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Presence of brown adipose tissue (BAT), characterized by the expression of the

thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans.

UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white

adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the

sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21

(FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in

the liver, were shown to lead to activation of BAT thermogenesis, as well as to

“browning” of WAT. This was also observed in response to irisin, a hormone secreted

by skeletal muscles. Different approaches were used to delineate the impact of UCP1

on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout

mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis.

The impact of UCP1 deletion on insulin sensitivity in these mice was not reported.

Conversely, several studies in both rodents and humans have shown that BAT activation

(by cold exposure, β3-agonist treatment, transplantation and others) improves glucose

tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose

tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice.

The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B

and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted

by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity

and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment

of obesity/type 2 diabetes in humans.
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INTRODUCTION

Obesity, well known to be associated with a number of comor-

bidities, including insulin resistance and type 2 diabetes, has

become a major public health problem in recent decades, and has

reached epidemic proportions, not only in high-income coun-

tries, but also in most middle-income societies. It is defined as

an accumulation of adipose tissue that is of sufficient magni-

tude to impair health (WHO, 2014). Excess weight is usually

defined by the body mass index or BMI. The normal BMI

range is 18.5–25 kg/m2, although the range may vary for dif-

ferent countries. Individuals with a BMI above 30 kg/m2 are

classified as obese; those with a BMI between 25 and 30 kg/m2

are considered to be overweight. In general, the term obesity

applies to both the obese and the overweight subjects. More than

the total body weight, the distribution of the stored fat is of

importance for the development of obesity and its comorbidi-

ties. Thus, central or visceral obesity, in which fat accumulates

in the trunk and in the abdominal cavity (in the mesentery

and around the viscera), is associated with a much higher risk

for several diseases than excess subcutaneous fat accumulation.

Obesity has profound effects on tissue insulin sensitivity, and

therefore on systemic glucose homeostasis. Insulin resistance is

present even in simple obesity, without hyperglycemia, indicat-

ing a fundamental abnormality of insulin signaling in states

of excess adipose tissue mass. The epidemiologic association

of obesity, particularly of the visceral type, with type 2 dia-

betes has been recognized for decades. According to the World

Health Organization, 347 millions of people are diabetic in the

world, and it is predicted that in 2030, diabetes will be the 7th

cause of death considering the worldwide population (WHO,

2014).

Although the pathogenesis of obesity is extremely complex

and is far from being unraveled, the key component of the

obesity epidemic is long-term dysregulation of energy balance,

comprising increased energy intake and/or reduced energy expen-

diture. Despite active research and impressive improvements in

the understanding of the regulation of energy balance, there are

only a very limited number of drugs that can be used for the

efficient treatment of obesity and its comorbidities. Targeting

specific components of the neuroendocrine regulation of energy

intake, such as leptin or hypothalamic neuropeptides, has disap-

pointingly revealed unsuccessful as yet. New alternatives focusing

on adipose tissue function could potentially be of therapeutic

relevance in the future.
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Two different types of adipose tissue have been described:

brown adipose tissue (BAT), composed mainly of brown

adipocytes, and white adipose tissue (WAT), defined by a major-

ity of white adipocytes, both tissues being able to accumulate

lipids in intracellular droplets. WAT is an energy-storing tissue

that has evolutionary enabled humans to survive for longer peri-

ods between meals, storing energy mainly as triglycerides and

releasing fatty acids during fasting periods. In recent times, when

food has become cheaper and more widely available, excessive

WAT storage contributed to the worldwide alarming develop-

ment of obesity mentioned above (World Health Organization,

2009). White adipocytes are composed of a large single, spheri-

cal lipid vacuole and a peripherally located nucleus, together with

few mitochondria. WAT has endocrine activity, secreting several

factors and hormones, such as leptin and adiponectin. Under cer-

tain conditions, another type of adipocytes, named brite or beige

cells, can be found dispersed within some of the WAT depots.

These cells, which will be discussed below, present a phenotype

with metabolic properties that are closest to brown than to white

adipocytes.

BAT consists in brown adipocytes, characterized by multiple,

small, multilocular lipid droplets with a central nucleus and a

high number of mitochondria. BAT is a highly vascularized tissue

innervated by the sympathetic nervous system. The mitochondria

of BAT are characterized by the presence of uncoupling protein-1

(UCP1) in the inner mitochondrial membrane. When activated,

this protein uncouples mitochondrial respiration from ATP syn-

thesis, resulting in heat production, a process that consumes

substantial amounts of fuels. BAT, the principal effector organ

of non-shivering thermogenesis (i.e., heat production that does

not involve skeletal muscle contraction), is present in most mam-

mals and its maturation in the perinatal period varies between

species, according to their developmental status at birth (Tews

and Wabitsch, 2011).

In humans, BAT develops in the fetus during gestation. Thus,

the amount of UCP1 increases during fetal development, peaks

at birth, before declining over the first 9 months (Lean et al.,

1986; Tews and Wabitsch, 2011). The notion that human BAT is

solely apparent during the neonatal stage prevailed for decades

(Heaton, 1972; Nedergaard et al., 2007). In 2009, functional

human BAT was identified in adults by a combination of CT scans

and fluorodeoxyglucose positron emission tomography (FDG-

PET) (Cypess et al., 2009; van Marken Lichtenbelt et al., 2009;

Virtanen et al., 2009). The areas in which BAT is observed in

adult humans include supraclavicular, neck, paravertebral, and

suprarenal sites (Nedergaard et al., 2007). Estimates of BAT mass

and activity from FDG-PET studies suggest that humans have,

on average, 50–80 g of BAT (Peirce et al., 2014). Quantitatively,

it was estimated that 50 g of BAT can burn as much as 20% of

daily energy intake (Rothwell and Stock, 1983). As an example,

in a subject with 63 g of supraclavicular BAT, it was calculated

that if the depot was fully activated, it would burn an amount

of energy equivalent to 4.1 kg of WAT (Virtanen et al., 2009). It

can therefore be concluded that, even though the BAT depots are

present in small amounts, the activated tissue has the potential to

substantially contribute to energy expenditure (Nedergaard et al.,

2007).

BAT activity is well known to mostly rely on lipid metabolism,

UCP1 being directly activated by fatty acids (Cannon and

Nedergaard, 2004). Along this line, it was recently demonstrated

that chronic activation of the β3 adrenoreceptor induces coupled

increases in lipolysis, de novo lipogenesis and fatty acid beta-

oxidation not only in white, but also in BAT (Mottillo et al., 2014).

Thus, the continuous cycling of triglyceride hydrolysis coupled

to resynthesis, which requires large amounts of ATP, could be

another important mechanism to increase thermogenesis in BAT,

in addition to the role of UCP1 activation in this process (Mottillo

et al., 2014). Similarly to what was proposed for skeletal muscle

(Dulloo et al., 2004), this may contribute to dissipate excess lipids

as occurs during prolonged stimulation of lipolysis (e.g., chronic

β3 adrenoreceptor treatment).

In addition to using lipids, BAT also displays a very high

rate of glucose uptake, particularly under sympathetic activa-

tion (Cannon and Nedergaard, 2004). Interestingly, BAT glucose

uptake is close to the values observed for metastasis in cancer in

humans (Aukema et al., 2010). This tissue also responds to insulin

with a 5-fold increase in glucose uptake, without any change in

blood flow (Orava et al., 2011), while under cold exposure, glu-

cose uptake increases by 12-folds, dissipating energy as a function

of increased blood flow (Orava et al., 2011). Regarding the fate of

glucose in brown adipocytes under anabolic conditions character-

ized by high insulin levels, it is essentially metabolized to provide

glycerol-3-phosphate for triglyceride synthesis or acetyl- CoA for

de novo fatty acid synthesis (Cannon and Nedergaard, 2004).

To investigate the role of BAT, of UCP1 in particular, stud-

ies were carried out in UCP1 knockout mice. Surprisingly, no

particular phenotype was noted in these mice when they were

kept at 23◦C, except for their increased cold sensitivity (Enerback

et al., 1997; Kontani et al., 2005). In contrast, when bred under

thermoneutral conditions (29◦C), UCP1 knockout mice exhib-

ited markedly enhanced metabolic efficiency due to impaired

thermogenesis (Feldmann et al., 2009).

Altogether, the existing literature suggests that BAT activation

is not only involved in non-shivering thermogenesis, but also

in the regulation of insulin-mediated glucose disposal. Whether

brown and brite adipocytes display some degree of specialization

with regard to these different functions has to be established. The

aims of this review are to describe some of the main factors regu-

lating UCP1 activity in brown and brite adipocytes, as well as to

discuss the potential role of UCP1 activation for the treatment of

insulin resistance and type 2 diabetes associated with obesity.

FACTORS AFFECTING BAT FUNCTION AND ENERGY

METABOLISM IMPROVE OVERALL METABOLISM

In rodents, brown adipocytes are found in discrete areas, such

as interscapular, cervical, peri-aortic, peri-renal, intercostal and

mediastinal depots (Cinti, 2001), which are referred to as “classi-

cal” BAT depots. In addition, brown adipocytes can be found scat-

tered in WAT, especially upon cold exposure (Young et al., 1984;

Guerra et al., 1998), treatment with β-adrenergic (Himms-Hagen

et al., 2000), or with peroxisome-proliferator-activated receptor-

γ (PPAR-γ) agonists (Petrovic et al., 2010). These brown-like

adipocytes have interchangeably been called “recruitable” (Tseng

et al., 2008; Schulz et al., 2013), “beige” (Ishibashi and Seale, 2010;
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Auffret et al., 2012; Wu et al., 2012), or “brite” (for brown to

white) (Petrovic et al., 2010; Gburcik et al., 2012) cells.

Lineage-tracing studies showed that brown adipocytes in clas-

sic BAT areas derive from myogenic factor 5 (Myf 5+)- pos-

itive progenitor cells, similarly to skeletal myocytes (Timmons

et al., 2007). In contrast, “brite” adipocytes have been shown to

originate from Myf-negative (Myf 5−) progenitor cells, much

like white adipocytes (Petrovic et al., 2010; Long et al., 2014).

Whether “brite” adipocytes descend from unique precursors, or

share progenitors with either white or classic brown adipocytes

still remains to be established (for rev., see Chechi et al., 2013).

Interestingly, the “browning” of WAT (i.e., increased proportion

of brown adipocytes) may also involve transdifferentiation of

white-to-brown adipose cells (Smorlesi et al., 2012; Frontini et al.,

2013), although this issue is still a matter of debate (Wu et al.,

2012).

Whatever their developmental origin, white, “brite” and

brown adipocytes seem to greatly differ in their function. As

mentioned above, BAT is the effector organ of non-shivering ther-

mogenesis (both cold and diet-induced) that, by utilizing large

quantities of glucose and lipids from the circulation, can promote

negative energy balance. Moreover, the role of BAT activation

appears to be broader than solely the promotion of negative

energy balance (for rev., see Peirce and Vidal-Puig, 2013). Indeed,

BAT is now known to exert anti-type 2 diabetic effects associ-

ated with improvments of dyslipidemia and insulin secretion as

well as decrease insulin resistance in type 2 diabetes (de Souza

et al., 1997; Liu et al., 1998; Frontini et al., 2013; Peirce and Vidal-

Puig, 2013). These effects are partly interrelated, but can also be

dissociated and exerted by different UCP1-expressing types of

adipocytes (i.e., brown and “brite” adipocytes). However, as these

different cells are often mixed, such as occurs for classical and

“brite” adipocytes in some human depots (Wu et al., 2012; Cypess

et al., 2013; Jespersen et al., 2013), only the use of specific cell

surface markers (i.e., ASC-1, PAT2, and P2RX5 for white, “brite”

and brown adipocytes, respectively) will allow for their identifi-

cation, as well as for the precise understanding of their respective

therapeutic properties (Ussar et al., 2014).

BAT activation by cold exposure, β3-agonist or thyroid

hormone treatment was shown to improve glucose tolerance

and insulin sensitivity (Cawthorne et al., 1984; Forest et al.,

1987; Peirce and Vidal-Puig, 2013). Similar observations were

obtained by adipose tissue-specific overexpression of PR-domain-

containing 16 (PRDM16) in mice. This Zinc-finger transcription

factor induces differentiation of brown adipocytes (Seale et al.,

2011). The main mediators of such beneficial effects seem to

include fibroblast growth factor 21 (FGF21), interleukin-6 (IL-6),

bone morphogenic proteins (BMPs) and prostaglandin D2 syn-

thase. Interestingly, some of these molecules, called batokines, can

be secreted by BAT itself, indicating the occurrence of autocrine

effects.

Fibroblast growth factor 21 is a member of the fibroblast

growth factor (FGF) family that acts as a hormone and that, in

contrast to other endocrine FGFs, is devoid of proliferative activ-

ity (Itoh, 2014). It is expressed in BAT and WAT, although its main

production site is the liver (Nishimura et al., 2000; Muise et al.,

2008; Schulz et al., 2013; Zafrir, 2013). Tissue-specific FGF21

regulation was shown to occur in response to chronic cold expo-

sure in mice (Fisher et al., 2012). Under this condition, FGF21

expression was indeed decreased in the liver, but enhanced in

BAT, as well as in WAT, where it acted to markedly increase

UCP1 expression and the “browning” of subcutaneous tissue

(Fisher et al., 2012). Interestingly, in humans, a mild cold expo-

sure (12 h to 19◦C) was recently shown to increase the diurnal

plasma FGF21 levels, with a positive correlation with the changes

in adipose tissue microdialysate glycerol and total energy expen-

diture (Lee et al., 2013). This suggested that FGF21 could play a

similar role in humans as in rodents in promoting cold-induced

metabolic changes (i.e., lipolysis and cold-induced thermogen-

esis). In adipose tissue, it appears that PPARγ transcriptionally

controls FGF21, which then acts as an autocrine or paracrine way

to increase PPARγ transcriptional activity in a feed-forward loop

system (Wang et al., 2008; Dutchak et al., 2012). FGF21 deficiency

in mice was shown to result in impaired ability to adapt to long-

term cold exposure with diminished “browning” of WAT (Fisher

et al., 2012). At the opposite, systemic administration of FGF21

in obese mice resulted in reduced adiposity, improved glycemic

control, as well as increased energy expenditure, as mentioned

by the authors (Coskun et al., 2008). Altogether, these obser-

vations suggest that FGF21 may be a key factor linking UCP1

expression to improved glucose metabolism. It may also exert

determinant developmental effects, given the observation that the

postnatal maturation of BAT appears to relate to the onset of feed-

ing and initiation of hepatic function, as mediated by the release

of FGF21 (Hondares et al., 2010). In addition, it was recently pro-

posed that FGF21 could act within the central nervous system,

both at the level of the hypothalamus and the hindbrain to pro-

mote a set of responses that occur during starvation (i.e. increase

in corticosterone levels, suppression of physical activity, alter-

ation in circadian behavior) (Bookout et al., 2013). This raises

the possibility that, in contrast to its beneficial effects on periph-

eral metabolism, FGF21 may exert deleterious effects by acting

centrally.

Interleukin-6 (IL-6), predominantly known as a pro-

inflammatory cytokine, is secreted by skeletal muscle (Pal et al.,

2014), helper T cells, as well as by WAT and BAT (Mohamed-Ali

et al., 1997; Cannon et al., 1998). Several studies implicated

IL-6 as a co-inducer of the development of obesity-associated

insulin resistance preceding the onset of type 2 diabetes (Pal

et al., 2014). This is in keeping with the observation of increased

plasma IL-6 levels in obese patients (Cottam et al., 2004). In

such patients, IL-6 is preferentially secreted from visceral rather

than from subcutaneous adipocytes and may participate in the

prevailing increase in sympathetic outflow by exerting central

effects (Wallenius et al., 2002; Fain et al., 2004). Paradoxically,

central IL-6 delivery was shown to suppress weight gain and

visceral obesity, without affecting food intake (Li et al., 2002).

The treatment also enhanced UCP1 protein levels in BAT, via

stimulation of the sympathetic nervous system (Li et al., 2002).

This was mediated by phosphorylation of the signal transducer

and activator of transcription 3 (pSTAT3). Interestingly, chronic

central IL-6 stimulation desensitized IL-6 signal transduction

characterized by reversal of elevated pSTAT3 levels (Li et al.,

2002). Such desensitization is likely occurring in situations of
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chronic elevation in IL-6 levels, such as occurs in human obesity.

It should be added that the understanding of the role of IL-6 is

more complex, as this cytokine is known to be secreted by skeletal

muscle in response to exercise, exerting insulin sensitizing effects

(Kelly et al., 2004; Petersen and Pedersen, 2005). Along this

line, it was recently shown that BAT transplantation into the

abdominal cavity of high fat diet-induced obese mice was able to

improve their glucose tolerance, increase their insulin sensitivity,

lower their body weight, decrease their fat mass and completely

reverse their insulin resistance (Stanford et al., 2013). BAT

transplantation also increased insulin-stimulated glucose uptake

in BAT, WAT, and heart, but not in skeletal muscle (Stanford

et al., 2013). Importantly, the improved metabolic profile was lost

when BAT used for transplantation came from IL-6 knockout

mice, clearly demonstrating that BAT-derived IL-6 is required

for the profound effects of BAT transplantation on glucose

homeostasis and insulin sensitivity (Stanford et al., 2013).

Apart from IL-6, another circulating factor, named irisin,

was shown to be produced by skeletal muscles during physi-

cal exercise in rodents (De Matteis et al., 2013). Irisin, obtained

by cleavage from the precursor protein, fibronectin type III

domain containing 5 (FNDC5), was described as promoting the

appearance/recruitment of “brite” cells in white adipose depots

(Bostrom et al., 2012; Lee et al., 2014a). However, the existence of

this protein and its role in humans is still a matter of debate (Elsen

et al., 2014a).

Thyroid hormones (THs) are well known mediators of over-

all energy expenditure (Klieverik et al., 2009). Treatment with

THs induces UCP1 expression in brown adipocytes in rats, fol-

lowing their binding to TH-responsive elements in the UCP1

promoter (Guerra et al., 1996). Type 2 iodothyronine deiodinase

(D2), responsible for the transformation of thyroxine (T4) to tri-

iodothyronine (T3), is also inducing UCP1 expression locally, in

BAT (de Jesus et al., 2001). Furthermore, treatment of brown

adipocytes and human skeletal myocytes with bile acids (BA)

were shown to increase D2 activity and oxygen consumption

via the activation of UCP1 (Watanabe et al., 2006). In both

rodents and humans, this BA-D2-UCP1 pathway appears to be

crucial for the fine-tuning of energy homeostasis, improving the

metabolic control (Watanabe et al., 2006). Thyroid receptors

(TRs) are composed of several isoforms that specifically regulate

UCP1 expression and thermogenesis. The α isoform was shown to

regulate adaptive thermogenesis, whereas the β isoform appears

to modulate UCP1 expression, without increasing thermogene-

sis (Ribeiro et al., 2001). In humans, a unique patient suffering

from extreme diabetes due to a mutation in the insulin receptor

gene had to undergo total thyroidectomy because of the pres-

ence of a papillary carcinoma. Thirty months after the initial

treatment of the thyroid cancer (radioiodine and levothyrox-

ine), remarkable improvements in glycemia were noted and the

anti-diabetic treatment could even be discontinued. A PET/CT

study revealed the presence of BAT depots in the lower neck,

suprascapular, mediastinal, and thoracic paravertebral regions.

Interestingly, increased FDG uptake was also noted in the sub-

cutaneous fat, in particular in the pelvic area and over the lower

extremities. Overall, the sequence of events in this patient sug-

gests that the metabolic and trophic effects of THs on BAT may

play a critical role in non-insulin-mediated glucose utilization,

ultimately leading to near-normal glucose levels (Skarulis et al.,

2010).

Bone morphogenic proteins (BMPs) are members of the trans-

forming growth factor β superfamily (TGF-β). They were orig-

inally thought to be factors inducing bone formation, but were

then described to be involved in the development and function of

many tissues, such as the intestine, brain and WAT (Hogan, 1996).

Some members of the BMP family were shown to play a role in

energy homeostasis and the early steps of adipogenesis, in partic-

ular. Among the 20 BMP family members, BMP-7 has been impli-

cated in the development of BAT, being able to drive the complete

brown fat differentiation program, including PRDM16 expres-

sion (Modica and Wolfrum, 2013). BMP-7 can also affect energy

homeostasis by acting on mature brown adipocytes, resulting in

the induction of UCP1, thereby enhancing thermogenesis. As it

is not expressed in mature brown adipocytes, BMP7 appears to

exert its action on BAT as an endocrine factor. In addition to its

effect on BAT, BMP-7 was also reported to induce the “brown-

ing” of WAT and to improve insulin sensitivity (Schulz et al.,

2011). Finally, several hypothalamic nuclei were shown to express

BMP-7, suggesting that it may regulate BAT function via a central

mechanism, also responsible for decreased food intake (Modica

and Wolfrum, 2013).

BMP8B, another member of the BMP family, was found to be

expressed in BAT, as well as in the hypothalamus (Contreras et al.,

2014). Central administration of BMP8B induced thermogenesis

and increased core temperature, leading to weight loss (Contreras

et al., 2014). This effect, exerted within the ventromedial hypotha-

lamus (VMH), was described as being AMPK-dependent, result-

ing in the activation of the sympathetic outlflow to BAT, without

any change in the feeding behavior (Whittle et al., 2012; Contreras

et al., 2014).

In contrast to BMP7 and BMP8B, BMP4 was shown to pro-

mote the differentiation of mesenchymal stem cells into white

adipocytes, inducing fat storage and decreasing energy expendi-

ture in rodents (Modica and Wolfrum, 2013; Contreras et al.,

2014). However, in primary human adipose stem cells, both

BMP4 and BMP7 induced a white-to-brown adipocyte transdif-

ferentiation (Elsen et al., 2014b), pointing to the occurrence of

different effects, depending on the model used for investigation.

Further studies are needed to clarify and strengthen the role of

BMP proteins in the regulation of BAT or “brite” cells and their

consequences on metabolic homeostasis.

Phosphatase and tensin homolog deleted on chromo-

some ten (PTEN), a well-known tumor suppressor is a

phosphatase that specifically catalyzes the dephosphory-

lation of phosphatidylinositol-3,4,5-triphosphate (PIP3),

in phosphatidylinositol-4,5-diphosphate PIP2 (Cantley

and Neel, 1999). This enzyme counteracts the action of

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), resulting

in inhibition of the AKT signaling pathway involved in multiple

biological processes, including insulin action. Activation of AKT

is known to trigger a complex cascade of events that include

the inhibition of FOXO transcription factors (Ortega-Molina

et al., 2012). Interestingly, mice carrying additional copies of

Pten (Ptentg mice) are not only protected from cancer and
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exhibit extended longevity, but, according to the authors, they

also present enhanced energy expenditure that participates in

counteracting the development of obesity. This is related to lower

BAT levels of phosphorylated AKT and FOXO1, higher BAT

and WAT expression of UCP1, as well as of its transcriptional

regulator, PGC1-α (Ortega-Molina et al., 2012). In addition,

specific deletion of Pten in the liver in LPTENKO mice induces

a strong hepatic steatosis (Stiles et al., 2004; Peyrou et al., 2015),

but improves the overall insulin sensitivity, and decreases the

fat mass. “Browning” of WAT could be one of the mechanisms

underlying the increased insulin sensitivity of LPTENKO mice,

in keeping with the observation of increased WAT glucose uptake

(Peyrou et al., 2015). In humans, PTEN haploinsufficiency was

shown to have divergent effects, as they increase the risk of

obesity, while decreasing that of type 2 diabetes by markedly

improving insulin sensitivity (Pal et al., 2012). In a very recent

study, the grizzly bear was used as a hibernation model, in which

obesity is a natural adaptation to survive months of fasting

(Nelson et al., 2014). It was remarkably observed that prepara-

tion for hibernation was characterized by striking increases in

body weight and in fat mass. Animals were shown to exhibit

enhanced insulin sensitivity, while they become obese and to

develop insulin resistance a few weeks later, during hibernation,

to finally recover their insulin sensitivity upon awakening. The

modification of insulin sensitivity occurs via the effect of the

PTEN/AKT-mediated regulation of adipose tissue lipolysis.

These results support the notion that adipose tissue is very

insulin sensitive in the fed state, while being able to drive insulin

resistance in the fasting state, independently from insulin levels

(Nelson et al., 2014). In humans, the only physiological recovery

of insulin sensitivity after a period of insulin resistance, partially

due to an increase in food intake and lipogenesis, is observed in

women after pregnancy (Barbour et al., 2007).

The present knowledge on the impact of the main batokines,

as well as of the principal other UCP1 modulators on peripheral

metabolism is schematized by Figure 1.

IMPACT OF PERINATAL NUTRITIONAL CHANGES

Epidemiological evidence in humans strongly suggests that the

intrauterine and early postnatal environments have a significant

long-term influence on body weight and energy homeostasis in

offspring (for rev., see Breton, 2013). Thus, both maternal under-

feeding or overfeeding were reported to exert a predisposing effect

for the development of later obesity (Breton, 2013). Rodents are

commonly used to investigate the mechanisms underlying long-

term programming of energy balance in the offspring. High fat

feeding of pregnant or lactating mothers was shown to induce

glucose intolerance and the development of obesity in the progeny

during adult life (Bayol et al., 2008; Samuelsson et al., 2008). The

signals that mediate the effects of maternal metabolic disorders

in overfed offspring have not been fully identified. They include

hormones, such as insulin, leptin and glucocorticoids, proinflam-

matory cytokines, as well as complex epigenetic modifications

(Tamashiro and Moran, 2010; Lukaszewski et al., 2013).

In this context, the sheep appears to be a very good model,

because as for humans, the major source of BAT in the fetus

is around central organs and is replaced by WAT after birth,

whereas in rodents, the primary BAT depot is interscapular and

FIGURE 1 | Schematic representation of the main factors described in

the review, which modulate UCP1 activity. TL, T lymphocytes; SNS,

sympathetic nervous system. For other abbreviations, see text. Full lines

indicate stimulatory effects, whereas dotted lines represent inhibitory ones. ?

indicates the existence of conflicting data in the literature with regard to the

impact of the factor on UCP1 activity.
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it remains throughout life (Symonds et al., 2012). In sheep, the

mother’s diet during pregnancy determines the size of the pla-

centa and can affect both the BAT and WAT mass, depending

on the timing and the nature of the diet perturbation. In other

words, the respective growth of the BAT and WAT depots depends

on the maternal diet during gestation and it may be responsi-

ble for the development of obesity, insulin resistance and type

2 diabetes in the offspring, later in life (Symonds et al., 2012).

Gestational diabetes in humans is a situation of increased nutri-

ent supply that, together with the high maternal body mass index,

can be accompanied by enhanced birth-weight and adverse long-

term metabolic consequences, as described by the World Health

Organization (2003), as well as in several publications (Larsson

et al., 1986; Dabelea et al., 2000; Singh et al., 2006). However, in a

recent study, the role of diabetes during gestation on such adverse

long-term metabolic consequences has been seriously questioned,

as they seem to relate more on known confounders, such as the

BMI of either one of the parents (Donovan and Cundy, 2014).

Among the regulators that may link the maternal diet dur-

ing gestation with the metabolic outcome of the offspring,

leptin is one of the main candidates. It is a well-known hor-

mone increasing BAT activity and inducing “browning” of WAT

via activation of the sympathetic nervous system and result-

ing increased β3 adrenoceptor signaling (Haynes et al., 1997;

Commins et al., 2000). Rodent models of leptin deficiency exhibit

marked decreases in BAT thermogenic capacity, as well as activity

(Ueno et al., 1998). Moreover, it was shown that leptin injection

in the early stage of life in lambs decreases UCP1 expression in

BAT, but improves thermoregulation, suggesting a particular role

of leptin at such a stage in life in large mammals (Mostyn et al.,

2002). Another study revealed that the ability of leptin to increase

the metabolic rate early in life is independent from its anorectic

action (Mistry et al., 1999).

No data are available as yet with regard to the impact of early

leptin administration on the subsequent “browning” of WAT

and the related regulation of glucose metabolism, as well as the

response to hypercaloric diets later in life in the offspring.

ATTEMPTS AT STIMULATING BAT FUNCTION IN HUMANS

With regard to the relationship between BAT and body weight

in humans, an inverse correlation between BMI and the amount

of BAT was described, already 5 years ago (Cypess et al., 2009;

van Marken Lichtenbelt et al., 2009). In addition, more recent

studies indicated that, compared to individuals without BAT,

the BAT-positive subjects were younger, had lower body mass

index, fasting insulin, insulin resistance, but a greater level of

high-density lipoprotein cholesterol (Zhang et al., 2013). During

acute cold exposure, BAT was shown as a significant independent

determinant of plasma glucose and HbA1c levels (Matsushita

et al., 2014). A parallel increase in BAT activity and cold-induced

energy expenditure was also observed in response to acute cold

exposure in subjects with low BAT activity, demonstrating the

possible occurrence of BAT recruitment in humans (Yoneshiro

et al., 2013). Very recently, chronic cold acclimation in human

subjects was reported to increase the volume of metabolically

active BAT, increasing its oxidative capacity, therefore its contri-

bution to cold-induced thermogenesis (Blondin et al., 2014). In

another study, the cold-induced increase in thermogenesis was

accompanied by a decrease in body weight, mainly affecting the

fat mass compartment (Yoneshiro et al., 2013). Cold-acclimation

was also shown to increase diet-induced thermogenesis and

postprandial insulin sensitivity, without impacting cold-induced

thermogenesis (Lee et al., 2014b). These results are in keeping

with data showing a physiological role of BAT in whole-body

energy expenditure, glucose homeostasis, and insulin sensitivity

in humans during prolonged cold exposure (Chondronikola et al.,

2014).

Much more work is needed to identify other ways than cold

exposure to increase BAT activity in obese subjects. To this end,

one of the very useful tools is the use of rodent strains with

different sensitivities to diet-induced obesity and insulin resis-

tance. Indeed, resistance to the development of obesity has at

least partly been attributed to elevated recruitment of brown

adipocytes in skeletal muscle or WAT (Guerra et al., 1998; Almind

et al., 2007; Veyrat-Durebex et al., 2009; Harms and Seale, 2013).

These studies are highly therapeutically relevant, as BAT activa-

tion in overweight or obese subjects will activate thermogenesis

and dissipate heat, while at the same time improving glucose

metabolism and insulin resistance.

It should be added at that point that, although β3 adrenocep-

tors are expressed in humans (for rev., see Mund and Frishman,

2013) and β3 agonists are potent UCP1 activators in rodents, the

molecules which are active in rodents cannot be used in humans

due to inter-species differences. This should be solved in the

future by the identification of selective human β3 agonists (Mund

and Frishman, 2013; Bordicchia et al., 2014).

CONCLUSION

To conclude, UCP1 is an excellent target to struggle diabetes and

decrease body fat mass, improving whole metabolism. Indeed,

it negatively regulates the energy balance by increasing energy

expenditure. It also secretes several batokines, allowing for inter-

organ communication. Finally, it is easily inducible, such as dur-

ing mild cold exposure with resulting beneficial effects. Finding

a molecule with as much efficiency as the β3 agonist in rodents,

would be of considerable therapeutic relevance for the treatment

of obesity, insulin resistance and type 2 diabetes in humans.
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