyme and
hence has substantial utility as a gene-silencing agent. In
vitro cleavage experiments have shown that the 10-23
DNAzyme is highly specific and sensitive to small
changes in target sequence.5,6 DNAzyme activity is de-
pendent on the prevailing secondary structure of long-
target RNA at the cleavage site.6 For this reason, it is
important to test a range of molecules to identify those
that display a high level of activity against biologically
relevant target molecules. In terms of biological specific-
ity, an important control in the assessment of DNAzyme
antigene efficacy and specificity is the “scrambled
DNAzyme,” wherein the sequence of nucleotides in the
binding arms of the DNAzyme is jumbled while the cata-
lytic core is preserved. This produces a molecule of

identical size, the same percentage composition of nu-
cleic acids, and the same net charge with a binding
sequence that is not matched to the target gene.
DNAzymes with nonsense or mismatch sequences in the
binding arms or with point mutations in the catalytic core
that render the DNAzyme enzymatically inactive can
serve as additional controls. In vitro gene and cell inhib-
itory applications of the 10-23 DNAzyme are summarized
in Table 1.

A number of structural modifications have been used to
enhance the stability and to improve the potency of
DNAzymes. An important, commonly used modification is
the incorporation of a 3�-3� inverted nucleotide at the 3� end
of the DNAzyme to prevent exonuclease degradation. This
can dramatically increase stability of the molecule, extend-
ing the half-life from �70 minutes to �21 hours in human
serum.28 In addition, DNAzymes with this modification can
remain functionally intact for at least 24 to 48 hours after
exposure to serum compared with its unmodified counter-
part23,28 with little change in the kinetics.7 Phosphorothioate
(PS) linkages, which enhance stability by rendering the
oligonucleotide more resistant to endogenous nucleases,
have been used with DNAzymes.29 The introduction of PS
modifications may affect cleavage efficiency28,30 and has
been associated with toxicity,31 immunological responsive-
ness,32 and increased affinity for cellular proteins, resulting
in sequence-independent effects.33,34

Figure 1. Schematic representation of DNAzyme- and siRNA-mediated deg-
radation of target mRNA. Left: DNAzymes recognize the complementary
mRNA sequence of its hybridizing arms via Watson-Crick base pairing and
catalyze degradation of the target mRNA, producing two products, one
containing a 2�,3�-cyclic phosphate terminus and the other a 5�-hydroxyl
terminus. Right: siRNA is recognized by RNA-induced silencing complexes
(RISC). RNA helicases unwind the double-stranded siRNA, and the antisense
strand guides RISC to the complementary mRNA. Targeted mRNA is cleaved
by RISC and rapidly degraded.
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Locked nucleic acids (LNAs), more recently, have
been attractive monomers for modifying oligonucleo-
tides35 and DNAzymes,30,36,37 in an attempt to increase
binding affinity. LNA bases comprise a 2�-O 4-C methyl-
ene bridge that locks in a C3�-endo conformation,35

which places constraint on the ribose ring, increasing
affinity for complementary sequences.38,39 The advan-
tages of LNAs include increased thermal stability of du-
plexes toward complementary DNA or RNA, stability to-
ward 3�-exonucleolytic degradation, solubility due to
structural similarities to nucleic acids, easy automated
synthesis with complete modified LNA or chimeric (LNA/
DNA or LNA/RNA) oligonucleotides,40,41 and straightfor-
ward cellular delivery using standard transfection re-
agents.31,36,42,43 LNA incorporation into DNAzymes may
influence catalytic activity under single-turnover condi-
tions30,36,37,43 and biological potency.36,43 DNAzymes
with an inverted nucleotide at the 3� end are catalytically
more efficient compared with their LNA-modified coun-
terparts because of a slower product release rate.30,44

Accumulating evidence indicates the utility, efficacy,
and potency of DNAzymes in a variety of animal models
of disease, allowing characterization of key molecular
pathways underlying pathogenesis and use as a thera-
peutic agent. For instance, DNAzymes targeting the
“master-regulator” zinc finger transcription factor Egr-
145,46 have shown promise in experimental models of
restenosis via inhibition of smooth muscle cell hyperpla-
sia. We have demonstrated inhibition of neointima forma-

tion in the rat carotid artery after both balloon injury (first
demonstration of DNAzyme efficacy in an animal model)
and carotid artery ligation.23,47 Furthermore, intracoro-
nary administration of DNAzymes targeting human Egr-1
reduced neointima formation in porcine coronary arteries
after stent implantation.22 Likewise, Egr-1 DNAzymes at-
tenuated neointima formation in human internal mammary
arteries ex vivo.48 These and other in vivo applications of
DNAzymes are summarized in Table 2.

We have also recently evaluated Egr-1 DNAzymes in
the setting of myocardial infarction and demonstrated
that intramyocardial delivery of Egr-1 DNAzymes in rats
undergoing myocardial ischemia-reperfusion resulted in
a 50% reduction in infarct size, myocardial neutrophil
infiltration, and intercellular cell adhesion molecule-1
(ICAM-1) expression.51 Four other studies have used
DNAzymes to target the myocardium. Itescu and col-
leagues55,56 conducted two separate studies in which
intramyocardial delivery of DNAzymes targeting PAI-1 in
a rodent model of myocardial infarction resulted in a
reduction in apoptosis, improved functional recovery,
and enhanced myocardial capillary density. The same
group also used intramyocardial administration of DNAzymes
targeting the vitamin D3 up-regulated protein 1, which pro-
motes cellular oxidative stress, and demonstrated a reduc-
tion in cardiomyocyte apoptosis when delivered at the
time of myocardial infarction in rats.27 Iversen et al57

delivered tumor necrosis factor-� DNAzymes via perito-
neal osmotic minipumps in rats with myocardial infarc-

Table 1. In Vitro Applications of 10-23 DNAzymes

Gene Cell type
Assay

conditions
Proliferation

assay
Cell

death assay References

c-myc Rat aortic SMCs SS Yes No 7
Transforming growth factor-�1 Rat mesangial cells SS No No 8
Protein kinase C-� Human pulmonary artery SMCs SS No No 9
bcr-abl K562 cells SFC Yes Yes 10
survivin PANC-1 cells SCC Yes Yes 11
ftsZ DH5alphapro cells SFC Yes No 12
PML/RARa NB4 cells SS Yes Yes 13

K562 cells SS Yes Yes 13
PB2 MDBK cells SD Yes No 14
�1 and �3 integrin subunits EA.hy 926 SCC No Yes 15

K562 SCC No Yes 16
HIV-1 TATRev HeLa SS No Yes 17

Cos-1 SS No Yes 17
THP-1 SS No Yes 17

VEGF receptor-2 BAEC SCC Yes Yes 18
HUVEC SCC Yes Yes 18
MDA-MB-435 SCC Yes Yes 18

Urokinase-type plasminogen
activator receptor

Saos-2 SS No Yes 19

Egr-1 MCF-7 cells SS Yes No 20,21
HMEC-1 SS Yes No 20
Human vascular SMCs SS Yes No 22
Porcine vascular SMCs SS Yes No 23
Rat aortic SMCs SS Yes Yes 23

c-Jun Human vascular SMCs SS Yes No 24
Porcine vascular SMCs SS Yes No 24
HMEC-1
T79-Squamous CC SS Yes Yes 25
LK2-Squamous CC SS Yes No 26

SS Yes No 26
VDUP1 H9C2 SCC No Yes 27

SS, serum stimulation; SD, serum deprivation; SFC, serum-free conditions; SCC, serum-constant conditions.
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tion-induced heart failure and demonstrated improved
hemodynamic performance compared with controls.

DNAzymes targeting a second immediate-early gene,
the leucine zipper transcription factor c-Jun, also show
promise. We have demonstrated that c-Jun DNAzymes
(Dz13) play a modulatory role in the inflammatory pro-
cess by disrupting the expression of key downstream
molecules, including the cell adhesion molecules ICAM-1
and VCAM-1, and E-selectin and VE-cadherin.49 Dz13
rapidly abolished the processes of leukocyte rolling, ad-
hesion, and extravasation in response to interleukin-1�
stimulation in a rat microcirculation model. Intranasal ad-
ministration of Dz13 abolished pulmonary inflammation in
a murine lung sepsis model and joint inflammation in a
murine arthritis model after intra-articular delivery. This
represents a key area for future therapeutic exploitation
because inflammation is integral in the pathogenesis of
many diseases and current strategies are still far from
optimal.

By exploiting the reliance of cancers on angiogenesis
for growth, various transcription factors mediating this
process have been targeted successfully to inhibit tumor
growth. Zhang et al18 first applied this technology in vivo
against tumors with DNAzymes targeting vascular endo-
thelial growth factor (VEGF) receptor 2 attenuating tumor
growth in rats. Intratumorally administered DNAzymes
targeting Egr-1 also demonstrated potent reduction in
tumor growth with an associated reduction in tumor an-
giogenesis.20 A direct antitumor effect was achieved with
a humanized Egr-1 DNAzyme.21 Furthermore, the Egr-1
DNAzyme inhibited de novo VEGF-induced neovascular-
ization of the rat cornea.25 Dz13, targeting c-Jun, atten-
uated solid melanoma and squamous cell carcinoma
growth in mice in part via its suppression of tumor angio-
genesis.25,26 Further evidence of the antiangiogenic
properties of Dz13 is demonstrated by its inhibition of
corneal neovascularization in rats25 and retinal neovas-
cularization in mice induced by exposure to hyperoxia-
normoxia.49 Although in vitro assessment of DNAzyme
efficacy helps establish gene and sequence specificity
and facilitates high-throughput screening, the clinical util-
ity of these agents, like any other potential therapeutic,
can only be gauged in animal models, where important
issues such as delivery, biodistribution, pharmacokinet-
ics, metabolism, toxicity, and pharmacodynamics can be
explored. Dz13, for example, has the capacity to inhibit

restenosis,24 angiogenesis,25 tumor growth,25,26 and as
already discussed, inflammation49 in animal models con-
sistent with its activity in a variety of in vitro systems.

DNAzymes have been used in a variety of other animal
models. For example, DNAzymes targeting transforming
growth factor-�1, important in extracellular matrix accu-
mulation, delivered by injection into the renal artery fol-
lowed by electroporation in a rat anti-Thy-1 model of
glomerulonephritis led to reduced extracellular matrix ac-
cumulation.8 DNAzymes have also proved efficacious in
the CNS when delivered via the intracerebroventricular
route in a study in mice examining the role of the circa-
dian “clock gene” mPer-1 in morphine addiction. Inves-
tigators found less morphine dependence in mice whose
mPer-1 expression had been attenuated with mPer-1-
targeting DNAzymes compared with those that did not.54

The potential role of DNAzymes in augmenting spinal
regeneration was explored in a study in which DNAzymes
were designed to disrupt the enzyme xylosyltrans-
ferase-1, which is important in glycosylating the protein
backbone of proteoglycans. The investigators found en-
hanced axonal regeneration in newborn rats with
DNAzyme treatment and reduced glycosaminoglycan
chains on proteoglycans.53 These studies, taken to-
gether, demonstrate the potential of DNAzymes as gene-
specific molecular tools. That DNAzymes possess a num-
ber of advantages over other gene-silencing techniques,
including lower production cost and relative serum sta-
bility, makes these attractive therapeutic candidates en
route to the clinic.

A recent in vitro study58 has related DNAzyme catalysis
using a short synthetic substrate with cell death as a
measure of biological activity, making comparisons with
published data on Dz13 and several other DNAzymes
using different cleavage conditions, biological systems,
and methodologies. Although oligonucleotides with some
motifs, particularly those containing runs of multiple gua-
nines, can induce nonspecific cellular effects59,60 such
as by interacting with particularly abundant cellular pro-
teins, conclusions cannot be drawn in the absence of
experiments appropriate for the targeted gene (eg, in-
ducible immediate-early genes versus constitutively ex-
pressed genes) and without proper characterization of
phenotypic effects (eg, problematic correlation of cell-
free cleavage experiments with short substrates and cy-
totoxicity, synonymity of proliferation with survival and

Table 2. In Vivo Applications of DNAzymes

Gene Model Applications Reference

c-Jun Rabbits, rats, mice Restenosis, neovascularization, inflammation,
tumor growth

24–26,49,50

Egr-1 Pigs, rats, mice Restenosis, tumor growth, neovascularization,
ureteral obstruction

20–23,36,47,51,52

Xylosyltransferase-1 Mice Spinal regeneration 53
Transforming growth factor-�1 Rats Glomerulonephritis 8
mPer1 Mice Morphine addiction 54
PAI-1 Rats Myocardial infarction 55

56
Vitamin D3 up-regulated protein 1 Rats Myocardial infarction 27
Tumor necrosis factor-� Rats Congestive cardiac failure 57
VEGF-2 Mice Tumor growth 18

1082 Bhindi et al
AJP October 2007, Vol. 171, No. 4



toxicity, lack of stimulating conditions, or translation in
vivo) as was the case in that study.58 Dz13 activity none-
theless was found to be sequence- and dose-dependent,
and the oligonucleotide lacked quadruplex structure.58

Unexpected toxic side effects have not been observed in
vivo, in the numerous animal models of disease treated
with this DNAzyme to date (Table 2).

Although singular targets have been used in biological
systems thus far, it is possible that greater biological effi-
cacy may be achieved using combinations of DNAzymes
and/or other small-molecule nucleic acid strategies targeting
the same factor or multiple factors. In cancer for instance, there
is increasing realization that for effective tumor stasis, a com-
binatorial approach may be preferable in efforts to prevent
neoplastic cells evolving mechanisms to avoid single agent-
based therapy.61 These strategies might also be used as
adjuncts with conventional therapies such as thrombolytic
agents (eg, urokinase-type plasminogen activator and war-
farin) or antiproliferatives (eg, taxol and rapamycin).

siRNA

The advent of RNA interference (RNAi) as a gene-silenc-
ing strategy represents an exciting development in the
field of small-molecule nucleic acid-based therapeutics.
RNA interference was first described in 1998 by the 2006
Nobel Laureates Andrew Fire and Craig Mello, who dem-
onstrated double-stranded RNA-mediated degradation
of target mRNA in Caenorhabditis elegans and has sub-
sequently been demonstrated in diverse eukaryotes.
Short interfering RNA (siRNA) of 21 to 23 nucleotides
processed by the RNase III family member Dicer are
incorporated into an RNA-induced silencing complex
(RISC). The sense strand of the double-stranded siRNA is
cleaved during the formation of the RISC complex.62 RNA
helicases unwind the double-stranded siRNA, and the
antisense strand guides RISC to the complementary tar-
get mRNA, which is cleaved by RISC (Figure 1).63–65

siRNA avoids the problem of long double-stranded RNA-
mediated activation of the interferon pathway, which can
shutdown general protein synthesis and cause nonspe-
cific mRNA degradation in mammalian cells,66 although
siRNAs synthesized from the T7 RNA polymerase system
have been found to trigger interferon responses in a
variety of cell lines.67 Short-hairpin RNAs transcribed
from RNA polymerase II or III promoters from plasmid-
and virus-based vectors provide alternative strategies for
RNA-mediated gene silencing.68 Vector-based short-
hairpin RNA are processed by Dicer into siRNA du-
plexes. These strategies have been recently applied in
mammalian cancer genetics69 and models of neurode-
generation,70 and vector libraries are now commercially
available for high-throughput screens.71 Mechanisms of
RNAi-mediated gene silencing in mammalian systems
have been reviewed elsewhere.71,72

Some of the major concerns arising with siRNA appli-
cations in vivo, as with all small-molecule nucleic acid
agents, are tissue specificity and the ability to withstand
degradation by nucleases. The latter is of particular sig-
nificance because the molecule has to “survive” within

the host if it intends to provide lasting effects in the
biological milieu. Tissue-specific delivery continues to
present a key challenge for small-molecule nucleic acid
therapeutics.73 Although in vivo application of siRNA has
attracted attention particularly in cancer therapeutics,
systemic delivery would provide more clinical appeal
than local intratumoral administration. It is becoming
more common to formulate (polyplex or nanoplex) siRNA
to incorporate compounds, ligands, or peptides to
achieve tissue specificity and nuclease resistance, thus
eliminating, as much as possible, non-tissue-specific up-
take of siRNA. The targeted tissue would include the
tumor itself, inhibiting cell proliferation or the neovascu-
lature, inhibiting angiogenesis, and starving the tumor of
a blood supply. Kim et al74 have nanoplexed an siRNA to
the polymer TargeTran, comprising a branched polyeth-
ylenimine, polyethylene glycol, and arginine-glycine-as-
partate peptide sequence.75 A nanoimmunodelivery sys-
tem devised by Pirollo et al76 demonstrated specific
uptake of 6-FAM-labeled nanoplexed siRNA in primary
tumors 20 minutes after systemic delivery. Furthermore,
the nanoplexed siRNA, composed of an anti-transferrin
receptor antibody, specifically penetrated deep into the
tumors. Specificity for the tumor tissue was conferred by
a lack of fluorescence (6-FAM) by blood vessels sur-
rounding the tumor, suggesting uptake of siRNA by tumor
cells and not endothelial cells.

The issue of whether siRNA diminishes over time be-
cause of degradation or dilution due to rapidly dividing cells
was addressed by Bartlett and Davis.77 siRNA polyplexed
to transferrin, targeting the luciferase gene, specifically in-
hibited luciferase activity in nondividing hepatocytes in
mice. Inhibition of luciferase activity after a bolus intrave-
nous injection lasted 4 weeks, suggesting that stability of
siRNA was not a limiting factor in gene silencing. Schiffelers
et al78 systemically delivered PEGylated siRNA to an argi-
nine-glycine-aspartate peptide ligand specific to the VEGF
receptor-2 transcript. They demonstrated a reduction in
tumor progression of pre-established tumors xenografted in
mice, and tumor regression was paralleled by a reduction
in blood vessel formation surrounding the tumor.78 Atelocol-
lagen, a highly purified type I collagen, complexed with
siRNA confers increased resistance to nucleases, effi-
ciency in transducing cells and prolonged gene silencing.79

Intratumoral injections of siRNA complexed with atelocolla-
gen targeting VEGF inhibited tumor growth and tumor an-
giogenesis over 40 days after four repeated injections every
10th day.80 The effectiveness of locally delivered VEGF
siRNA in tumors was further complemented by Takeshita et
al,81 who systemically delivered atelocollagen siRNA. They
demonstrated that atelocollagen complexed to siRNA im-
proved cellular uptake in tumor tissue sixfold compared with
naked siRNA with efficient inhibition of metastatic tumor
growth in bone tissue.81 More importantly, systemic delivery
of atelocollagen siRNA failed to elicit an interferon or inter-
leukin-12 response in vivo.

Local and systemic delivery of siRNA directed against
target genes responsible for the progression of disease has
been successful in animal models.82 Furthermore, siRNA-
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mediated specific cleavage of targeted mRNA, in vitro and
in vivo, has also been successfully demonstrated.83,84 Local
delivery of siRNA has been used as a preventative for
ocular neovascularization for the treatment of age-related
macular degeneration and diabetic retinopathy.74,85,86

VEGF or its receptors have been prime targets of siRNA for
exerting antiangiogenic effects. Local, conjunctival, or peri-
ocular administration of siRNA targeting murine VEGF re-
ceptor-1 has been compared with systemic delivery.74,84 A
reduction in ocular neovascularization was observed by
both groups. Shen et al84 used a mouse model of laser-
induced choroidal neovascularization (CNV), whereas Kim
et al74 used herpes simplex virus DNA containing bioactive
CpG motifs to stimulate VEGF and subsequent neovascu-
larization. More potent inhibition of ocular vascularization
was evident through local administration rather than the
systemic route. Furthermore, Kim et al74 delivered a cocktail
of siRNAs targeting VEGF, VEGF receptor-1, and VEGF
receptor-2 at a 1:1:1 ratio and observed synergistic effects.
More potent inhibition of ocular neovascularization and cor-
neal VEGF protein and mRNA was achieved with this cock-
tail compared with siRNA targeting each transcript sepa-
rately. Subretinal delivery of siRNA targeted to murine VEGF
transcript inhibited choroidal neovascularization after laser
photocoagulation.85 Tolentino et al86 locally delivered siRNA
targeting VEGF to inhibit laser-induced choroidal neovascular-
ization in nonhuman primates. Single intravitreal injection of
Cand5 (VEGF siRNA) inhibited choroidal neovascularization in
a dose-dependent manner and was sustained for 36 days
with no evidence of inflammation, cataract formation, retinal
detachment, or vitreous hemorrhage. Lipid-based systems
may be useful for the systemic intracellular delivery of
siRNA. Zimmerman et al,87 for example, delivered apoli-
poprotein B siRNA encapsulated in stable nucleic acid lipid
particles into nonhuman primates by intravenous injection,
reducing levels of apolipoprotein B mRNA and protein,
serum cholesterol, and low-density lipoprotein. The clinical
interrogation of siRNA has commenced. There are at least
two siRNA molecules in clinical trials. For example, Cand5 is
in Phase II trials for age-related macular degeneration (Acu-
ity Pharmaceuticals, Philadelphia, PA), and siRNA targeting
the VEGF-receptor-1 (SiRNA-027) has successfully com-
pleted phase I (Merck & Co., Inc., Whitehouse Station, NJ)
for the same condition.84,86

Antisense Oligonucleotides, Decoys,
Ribozymes, and Aptamers

The wave of small-molecule nucleic acid-based gene-
silencing strategies includes a mix of old and new play-
ers, such as antisense oligonucleotides, oligonucleotide
decoys, ribozymes, and aptamers. These molecules dif-
fer in their mechanisms of action, and many are under
clinical development for a wide range of disorders.

Antisense Oligonucleotides

Antisense oligonucleotides (ASOs) are single-stranded
segments of DNA or RNA generally 15 to 25 bp in

length. Although their precise mechanism of action is
not fully understood, their function is mediated by in-
teraction with target mRNA via hydrogen bonding,
blocking translation into protein by steric hindrance of
ribosomal movement along the transcript, or by activa-
tion of endogenous RNase H for targeted destruction of
the DNA/RNA heteroduplex, resulting in mRNA degra-
dation.88 Unmodified ASO molecules are prone to deg-
radation, and their negative charge makes cellular
membrane penetration inefficient. As such, these mol-
ecules have evolved with a variety of modifications that
enhance stability and efficacy. These have included
the PS backbone modification, which increases oligo-
nucleotide half-life. However, the introduction of PS
into the backbone of ASOs increases the propensity of
nonspecific interaction with other proteins, resulting in
sequence-independent phenotypic effects or cytotox-
icity.33,34 High concentrations of PS ASOs can also
bind and inhibit DNA polymerases and RNase H.89,90

To eliminate off-target effects spurred by the introduc-
tion of PS ASOs, other substitutes have since been
made. LNAs, described above, have been incorpo-
rated into the backbone of ASOs as LNA/DNA gap-
mers, increasing both target binding affinity and, more
importantly, stability.40,41,91,92 An alkyl modification,
such as an 2�-O-alkyl modification to the ribose ring
(2�-O-methyl or 2�-O-methoxyethoxy) averts the need
for PS modifications, providing stability and efficacy.93

3�-3�-inverted T modifications have also remarkably
increased oligonucleotide stability.23,24,94 Takei et al94

demonstrated greater stability of ASOs with 5�- and
3�-inverted T additions compared with PS-ASOs. In
addition, 5�- and 3�-inverted T-modified ASOs inhibited
tumor growth more effectively compared with PS ASOs
after intratumoral injection. Comparison of siRNA with
ASOs, each targeting green fluorescent protein, re-
vealed more efficient inhibition by the siRNA in both
cell culture and in mice.95

Around 50 clinical studies have used antisense strat-
egies spanning a variety of disease processes, including
cancer, cardiovascular disease, inflammation, and infec-
tion.96 Fomivirsen, or Vitravene, which targets the imme-
diate-early RNA encoded by human CMV DNA, has been
approved by the United States Food and Drug Adminis-
tration for use in humans in treatment of CMV retinitis via
intravitreal administration.97 Other antisense approaches
that are currently entering Phase III trials include the
ICAM-1 antisense Alicaforsen, which has shown promise
in the treatment of inflammatory bowel disease when
administered as a retention enema.98,99 Recently, in a
Phase III trial, the addition of an antisense oligonucleotide
targeting protein kinase C-�, Aprinocarsen, to a standard
chemotherapeutic regimen for advanced non-small-cell
lung carcinoma failed to improve outcomes.100 The bcl-2
oligonucleotide oblimersen, or Genasense, is currently in
phase II/III for a variety of cancers, including chronic
lymphocytic leukemia, acute myelocytic leukemia, mela-
noma, and multiple myeloma, and has been administered
via intravenous and subcutaneous routes.101
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Decoys

In contrast to antisense approaches that target mRNA,
oligonucleotide decoys are short, double-stranded DNA
molecules that contain binding elements for a variety of
protein targets that competitively inhibit promoter binding
and gene expression. Several types of decoys have been
developed, including unmodified oligonucleotide duplexes,
�-�-anomeric oligonucleotides, duplexes with methylphos-
phonate- and phosphorothioate-modified bonds, and circu-
lar dumbbell double-stranded oligodeoxynucleotides.102

Morishita et al103 demonstrated suppression of neointima
formation with a decoy oligonucleotide to E2F in a rat model
of carotid injury. This was extended further in a rabbit model
of vein-conduit arterial bypass grafting in cholesterol-fed
rabbits with a reduction in the incidence of neointima for-
mation and atherosclerosis at 6 months in animals treated
ex vivo with the E2F decoys.104 Following from the PREVENT
trial, which established feasibility and safety of the E2F
decoy Edifoligide in infra-inguinal vascular bypass sur-
gery,105 the recently reported Phase III PREVENT IV study
evaluated the efficacy of Edifoligide in preventing vein graft
failure in patients undergoing coronary artery bypass graft-
ing. Although safe and well tolerated, no significant im-
provements in graft failure rate or angiographic appear-
ances of vein grafts at 12 months was achieved.106 Whether
the established effects of Edifoligide on smooth muscle cell
proliferation translates into longer-term benefits in this con-
text remains to be seen. Other issues affecting the potential
clinical use of molecules include susceptibility to nuclease
degradation, propensity to induce a host immunological
response, and cell transfection difficulties necessitating
higher concentration requirements.

Ribozymes

Ribozymes are catalytically active RNA molecules capa-
ble of site-specific cleavage of target mRNA and, unlike
DNAzymes, can occur naturally. Like DNAzymes and
ASOs, ribozymes need access to their binding sites in the
target RNA. Several subtypes have been described;
those most commonly studied are hammerhead and hair-
pin ribozymes,44 which differ in their catalytic response to
changes in solvent pH rather than their capacity to bind
and ligate cleavage products or reliance on metal
ions.107 Ribozyme catalytic activity and stability can be
improved by substituting deoxyribonucleotides for ribo-
nucleotides at noncatalytic bases.108 Chimeric DNA-RNA
hammerhead ribozymes targeting platelet-derived growth
factor A-chain mRNA have been shown to inhibit intimal
thickening in balloon-injured rat carotid arteries after local
delivery,109 whereas those targeting transforming growth
factor-� protect against renal injury in hypertensive rats after
systemic (intraperitoneal) delivery.110 Clinically, ribozymes
have been explored therapeutically in several small trials.
Hammerhead anti-HIV ribozymes have been used in T-
lymphocyte expansion strategies ex vivo followed by infu-
sion into patients.111–114 Hammerhead ribozymes targeting
a highly conserved portion of 5�-untranslated region of hep-
atitis C virus HEPTAZYME115 showed promise in phase I

and II trials. However, because of toxicological concerns,
the study was suspended.116 Ribozymes have also been
evaluated as potential adjuncts in cancer therapy. These
include the synthetic antiangiogenic ANGIOZYME, which
targets the VEGF receptor VEGF R1 (Flt-1) in a variety of
solid tumors,117 and HERzyme, which targets human epi-
dermal growth factor-2 overexpressed in breast and ovar-
ian cell carcinoma.118

Aptamers

Finally, aptamers (from the Latin aptus, “to fit”) are synthetic
oligonucleotide ligands that have been derived by in vitro
selection from a combinatorial library of nucleic acid se-
quences that like decoys (but unlike antisense approaches)
bind their target protein with high affinity and specificity,
inhibiting function. The clinical appeal of aptamers has
been enhanced by the introduction of chemical modifica-
tions, such as substitutions of the 2�-OH groups of the
ribose backbone to provide resistance against enzymatic
degradation.119 Pegaptanib, an RNA aptamer targeting
VEGF165, has been evaluated in patients with neovascular
age-related macular degeneration. Intravitreal delivery of
this agent results in less visual loss and other clinically
relevant improvements as early as 6 weeks, and this agent
has been approved by the United States Food and Drug
Administration for use against age-related macular degen-
eration.120 RNA and DNA aptamers have also been devel-
oped that inhibit HIV-1 function by directly interfering with
key proteins at critical stages in the viral replication cy-
cle.121 Other antiviral aptamers under development include
those targeting hepatitis C virus and influenza virus.122

More recently, DNA or RNA molecules have been selected
based on their capacity to bind targets with high affinity and
specificity using the systematic evolution of ligands by ex-
ponential enrichment combinatorial oligonucleotide library-
based in vitro selection approach.123

Parting Remarks

Gene targeting using nucleic acid strategies has now en-
tered a new era with the evolution of stable, potent, and
effective molecules. In particular, DNAzymes, siRNA, and
antisense oligonucleotides by virtue of their relative speci-
ficity and stability have enabled precise targeting of genes
regulating pivotal processes in the pathogenesis of disease,
providing an exciting class of potential therapeutic tool and a
means of understanding complex transcriptional and molecu-
lar pathways. Current studies have demonstrated their versa-
tility and potency in disrupting pathophysiologically important
pathways, via a variety of different delivery routes with relative
specificity of action and in vivo stability.

With the ongoing identification of new genes and an
appreciation of their regulatory pathways and pathological
roles, small-molecule antigene strategies have not only
emerged as an important molecular approach to delineate
the functions of these genes but also are now a clinical
reality inching closer to mainstream therapeutics. Progress
over the next few years will determine the feasibility of
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small-molecule nucleic acids to silence disease-causing
genes in man specifically and with minimal toxicity.
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