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The demonstration of metabolically active brown adipose tissue (BAT) in humans primarily

using positron emission tomography coupled to computed tomography (PET/CT) with

the glucose tracer 18-fluorodeoxyglucose (18FDG) has renewed the interest of the

scientific and medical community in the possible role of BAT as a target for the

prevention and treatment of obesity and type 2 diabetes (T2D). Here, we offer a

comprehensive review of BAT energy metabolism in humans. Considerable advances in

methods to measure BAT energy metabolism, including nonesterified fatty acids (NEFA),

chylomicron-triglycerides (TG), oxygen, Krebs cycle rate, and intracellular TG have led

to very good quantification of energy substrate metabolism per volume of active BAT

in vivo. These studies have also shown that intracellular TG are likely the primary energy

source of BAT upon activation by cold. Current estimates of BAT’s contribution to energy

expenditure range at the lower end of what would be potentially clinically relevant if

chronically sustained. Yet, 18FDG PET/CT remains the gold-standard defining method

to quantify total BAT volume of activity, used to calculate BAT’s total energy expenditure.

Unfortunately, BAT glucose metabolism better reflects BAT’s insulin sensitivity and blood

flow. It is now clear that most glucose taken up by BAT does not fuel mitochondrial

oxidative metabolism and that BAT glucose uptake can therefore be disconnected from

thermogenesis. Furthermore, BAT thermogenesis is efficiently recruited upon repeated

cold exposure, doubling to tripling its total oxidative capacity, with reciprocal reduction

of muscle thermogenesis. Recent data suggest that total BAT volume may be much

larger than the typically observed 50–150ml with 18FDG PET/CT. Therefore, the current

estimates of total BAT thermogenesis, largely relying on total BAT volume using 18FDG

PET/CT, may underestimate the true contribution of BAT to total energy expenditure.

Quantification of the contribution of BAT to energy expenditure begs for the development

of more integrated whole body in vivo methods.
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INTRODUCTION

Since 1980, the global prevalence of obesity has doubled
(1). In 2015, overweight and obesity accounted for 4 million
deaths worldwide, including 3.3 million from cardiovascular
diseases and type 2 diabetes (T2D) (1). Restricting energy intake
by reducing food consumption, increasing satiety and/or fat
malabsorption, is the chief weight-loss mechanism of most
medical and surgical treatments of obesity and has profound
anti-diabetic effects (2–5). Increasing exercise- and non-exercise
activity-related thermogenesis is the other cornerstone of
obesity and T2Dmanagement. Simultaneously targetingmultiple
mechanisms of energy homeostasis is advantageous for the
treatment of obesity (6). However, targeting energy expenditure
unrelated to physical activity remains largely underexplored.
Consequently, a number of unexploited mechanism may help fill
a gap as an adjunct to current treatments for obesity and T2D.

One emerging, highly modifiable homeostatic mechanism for
energy expenditure in humans is BAT thermogenesis. BAT may
contribute as much as 60% of “non-shivering” thermogenesis
in small mammals (7, 8), enabling their survival in the cold
without reliance on shivering to produce heat (9, 10). BAT is
currently considered a prime target for the treatment of obesity
and T2D (11–15). Although the relative role of BAT on energy
expenditure, thermogenesis and substrate utilization is dominant
in rodents, the contribution of BAT to energy homeostasis in
humans is more controversial. A detailed discussion on the
different factors implicated in BAT andWAT “browning” such as
immune cell-mediated modulation of adipose tissue sympathetic
innervation (16) [please see (17) and (18) for review] is beyond
the scope of the present review. The aim of the present article
is to review the evidence for a role of BAT in energy substrate
metabolism and thermogenesis in humans.

THE DEFINITION OF BAT

BAT is a heat-producing adipose tissue located in interscapular,
subscapular, axillary, perirenal, and periaortic regions in rodents
(19). In infants, the predominant interscapular distribution
found in small mammals also occurs (20–22), but regresses with
age and is lost at adulthood. The typical supraclavicular and
paravertebral BAT distribution seen in adults appears to develop
with puberty in boys and girls (23, 24). BAT cells differ fromwhite
adipose tissue (WAT) cells (25, 26). The former cells contain
numerous small lipid vacuoles and a large number of well-
developed mitochondria, whereas the latter are characterized by
a single large lipid vacuole and a few mitochondria. BAT cells in
WAT depots, called “beige” or “brite” adipocytes, have also been
shown in rodents and humans (26). Histologically, “beige” cells
demonstrate an intermediate phenotype between classical BAT
adipocytes and classical white adipocytes (26).

The hallmark of BAT cells at the molecular level in animals
and humans alike is the high level of expression of uncoupling
protein-1 (UCP1). UCP1 is found in the inner membrane of
BAT cells’ mitochondria (19, 27). UCP1 uncouples mitochondrial
respiration from adenosine-5′-triphosphate (ATP) synthesis
(28). When activated, it causes a leak that dissipates the

electrochemical proton gradient that builds up across the inner
mitochondrial membrane during BAT fatty acid oxidation.
This electrochemical proton gradient drives the conversion of
adenosine-5′-diphosphate (ADP) to ATP by ATP synthase. As a
consequence, the presence of active UCP1 abolishes the negative
feedback inhibition exerted by high ATP and/or low ADP levels
on mitochondrial Krebs’ cycle and respiration, leading to very
high rate of fatty acid oxidation that directly produces heat.
Because of its large amount of active UCP1 proteins, BAT is thus
the only organ that literally can “burn” fat.

UCP1 is activated by long chain fatty acids (19, 28, 29), but
the mechanism by which it uncouples mitochondrial respiration
has long been debated (30–32). UCP1 is an anion/H+ symporter
that binds avidly long chain fatty acids, making it in effect a
proton translocator (33). BAT is richly innervated by sympathetic
nervous system efferent fibers and sympathetic activation is
the physiological activator of BAT thermogenesis (19, 34–37).
The release by these fibers of noradrenaline stimulates BAT
intracellular triglyceride (TG) lipolysis, releasing long chain
fatty acids that in turn activate UCP1 and BAT thermogenesis
(Figure 1). We provided in vivo experimental evidence for
this model by showing that nicotinic acid administration,
an inhibitor of intracellular TG lipolysis, blocks acute cold-
stimulated BAT thermogenesis in rats (38) and in humans (39).
Recent investigations using genetic deletion of genes essential
for intracellular TG lipolysis in mice models have, however,
casted doubt about the essential role of intracellular TG lipolysis-
derived fatty acids to activate BAT thermogenesis (40, 41).
However, direct in vivo assessment of BAT thermogenesis was
notmeasured and BAT of these genetic mousemodels displayed a
large increase in utilization of circulating fatty acids and glucose.
It is therefore likely that intracellular TG and, if the later are
unavailable circulating fatty acids, play an important role for the
activation of BAT thermogenesis.

It is clear that BAT cells can stem from different cell lineages
and display different molecular signatures depending on whether
they are harvested from classical BAT or classical WAT depots
(42–45). This molecular signature of supraclavicular BAT depots
in humans may also be much more similar to that of “beige”
adipocytes than that of “classical BAT” of rodents (46). Despite
these differences, UCP1 content and function appear similar
between human and mouse BAT (47). The distinct molecular
signature of BAT could potentially be exploited for the in vivo
identification and quantification of BAT. For example, targeting
of a relatively BAT specific molecule, programed death ligand-1,
was recently proposed for PET imaging and to quantify BAT in
mice (48). However, from an integrative physiology and clinical
perspective, it is the unique thermogenic potential of BAT, not its
molecular signature, that matters. The presence of BAT in human
adults has been noticed earlier from pathological investigations
(49–51). Despite this early pathological description, the presence
of functional BAT in adult humans was widely acknowledged
only with the use of positron emission tomography coupled
with computed tomography (PET/CT) with the glucose analogue
18-fluoro-deoxyglucose [18FDG) (52–57). It is the very intense
metabolic activity of otherwise metabolically quiescent fat tissue,
at least with regards to glucose metabolism, that led the scientific
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FIGURE 1 | Uncoupling protein 1 (UCP1)-mediated brown adipose tissue

thermogenesis. Upper panel: Brown adipose tissue UCP1-mediated

thermogenesis is activated by fatty acids produced via norepinephrine-induced

intracellular triglyceride (TG) lipolysis during cold exposure. Middle panel:

Acute pharmacological inhibition of intracellular TG lipolysis blunts brown

adipose tissue thermogenesis via reduction of intracellular fatty acids

availability. Lower panel: Genetic deletion-mediated inhibition of intracellular

TG lipolysis in brown adipose tissues leads to increased reliance on circulating

nonesterified fatty acids (NEFA) and triglyceride (TG)-rich lipoproteins to

sustain UCP1-mediated thermogenesis. The mitochondrion illustration was

obtained free of copyright from Pixabay (www.pixabay.com, 2018).

community to finally acknowledge BAT as an organ of interest for
energy balance and as a potential therapeutic target for obesity
and T2D.

Currently, 18FDG PET/CT is considered the “gold-standard”
method to identify BAT in humans (58), although BAT glucose
metabolism does not accurately reflect BAT thermogenic activity
(see section on glucose metabolism below) (59). The presence
of BAT is defined according to the combination of two tissue
characteristics on static (whole body) 18FDG PET/CT acquisition
(Figure 2): (1) unusually high 18FDG (glucose) uptake for an
adipose tissue, i.e., 18FDG PET standard uptake value normalized
for lean mass higher than that of the upper range normally seen
in classical WAT; and (2) a tissue radio-density on CT that is
compatible with the presence of adipose tissue. Using 18FDG
PET/CT, most of the glucose-utilizing BAT volume (“18FDG
positive fat”) is constituted by multiple small adipose depots
scattered in the supraclavicular, paravertebral, pericardial, and
suprarenal regions (54, 56, 57, 60). Using 18FDG PET/CT,
measured BAT volume in humans varies over two orders of
magnitude, from a few to hundreds of milliliters (59). Three-
dimensional mapping of adipose tissue depots with 18FDG
PET/CT showed that up to 4.3% of total body adipose tissue
mass accounts for depots that may display significant glucose
uptake upon cold exposure (61). However, the proportion of this
adipose tissue mass that was demonstrated as BAT mass using
18FDG PET/CT is very small, especially in obese individuals. It
is important to note that accurate quantification of total BAT
volume of metabolic activity by the addition of numerous small
regions, typically less than 1 cm3 each, is very challenging using
PET for a number of technical reasons that were discussed in
more details elsewhere (59, 62). 18FDG positive fat sites are also
determined by a series of environmental and biological factors
including outdoor temperature preceding PET/CT scanning
procedures, age, sex, body fat content, central adiposity, the
presence of diabetes, circadian rhythm, and the use of some drugs
such as β-adrenergic blockers (54, 55, 60, 63–70). The prevalence
of spontaneously detectable 18FDG positive fat sites range from
2 to 7% in large cohorts of patients evaluated for cancer, but
reaches 70–100% during experimental cold exposure (58, 59).
18FDG positive BAT volume and/or activity also significantly
increases within weeks of cold acclimation (71–74). Glucose
uptake in BAT is profoundly influenced by insulin sensitivity
(see section on glucose metabolism below). Because of these
technical and biological reasons, 18FDG PET/CT therefore likely
underestimates true BAT volume in humans, especially in people
with obesity and T2D.

Despite emerging methods using other PET tracers (48, 75–
79), single-photon emission computed tomography (67, 80),
magnetic resonance imaging (MRI), and spectroscopy (MRS)
(81–89), near infrared spectroscopy (90, 91), contrast ultrasound
(92), microwave radiometry (93), and optoacoustic imaging (94),
18FDG PET/CT currently remains the best method to define the
presence and to measure BAT volume in humans (95–98) (99).
The lack of a method that directly measure total BAT volume and
BAT-specific thermogenesis, however, constitutes an important
gap to fill in order to accurately define the true contribution of
BAT to energy homeostasis in humans.
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FIGURE 2 | The standard definition of brown adipose tissue in vivo in humans. Brown adipose tissue is currently defined in vivo in humans by the combination of two

radiological features: (1) 18-fluorodeoxyglucose (18FDG) uptake above a set threshold higher than that usually observed in white adipose tissues using positron

emission tomography (left panels); and (2) a radio-density that is compatible with the presence of adipose tissue using computed tomography (right panels). After

intravenous (i.v.) injection of 18FDG, whole body (static) positron emission tomography scanning is performed, giving quantitative tissue bio-distribution of the tracer

into brown adipose tissues. This tissue tracer uptake is co-registered with tissue radio-density measured using computed tomography. The middle left and right

panels show positron emission tomography and computed tomography transverse views, respectively, of supraclavicular brown adipose tissue in a healthy individual

during a standardized cooling protocol. Source of illustration: Shutterstock (www.shuterstock.com, 2018, no. 100687138).

ENERGY SUBSTRATES UTILIZATION BY
BAT

Glucose
The demonstration of large increase in BAT glucose uptake
with the activation of BAT oxidative metabolism led to the
suggestion that BAT metabolic activation could be exploited
to increase glucose clearance and utilization and treat diabetes
(100, 101). This possibility was furthermore supported by recent
epidemiological observations showing an association between
increased glycosylated hemoglobin and increased incidence of
diabetes with higher outdoor temperature (68, 102). Additionally,
it was shown that the incidence of gestational diabetes rises by 6%
for every 10◦C increase in mean 30-day outdoor air temperature
(103). Cold-induced whole body glucose disposal was shown
to increase only in 18FDG BAT positive individuals (104) and
BAT activation with cold exposure is furthermore associated with
improved glucose homeostasis and insulin sensitivity in patients
with T2D (105, 106).

There are, however, obvious problems with this hypothesis.
First, cold exposure increases muscle glut4 cell membrane
expression and stimulates shivering and deep muscle glucose
uptake, even when care is applied to limit muscle shivering (105,

107). Therefore, this muscle metabolic activity likely contributes
to some cold-induced increase in whole body glucose disposal.
Second, although cold-induced BAT glucose uptake per volume
of tissue is indeed usually higher than that of other tissues in
healthy subjects (107, 108), total volume of 18FDG-positive BAT
amounts to <150ml in most healthy individuals (59). 18FDG-
positive BAT volume is also much smaller in individuals with
obesity and T2D (109). This imposes an important limitation
to the capacity of BAT metabolism to significantly impact
systemic glucose clearance. For example, using whole body
18FDG PET acquisitions during standardized cold exposure
in healthy subjects, we showed that BAT accounted for ∼1%
of total body glucose utilization as compared to ∼50% for
skeletal muscles (107) (Figure 3). Based on calculations that we
previously described (110), glucose partitioning was 4, 8, 6, and
10% in the heart, liver, visceral WAT, and sub-cutaneous WAT,
respectively (Figure 4).

Unfortunately, dynamic 18FDG PET acquisition allowing
precise quantification of BAT glucose uptake rate has been
used by only a few investigators. The group of University of
Turku in Finland has reported BAT glucose uptake rates during
acute cold exposure in the order of 90–120 nmol.g−1.min−1

in healthy individuals and of 35 nmol.g−1.min−1 in obese
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FIGURE 3 | Whole body glucose uptake into brown adipose tissues and muscles during acute cold exposure. During mild cold exposure, glucose uptake is

stimulated in brown adipose tissue, but also in several centrally-located skeletal muscles. Brown adipose tissue glucose uptake is ∼8-fold higher than that of skeletal

muscles, on average, per gram of tissue during mild cold exposure. However, total mass of brown adipose tissue is about 0.2% of that of skeletal muscles. Therefore,

brown adipose tissue and skeletal muscle glucose uptake account for ∼1 and 50%, respectively, of systemic glucose disposal. The figures presented were calculated

from previously published data in young healthy individuals, before cold acclimation (39). BAT, brown adipose tissue; SUV, standard uptake value. Source of muscle

illustration: Shutterstock (www.shuterstock.com, 2018, no. 404668558).

FIGURE 4 | Organ-specific glucose partitioning during acute cold exposure.

The figures presented were calculated from a previously published study in

young healthy individuals, before cold acclimation (39), based on calculations

that we detailed previously (110). BAT, brown adipose tissue; WATsc,

sub-cutaneous white adipose tissues; WATv, visceral white adipose tissue.

individuals (57, 111, 112). Our group at Université de Sherbrooke
reported BAT glucose uptake rates during acute cold exposure
at fasting ranging from 80 ± 14 nmol.g−1.min−1 in non-cold-
acclimated healthy individuals to 209 ± 50 nmol.g−1.min−1 in

cold-acclimated healthy individuals (39, 73, 108) (Figure 5 and
Table 1). We found BAT glucose uptake during cold exposure
in the postprandial period in the range of 50 nmol.g−1.min−1,
i.e., not very different from those measured in the fasting state
(115). Although these rates of glucose uptake are two to three-
fold higher per volume of tissue than that measured in skeletal
muscles, the much larger muscle vs. BAT mass translates into
organ-specific uptake that is two orders of magnitude higher
in the former (39). Furthermore, we found BAT glucose uptake
rates to be much lower in older, overweight subjects without
or with T2D, in the range of ∼10 nmol.g−1.min−1 (109). In
absolute terms, we found rates of BAT glucose uptake ranging
from ∼0.1 µmol/min in overweight individuals without and
with T2D to ∼3 µmol/min in healthy individuals during acute
cold exposure. Using simultaneous quantification of BAT glucose
uptake with dynamic 18FDG PET acquisition and systemic
glucose utilization with conventional glucose tracer method, we
found that acutely cold-activated BAT glucose uptake accounted
for <1% of systemic glucose turnover in healthy men (39, 108,
109). It is therefore unlikely that BAT activation may significantly
contribute to improve systemic glucose metabolism, especially in
subjects with impaired glucose metabolism.

BAT glucose uptake has been extensively used as a surrogate
marker of BAT thermogenesis in humans on the basis of
correlative observations between BAT thermogenic activity and
glucose uptake. Indeed, the presence and metabolic activity
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FIGURE 5 | Brown adipose tissue uptake of energy substrates. Total brown adipose tissue uptake of energy substrates is calculated from published quantitative,

dynamic positron emission tomography or microdialysis experiments in humans, multiplied by a typical total brown adipose tissue mass reported in the literature. Data

from (73, 108, 113), (108, 113, 114), (115), and (116) were used to calculate glucose, NEFA, dietary fatty acid, and glutamate BAT uptake, respectively. 18FDG,

18-fluorodeoxyglucose; BAT, brown adipose tissue; NEFA, nonesterified fatty acids; PET/CT, positron emission tomography coupled with computed tomography.

TABLE 1 | Upper and lower estimates of brown adipose tissue plasma glucose, nonesterified fatty acid, dietary fat, and glutamate uptake rates in humans.

Substrate Mean uptake

(nmol.g−1.min−1)

Molar mass

(g.mol−1)

Absolute uptake

assuming BAT mass

of 150g (g.day−1)

Notes References

Glucose 80 180.156 3.11 Healthy men, non-cold acclimated, acute cold exposure (39, 73, 108)

209 8.13 Healthy men, post-cold acclimation, acute cold exposure (73)

NEFA 4 275.446 0.24 Obese subjects, room temperature (114)

13 0.77 Healthy men, acute cold exposure (108, 109)

Dietary fat 3 275.446 0.18 Healthy men, postprandial and acute cold exposure (115)

Glutamate 35 147.13 1.11 Healthy men, acute cold exposure (116)

NEFA, nonesterified fatty acids.

of 18FDG positive BAT are associated with increased plasma
catecholamines and inversely related to central obesity in patients
with pheochromocytoma (117). Cold-induced BAT glucose
uptake correlates with BAT sympathetic activity in vivo (118)
and unilateral sympathetic denervation has been shown to reduce
supraclavicular BAT glucose uptake in a patient (119). In mice
however, β3-adrenergic-stimulated BAT glucose uptake does not
need the presence of UCP1 and activation of BAT thermogenesis
(120, 121). Extrapolated over a 24 h period, BAT glucose uptake
in healthy individuals in our hands sums up only to a maximum
utilization of 5 g of glucose, or ∼23 kcal. Obviously, this energy
expenditure rate assumes that BAT fully oxidizes the glucose it
takes up. The classical studies by Ma and Foster (122), however,
demonstratedmore than three decades ago that a large fraction of
glucose taken up by BAT is metabolized and released as lactate or
serves for glyceroneogenesis (123) or perhaps de novo lipogenesis
and does not contribute to increased BAT oxidative metabolism
(Figure 6). Activated BAT glucose uptake exceeds increase in
blood flow, suggesting non-thermogenic utilization of glucose by
BAT in humans (124). A recent study using the adipose tissue
microdialysis technique applied to supra-clavicular BAT also
demonstrated that a large fraction of glucose taken up by BAT
upon acute cold exposure is released as lactate in vivo in healthy

subjects (116). The later study also independently confirmed the
magnitude of glucose uptake in BAT measured by the 18FDG
PET dynamic acquisition method. Thus, glucose uptake is not
a good method to quantify BAT oxidative metabolism and
thermogenesis, even in healthy subjects.

18FDGBAT positive individuals aremore insulin sensitive and
cold-induced BAT glucose uptake and stimulation of blood flow
are blunted in obese individuals (112). BAT glucose uptake is
reduced with genetic variants associated with insulin resistance
(125), glucocorticoid treatment (126), fasting-induced insulin
resistance (127). Chronic ephedrine administration which may
induce insulin resistance leads to reduced BAT glucose uptake
despite increased weight loss (128). BAT glucose uptake tends
to be higher after bariatric surgery-induced weight loss in
obese individuals (129, 130). Exercise, which increases muscle
glucose uptake and improves whole body insulin sensitivity,
does not however necessarily lead to increase in insulin-
mediated BAT glucose uptake (131). Insulin stimulates BAT
glucose uptake without stimulating blood flow, suggesting that
insulin signaling increases BAT glucose uptake independent
of BAT thermogenic activation (111). We found that older,
overweight individuals without and with T2D display a ∼10-
fold reduction in BAT glucose uptake rate vs. young healthy
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FIGURE 6 | Glucose metabolism in brown adipose tissue. Most of the glucose

taken up by brown adipose tissue during cold exposure does not contribute to

thermogenesis. Experimental data show that approximately half of the glucose

molecules are excreted from brown adipose tissue as lactate. Most of the

remaining glucose likely contributes to glycerol production (glyceroneogenesis)

and/or fatty acid synthesis (de novo lipogenesis) for intracellular triglyceride

synthesis. The mitochondrion illustration was obtained free of copyright from

Pixabay (www.pixabay.com, 2018).

subjects despite no reduction in BAT NEFA uptake and
thermogenic activity upon acute cold exposure (109). Reduced
BAT glucose uptake is furthermore associated with increased
BAT fat content (88, 109, 132). Thus, as in lean tissues and
WAT (133), excess lipid deposition appears to be a marker of
BAT insulin resistance. Total BAT volume of 18FDG uptake
has been associated with plasma NEFA appearance rate and
oxidation and withWAT insulin sensitivity during cold exposure
(109, 134). Thus, BAT glucose uptake may be a marker of
WAT metabolic flexibility. In the presence of obesity, T2D
or other insulin resistance states, BAT glucose uptake is
an especially poor surrogate marker for BAT thermogenic
activity.

Typical BAT cells expressing UCP1, large mitochondrial
content and numerous small lipid vacuoles are present in
supraclavicular adipose depots, independent of the presence
of spontaneously active BAT based on 18FDG PET (135).
Because 18FDG PET/CT is currently the only method
capable of measuring BAT volume of metabolic activity,
the above considerations clearly point to the absence of a
reliable method to quantify BAT volume and, therefore, total
thermogenic activity in humans. Unfortunately, all of the
figures thus far reported with regards to the contribution of
BAT to fatty acid utilization and whole body thermogenesis
(see below) have been calculated using total BAT volume
from 18FDG PET/CT. Therefore, these figures are likely
underestimated, especially in subjects with any degree of insulin
resistance.

Circulating Fatty Acids
Utilization of circulating fatty acids by BAT may occur through
two different pools in circulation: (1) NEFA; and (2) triglyceride-
rich lipoproteins (TRL). Plasma NEFA are produced mostly
by WAT, either via intracellular TG lipolysis or via LPL-
mediated lipolysis of circulating TRL (i.e., NEFA spillover
of TRL into the systemic circulation) (136). The circulating
NEFA pool is tightly regulated by the sympathetic system and
circulating insulin level via β-adrenergic stimulation and insulin
signaling-mediated inhibition, respectively, of intracellular WAT
lipolysis. Although plasma membrane fatty acid transporters
(137) and local blood flow (138) are known to modify local
tissue NEFA uptake, tissue NEFA transport rate is mostly
regulated by the plasma NEFA concentration and by the tissue’s
rate of fatty acid oxidation. TRL include: (1) chylomicrons,
produced by the intestine and transporting dietary fatty acids
into the circulation; and (2) VLDL, produced by the liver
and transporting TG from NEFA and lipoprotein-derived
fatty acids recycled in the liver and fatty acids produced
de novo from carbohydrates in the liver (110, 139). These
two TRL circulating pools are mostly regulated through
clearance mainly mediated by the activity of LPL, although
increase in liver’s VLDL-TG secretion rate also contributes
to the increase of TG in circulation with obesity and T2D.
Local tissue uptake of fatty acids from circulating TRL is
mostly under the control of local tissue LPL-mediated lipolysis
(140).

As can be expected from stimulation of the sympathetic
system activity, acute cold exposure leads to robust increase in
plasma NEFA levels and appearance rate (39, 108, 109, 141).
Upregulation of genes of lipid utilization was shown in BAT
with cold exposure in humans (134). Only a few studies however
reported BAT-specific uptake rates of plasma NEFA. In all
instances, this has been performed using the PET tracer 18F-
fluoro-6-thiaheptadecanoic acid [18FTHA), a long-chain fatty
acid analog that is taken up at similar rate than palmitate and that
is trapped into the mitochondrial matrix and non-oxidative fatty
acid metabolic pathways (142). These characteristics make this
tracer, when administered intravenously, an excellent method
to measure tissue-specific plasma NEFA uptake rate, but not
tissue oxidative or non-oxidative metabolism. Using 18FTHA
PET, BAT NEFA uptake was reported similar in healthy (∼5.7
nmol.g−1.min−1) and obese subjects (∼3.9 nmol.g−1.min−1,
non-significant vs. healthy) at room temperature (Figure 5 and
Table 1), only slightly higher than the NEFA uptake rate observed
in subcutaneous neck WAT (∼4.7 and ∼3.4 nmol.g−1.min−1,
respectively) (114). In the later study, slight but significant
increase in BAT NEFA uptake rate was shown 6 months after
bariatric surgery in obese individuals (∼5.0 nmol.g−1.min−1)
(114). Interestingly, BAT NEFA uptake was inversely correlated
with age, waist circumference and percent body fat and directly
correlated with HDL cholesterol level (114). Using 18FTHA PET,
we reported BAT NEFA uptake rates ∼13 nmol.g−1.min−1 in
healthy young men acutely exposed to cold (108, 109) (Figure 5
and Table 1). We found BAT NEFA uptake in the same range as
that observed in skeletal muscles and two to three-fold higher
than that of subcutaneous WAT of the neck. In contrast to
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glucose uptake, BAT NEFA uptake per volume of tissue was
the same in older, overweight participants without or with
T2D compared to healthy young men (109). Because of the
overlap in NEFA uptake between BAT and WAT and the limited
experience with 18FTHA PET for BAT imaging, it has been thus
far impossible to use this method to measure BAT volume, as
performed using 18FDG PET/CT. Thus, current estimates of BAT
total contribution to NEFA uptake is limited by the use of 18FDG
PET/CT to measure BAT volume. Using the latter, we calculated
that BAT may metabolize ∼7 µmol.min−1 of plasma NEFA in
healthy men exposed to cold, but only 0.1 µmol.min−1 in older
overweight subjects without or with T2D (109). Extrapolated
over a 24-h period, this amounts to up to 0.6 g of fat, or <3
kcal. Using simultaneous intravenous stable isotopic palmitate
tracer, we calculated that BAT contribution to whole body NEFA
metabolism is <1% (108, 109). Given the likely underestimation
of BAT volume using 18FDG PET/CT, however, it is possible that
BAT contribution to plasma NEFA metabolism could be higher.
Cold-induced BAT NEFA uptake was shown to be associated
with BAT thermogenesis (143). Therefore, the use of BAT NEFA
uptake as a surrogate of BAT thermogenesis remains a viable
alternative to glucose uptake. However, the use of PET NEFA
tracers that can measure tissue oxidative and non-oxidative
metabolic rates, as for example 11C-palmitate, will be needed to
ensure that BAT NEFA uptake is quantitatively linked to BAT
oxidative metabolism and not fatty acid esterification into BAT
TG droplets.

Animal studies showing that activated BAT utilizes a large
fraction of circulating TRL led to the hypothesis that active
BAT may reduce circulating lipoprotein-TG and cholesterol in
humans (144, 145). Angiopoietin-like 4 (ANGPTL4) is down-
regulated in BAT during cold exposure in mice, leading to
LPL-stimulated TG lipolysis and fatty acid uptake in BAT
(146). Activated BAT in mice stimulates the formation of
lipoprotein remnants from more buoyant TRL (147). Thus, in
rodents, metabolically active BAT exerts significant impact on
circulating TRL metabolism. Lower plasma TG and increased
HDL-c has been observed in subjects with metabolically active
BAT determined by 18FDG PET/CT (148). Experimental acute
cold exposure in humans does not however lead to significant
reduction in plasma TG levels (108, 109) and may even lead to
small increase in TG and cholesterol levels in some instances
(106, 141). To our knowledge, we published the only study that
measured directly BAT uptake of fatty acids transported by TRL
in humans (115). To achieve this, we used the oral 18FTHA PET
method that we validated to measure organ-specific dietary fatty
acid uptake (149). This method measures relative tissue uptake
(partitioning) of dietary fatty acids from direct transport through
chylomicron-TG and recycling from WAT metabolism as NEFA
[see our recent review for a detailed discussion on the method
(110)]. We demonstrated significant, albeit small, BAT dietary
fatty acid uptake after administration of a standard meal during
acute cold exposure in healthy young men (115). Rate of BAT
dietary fatty acid uptake was calculated at ∼3 nmol.g−1.min−1

(Figure 5 and Table 1), two to three-fold higher than in the neck
subcutaneousWAT and skeletal muscles, respectively. Because of
the small BAT volume, again determined using 18FDG PET/CT,

BAT only contributed to 0.3% of whole body dietary fatty
acid partitioning. In contrast to what has been observed in
mice (144), BAT contribution’s to whole body dietary fatty acid
metabolism was much lower than that of the liver, the heart,
skeletal muscles, and even WAT (115). Furthermore, we found
that 4-week cold acclimation that significantly increased BAT
oxidative metabolism in the participants did not increase BAT
dietary fatty acid uptake (115). There was no relation between
BAT oxidative metabolism and BAT dietary fatty acid uptake,
suggesting that the latter is not a main energy substrate for BAT
thermogenesis in humans, at least during acute cold exposure.

Cold-induced changes in plasma concentrations of some non-
prominent fatty acids has been reported (106), but there was no
demonstration that these changes were indeed due to increase
in BAT metabolism. Cold exposure induces 12,13-dihydroxy-
9Z-octadecenoic acid production in BAT and in circulation,
which in turn may contribute to stimulate BAT fatty acid
uptake in mice (150). In a cross-sectional study in healthy
men, lysophosphatidylcholine-acyl C16:1 was shown to correlate
with BAT volume and metabolic activity assessed by 18FDG
PET/CT (151). The physiological and clinical relevance of these
observations are unclear at the moment.

Other Substrates in Circulation
BAT expresses glycerol kinase at higher levels than WAT and
thus has the potential to utilize glycerol (152). Furthermore,
this enzyme’s expression is increased in BAT by cold exposure
and β-adrenergic stimulation (153, 154). Recent experiments
in mice showed that glycerol kinase is a downstream target of
PPARγ and that its inhibition leads to reduced UCP1 expression,
isoproterenol-stimulated cellular respiration and intracellular
TG synthesis (155). A very recent study using adipose tissue
microdialysis technique applied to supra-clavicular BAT in
humans demonstrated reduced glycerol release by BAT vs. WAT
at room temperature, suggesting that glycerol can be recycled to
a greater extent in BAT compared to WAT (116).

Weir et al., using the microdialysis technique in
supraclavicular BAT, reported significantly higher uptake of
glutamate (i.e., ∼35 nmol.g−1.min−1) by this tissue (Figure 5
and Table 1) vs. WAT (i.e., ∼12 nmol.g−1.min−1) upon acute
cold exposure (116). Uptake of glutamate in BAT, but not in
WAT, was also significantly increased by acute cold exposure
in the later study (by ∼10 nmol.g−1.min−1), suggesting the
use of this substrate for energy production or, alternatively, for
anaplerosis. However, cold-induced increase in glucose uptake
was about 10-fold (by ∼120 nmol.g−1.min−1), showing that
glutamate is a minor BAT substrate compared to glucose (116).
Weir et al. also demonstrated net release of lactate (∼150–200
nmol.g−1.min−1) and pyruvate (∼5 nmol.g−1.min−1) by BAT
that increased non significantly with acute cold exposure (by
∼50 and ∼1 nmol.g−1.min−1, respectively) (116). This release
of lactate and pyruvate accounted for approximately half of the
glucose that was taken up by BAT in response to cold.

To our knowledge, there has been thus far no attempt to
quantify BAT utilization rate of ketones or amino acids in vivo
in humans. Based on cardiac utilization rate of these substrates
(156), it is however unlikely that they amount to a significant

Frontiers in Endocrinology | www.frontiersin.org 8 August 2018 | Volume 9 | Article 447

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Carpentier et al. BAT in Humans

proportion of energy substrate utilization compared to fatty acids
and glucose under most physiological circumstances.

Intracellular Triglycerides
Intracellular TG content of BAT can be quantified using CT or
magnetic resonance imaging and spectroscopy (MRI/MRS). The
former technique, as applied currently by most groups in the
field of research on brown adipose tissue, is semi-quantitative
and can only provide relative content of lipids in a tissue by
comparing its radio-density (quantified in Hounsfield units).
MRS is the gold-standardmethod for non-invasive quantification
of tissue triglycerides (as opposed to total lipid content) and
directly reports TG vs. water content of a tissue (62). BAT CT
radio-density is strongly correlated with %TG by MRS (157).
MRI can also provide quantitative fat-to-water ratios in BAT,
that is lower than that observed in WAT (87). However, because
of the large overlap observed in fat-to-water ratios, it is not
possible to systematically distinguish metabolically active from
non-active BAT or even WAT depots using quantification of
adipose tissue fat fraction (158). These methods are sensitive
enough to demonstrate association of fat fraction in BAT with
biologically and clinically relevant end-points. For example, BAT
fat fraction has been associated with systemic insulin resistance,
central obesity or T2D (109, 114, 159) and with BAT NEFA
uptake (157). BAT fat fraction is also reduced in obese individuals
6 months after bariatric surgery and this reduction is associated
with reduction in BMI and insulin resistance (114).

Early observation demonstrated that BAT radio-density
increases rapidly during acute cold exposure in rats and humans
(160). Numerous studies have now demonstrated that BAT TG
content is hydrolyzed within 1–3 h through sympathetically-
stimulated intracellular lipolysis, as observed using CT or
MRI/MRS to monitor shifts of BAT water-to-fat ratio (73, 87,
108, 109, 115, 132, 158, 159, 161). This reduction in BAT TG
content during acute cold exposure is specific to BAT and does
not occur in WAT or in shivering muscles (Figure 7). It has
also been related to whole body insulin sensitivity (132) and
with plasma NEFA appearance rate (109). However, in contrast
to cold-stimulated BAT glucose uptake, the rapid cold-induced
reduction of BAT intracellular TG content is independent of age
and T2D status, at equivalent cold exposure (109).

Assuming a total body BATmass of 168 g [our 18FDG PET/CT
data, (108)] and cold-induced reduction of BAT TG fraction from
81 to 76% (i.e., from 136 to 128 g of TG) (132), ∼8 g of TG
(∼72 kcal) is mobilized from BAT over 2 hours of very mild cold
exposure (Figure 7). In vitro experiments have suggested that
up to 50% of fatty acids hydrolyzed by BAT could be released
into the extracellular media (162) and subsequently oxidized or
re-esterified elsewhere. It is therefore not possible to determine
the precise contribution of fatty acids released by intracellular
TG lipolysis to BAT thermogenesis currently, because the
intracellular metabolic fate of fatty acids utilized by BAT has not
yet been determined in vivo in humans. From BAT microdialysis
data, glycerol release of BAT during cold exposure amounts
to ∼22 nmol.g−1.min−1 vs. ∼10 nmol.g−1.min−1 at room
temperature (116). It is not possible to directly measure tissue
fatty acid release using microdialysis, but assuming that 3 fatty

acid molecules are produced from intracellular TG per molecule
of glycerol released, this cold-induced glycerol release (∼12
nmol.g−1.min−1) could represent up to ∼36 nmol.g−1.min−1

of fatty acids released by intracellular TG lipolysis in BAT.
Assuming a fatty acid composition of∼30 palmitate, 30 linoleate,
and 40% oleate (i.e., an average molar mass of 274.04 g.mol−1)
(163), and an average BAT mass of 168 g (108), this would sum
up to 2.4 g of fat over 24 h, or ∼21 kcal. These figures, however,
are likely underestimated given significant intracellular recycling
of glycerol by BAT (116). Therefore, current estimates of fatty
acid metabolism from BAT intracellular TG mobilization range
between ∼3 to up to 96 g over 24 h with sustained activation.
Again, these figures depend on total BAT volumemeasured using
18FDG PET/CT and, therefore, are likely underestimated. It is
also not known what proportion of these fatty acids are oxidized
directly by BAT vs. released in circulation in vivo in humans.

We have shown in animals (38) and in humans (39) that
BAT TG content is the primary source of energy that fuels BAT
thermogenesis. We used nicotinic acid to inhibit intracellular
BATTG lipolysis in vivo, and to fully arrest BATwater-to-fat ratio
shift and oxidative metabolism upon acute cold exposure. We
also showed that blocking BAT thermogenesis with nicotinic acid
reduced BAT glucose uptake by 26% (i.e., equivalent to 62mg of
glucose over the course of the study), with no change in systemic
glucose turnover (39). This reduction in glucose uptake was
most likely due to the abolished cold-induced increase in BAT
oxidative metabolism with nicotinic acid, since fatty acids from
intracellular TG activate UCP1-mediated mitochondrial energy
uncoupling (19, 28, 29). Likewise, although not measured in our
study, BATNEFA uptake was likely also driven down by nicotinic
acid-mediated inhibition of plasmaNEFA appearance fromWAT
(39). Cold-stimulated BAT blood flowwas unaffected by nicotinic
acid, demonstrating that cold-induced water-to-fat ratio shift is
indeed due to BAT TG disappearance, as opposed to increased
blood flow. Importantly, muscle shivering rose reciprocally,
compensating for the reduction in BAT thermogenesis. Given the
small magnitude of the nicotinic acid-induced reduction of BAT
glucose uptake and the currently estimated small contribution
of plasma NEFA utilization by BAT in humans (see section
Circulating fatty acids above), it is unlikely that these off-target
effects of nicotinic acid confounded nicotinic acid effect through
inhibition of intracellular TG lipolysis on BAT thermogenesis.
In mice, gene deletion of key enzymes of BAT intracellular TG
lipolysis induces a major increase in BAT utilization of fatty acids
in circulation, thus substituting for BAT TG in order to sustain
cold-induced thermogenesis (40, 41). In summary, these in vivo
evidences suggest a major role for intracellular TG as fuel for BAT
thermogenesis.

CONTRIBUTION OF BAT TO
THERMOGENESIS AND ENERGY
EXPENDITURE

Some indirect evidences suggest a significant role for BAT in
cold-induced thermogenesis in humans. Cold-induced increase
in whole body energy expenditure is related to the presence
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FIGURE 7 | Intracellular triglyceride (TG) mobilization in brown adipose tissue during cold exposure. Left panel: Brown adipose tissue (BAT), white adipose tissue

(WAT) and trapezius muscle change in radio-density during standardized acute cold exposure from previously published studies of our group (39, 73, 108, 109). Right

panel: During cold-induced brown adipose tissue metabolic activation, up to 8 g of intracellular triglycerides can be mobilized within 2 h. The metabolic fate of the fatty

acids that are mobilized is currently unknown. Although these fatty acids likely constitute most of the energy substrates driving brown adipose tissue thermogenesis, a

fraction of them may also be released in circulation to be utilized by other tissues. NEFA, nonesterified fatty acids; UCP1, uncoupling protein 1. The mitochondrion

illustration was obtained free of copyright from Pixabay (www.pixabay.com, 2018).

of 18FDG positive BAT (164, 165). Cold-stimulated BAT blood
flow is also associated with cold-induced whole body energy
expenditure (111) and is blunted in obesity (112). Seasonal
variation of cold-induced whole body energy expenditure is
larger in 18FDG BAT positive subjects (166). Total 18FDG BAT
volume is correlated with higher core body temperature during
experimental cooling procedures in one study (167). Living in
a mildly cold environment increases energy expenditure and,
using 18FDG PET, BAT activation was shown to be a significant
determinant of this response (168). We found that inhibition
of BAT thermogenesis using nicotinic acid administration
leads to reciprocal increase in muscle shivering to combat
cold, suggesting a physiologically significant role for BAT in
cold-induced thermogenesis (39). We also reported increased
skeletal muscle energy coupling with cold acclimation—which
is expected to reduce heat production at the same shivering
intensity—suggesting an important role for BAT thermogenesis
during cold acclimation (113).

Other indirect evidences suggest a role for BAT in energy
expenditure and caloric balance in humans. The presence
of metabolically active BAT assessed using 18FDG PET/CT
is associated with reduced adiposity, especially with aging
(56, 164, 169), with higher resting energy expenditure (56,
170), and with less ectopic fat deposition in the liver (171).
Athletes, however, tend to have lower BAT volume and activity
based on 18FDG PET/CT despite higher whole body energy
expenditure (172, 173). UCP1 and beta-3 adrenergic receptor
polymorphisms have been associated with lower BAT glucose
metabolic activity and increased visceral fat with aging (174).
Upstream stimulatory factor 1 deficiency that was shown to
activate BAT metabolism in mice, is associated with improved

insulin sensitivity, lipid profile and cardiometabolic risk in
humans (175). Cold acclimation that increases BAT metabolic
activity has been shown to reduce weight in some (72), but not all
studies (73, 74, 104, 105, 176). The presence of 18FDG PET BAT
predicts capsinoids, catechin-, and caffeine-stimulated whole
body energy expenditure (177, 178). Treatment with capsinoids
leads to increased BAT glucose uptake and supraclavicular
temperature determined by near-infrared spectroscopy (90).
Vagus nerve stimulation therapy associated with weight loss
increases energy expenditure, which is associated with increased
BAT glucose uptake (179). Ephedrine-stimulated BAT metabolic
activity is blunted in obesity (180). However, other studies
have found that Isoprenaline and ephedrine did not activate
BAT metabolic activity despite increasing whole body energy
expenditure in lean men (181, 182). Significant BAT contribution
to energy expenditure is nevertheless supported by the β3-
adrenergic agonist mirabegron-mediated increase in energy
expenditure (+203 ± 40 kcal/day), associated with an increase
in 18FDG BAT activity (183). However, this treatment is
also associated with increased pulse rate and blood pressure,
suggesting increased energy expenditure from the cardiovascular
system.

Hypothyroidism and hyperthyroidism are conditions
that reduce and increase, respectively, whole body energy
expenditure. Although one study reported increased BAT
glucose uptake with hyperthyroidism (184), others have reported
no change in spontaneously occurring (185) or cold-induced
BAT metabolic activity (186). Likewise, BAT activation has been
observed with cancer cachexia (187, 188). Higher 18FDG BAT
volume predicts less adipose tissue accumulation during cancer
treatment in children (189). Association was also observed
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between reduction of BAT glucose uptake and chemotherapy-
induced weight gain in women treated for breast cancer
(190).

Some role for BAT in diet-induced thermogenesis has been
proposed on the basis of preclinical studies (191). Postprandial
increase in energy expenditure was reported to be higher
in 18FDG BAT positive vs. BAT negative individuals, with
lower respiratory quotient, but without significant change
in total 24 h energy expenditure (192). BAT glucose uptake
increases after meal intake, but is not related to diet-induced
thermogenesis (193). Overfeeding, which increases energy
expenditure (194), does not activate BAT glucose uptake (195).
We showed no change in postprandial BAT dietary fatty acid
and glucose uptake during cold exposure prior to vs. after
cold acclimation for 4 weeks that activated BAT thermogenic
activity 2 to 3-fold (115). This suggests that cold-induced
BAT activation does not change organ-specific postprandial
glucose or dietary fatty acid partitioning between organs.
Interestingly, our study showed a non-statistically significant
trend toward greater cold-induced increase in BAT radio-density
postprandially after cold acclimation (115). A very recent study
from the Turku group (196) demonstrated meal-induced BAT
oxygen consumption equivalent to that observed with mild
cold stimulation, together with significant reduction of BAT
NEFA uptake and a trend toward higher BAT radio-density.
Again, this suggests a more important role for intracellular
TG vs. circulating substrates to fuel BAT thermogenesis in
humans. The study of U Din et al. (196) estimated at
∼13 kcal per day this meal-induced BAT contribution to
energy expenditure. However, this calculation extrapolated BAT
thermogenesis measured within the first postprandial hour to
the entire day, which likely overestimates the contribution of
this postprandial BAT thermogenesis to energy expenditure.
Animal studies have consistently shown a decrease in classical
BAT thermogenesis associated with a decrease in norepinephrine
turnover with prolonged fasting (197). To our knowledge,
there is no data available on the effect of prolonged or
intermittent fasting on BAT activity or thermogenesis in
humans.

The fact that BAT significantly takes up glucose, fatty acids, or
other energy substrates from the circulation, and that it rapidly
mobilizes its own TG content upon cold exposure does not prove
that BAT contributes to thermogenesis and, therefore, to energy
expenditure. Although direct BAT heat production was suggested
by infrared spectroscopy [see (99) for review], this method
cannot ascertain that heat difference measured on the surface of
the skin overlying supraclavicular BAT is indeed produced by this
organ. Likewise, measurement of BAT blood flow is an indirect
measure of BAT thermogenesis and was shown in some instances
to be dissociated from BAT thermogenesis (39). Supraclavicular
BAT biopsies have been used to show higher ex vivo thermogenic
activity in BAT vs. subcutaneous fat (134, 198). These biopsy
methods are however incapable of measuring the true in vivo
contribution of BAT to thermogenesis.

We used 11C-acetate, a tracer that allows quantification of
Krebs’ cycle rate through measure of 11CO2 BAT production
with dynamic PET acquisition to demonstrate more direct

evidence of BAT’s contribution to cold-induced thermogenesis
in humans (108). In the latter study, we found that cold-
induced increase in tissue thermogenesis was observed in BAT,
but not in neck WAT or skeletal muscles. Using this tracer,
we found that BAT thermogenesis can be increased by 2 to 3-
fold by acclimation to cold (73, 115), that it is not reduced
in T2D vs. healthy individuals despite major reduction in BAT
glucose uptake (109), and that it is blunted by inhibition of
intracellular TG lipolysis with nicotinic acid (39). However,
this method does not directly quantify BAT thermogenesis as
11CO2 tissue production is only a surrogate of tissue oxygen
consumption.

Direct measurement of BAT oxygen consumption has been
performed by the groups of Otto Muzik (199, 200) and that
of the Turku PET Centre (143) using 15O2 dynamic PET
acquisition. Using this method during very mild, short-term
[60min), but poorly controlled cold exposure, Muzik et al.
estimated BAT thermogenesis to range between 15 to 25 kcal/day
(200). The Turku group reported BAT thermogenesis figures
in the range of ∼7 kcal/day at room temperature to ∼10
kcal/day during mild cold exposure in healthy subjects (143).
Although BAT oxygen consumption per gram of tissue is 2
to 10-fold higher than that observed in WAT and skeletal
muscles at room temperature or during mild cold exposure
(143), the small BAT total tissue mass makes its relative
contribution to basal and cold-induced thermogenesis very small.
However, the small BAT total mass was again determined
using 18FDG PET, which may lead to underestimation of
the contribution of BAT to thermogenesis. Unfortunately,
the current PET scanners with a limited field of view
ranging from 16 to 24 cm in most instances do not allow
total body dynamic acquisition during 15O2 or 11C-acetate
administration. It is therefore not possible to simultaneously
measure oxidative metabolism in all organs and all adipose
tissue depots of the body. Furthermore, the very rapid
tissue metabolism of these tracers makes impossible sequential
dynamic acquisitions in different regions from the same tracer
administration and safety considerations limit the number
of sequential PET tracer administrations that can be made
as part of experimental studies in humans. Therefore, the
currently available methods cannot accurately determine total
BAT contribution to thermogenesis.

Recently, radiological 3D mapping of possibly metabolically
active adipose tissues has suggested a much greater metabolic
potential for BAT (61). Using measures of total BAT volume
from the later study (ranging from 510 to 2358ml) (61) with the
data on BAT oxidative metabolism per gram of tissue measured
by U Din et al. (143) [0.007ml.g−1.min−1 at room temperature
and 0.012ml.g−1.min−1 during cold exposure), and assuming
energy expenditure of 4.801 kcal per liter of oxygen consumed
(201) and an adipose tissue density of 0.925 g.ml−1 (202), BAT
contribution to thermogenesis could range from 27–123 kcal per
day at room temperature to 46–211 kcal per day during mild
cold exposure (Figure 8). Accurate determination of oxidative
metabolism over total body BAT volume will be critical to
quantify the true potential of BAT in energy expenditure in
humans.
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FIGURE 8 | Brown adipose tissue (BAT) oxidative metabolism and contribution to total body energy expenditure. Brown adipose tissue oxygen consumptions are

from U Din et al. (143) and brown adipose tissue-containing adipose tissue (AT) mass range is from Leitner et al. (61). Calculations were made assuming energy

expenditure of 4.801 kcal per liter of oxygen consumed (201) and an adipose tissue density of 0.925 g.ml−1 (202). AT, adipose tissue.

IS THERE A CONTRIBUTION OF WAT
BROWNING TO THERMOGENESIS AND
ENERGY EXPENDITURE?

In addition to the “classical” BAT depots, WAT “browning” (or
“beiging”) may also contribute to thermogenesis, although this
is still hotly debated (11, 203–206). A detailed discussion on
the mechanisms and cellular adaptations of WAT “browning”
is beyond the scope of this review and has been the subject
of excellent recent papers (17, 207, 208). “Beige” cells express
functional UCP1 and their development appears to be Prdm16-
dependent, as classical BAT adipocytes (26, 44, 209). In rodents,
chronic cold exposure, treatment with β3-adrenergic or PPARγ

agonists, and exercise (38, 209–213) were shown to induce
“browning” of WAT preferentially in subcutaneous depots, while
reduced “browning” is seen with aging (214).

Although more controversial, there is also some evidence for
physiologically significant WAT “browning” in humans. Ageing
is associated with reduced white adipose tissue “browning”
(169, 215, 216). Perirenal fat in women expresses UCP1
after exposure to cold environment, but difference in UCP1
expression does not translate into change in adipocyte respiration
rate (217). Visceral fat “browning” per 18FDG PET/CT and
histopathological examination has been shown in patients
with pheochromocytoma or paraganglioma, associated with
increased energy expenditure and diabetes (61, 218). Visceral
fat glucose uptake was reduced by alpha blockade and
removal of the tumor, associated with weight gain and

reversal of diabetes. Cold acclimation however does not lead
to “browning” of abdominal subcutaneous WAT in humans
(71).

Seeing WAT “browning” using molecular markers,
histological examination or even with 18FDG PET does not
necessarily imply significant contribution to thermogenesis and
energy expenditure. For example, PPARγ agonist treatment
in rodents, while inducing WAT “browning” and BAT
volume expansion, induces a reduction in sympathetic tone
and thermogenesis (219–221). Recently, treatment with
thiazolidinedione was shown to increase “browning” of
subcutaneous WAT while reducing classical BAT glucose uptake
and promoting weight gain in vivo in humans (222). We have
shown in rats that chronic cold exposure or beta-3 adrenergic
agonist treatment, while leading to robust “browning” of WAT
as assessed by histological examination, UCP1 gene and protein
expression, and mitochondrial DNA content, do not lead to
significant increase in WAT thermogenic activity as assessed by
11C-acetate PET (213). This lack of WAT thermogenic activation
contrasted with a very robust thermogenic activation of classical
BAT simultaneously assessed by 11C-acetate PET in the same
animals. It is also important to note that despite significant
WAT “browning,” WAT UCP1 expression and mitochondrial
DNA content remain one to two orders of magnitude below
that observed in classical BAT (213, 223, 224). The total volume
of WAT “browning” as well as its thermogenic activity have
yet to be measured in humans. Based on the data available, it
cannot be concluded at the moment that WAT “browning” plays
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a significant role in energy expenditure through mitochondrial
uncoupling to similar extent as in “classical BAT” depots.

WAT “browning” can nevertheless potentially contribute to
energy expenditure through activation of futile metabolic cycles.
These cycles include TG lipolysis/esterification, activation of
Na+-K+-ATPase, creatine/phosphocreatine cycling, and ATP-
dependent Ca2+ cycling (206, 225, 226). For example, in the
absence of UCP1, energy-consuming and heat-producing WAT
metabolic adaptations nevertheless occur, including smaller
multilocular lipid droplets, larger mitochondrial content, and
increased sarcoendoplasmic reticulum Ca2+-ATPase expression
(227). These adaptations are also associated with enhanced
capacity of WAT to oxidize fatty acids (227), an outcome
that can also be obtained using energy restriction or omega-3
supplementation (228). The group of Shingo Kajimura recently
demonstrated UCP1-independent increased beige fat ex vivo
glucose uptake, oxidation and thermogenesis mediated through
enhanced ATP-dependent Ca2+ cycling from sarco/endoplasmic
reticulum Ca2+-ATPase 2b and ryanodine receptor 2 (226).
UCP1-independent BAT and beige fat thermogenesis from
creatine/phosphocreatine cycling has also been demonstrated
in vitro in human and murine cells and in vivo in mice (225).

During cold exposure, there is substantial activation of
intracellular TG lipolysis in BAT and in WAT (see sections
on Circulating fatty acids and Intracellular triglycerides above).
Major stimulation of TG/fatty acid cycling is therefore expected
to occur in both tissues, especially in BAT where glycerol
can be utilized directly to a greater extent (116), and where
glyceroneogenesis (123) and glycolysis (see section Glucose)
occur at much faster rates. Of course, intracellular reesterification
of fatty acids is fueled by Krebs’ cycle and is accounted for
when BAT oxidative metabolism is measured by the 15O2 or
11C-acetate PET methods. Nevertheless, part of the fatty acids
produced by intracellular lipolysis in BAT could potentially be
reesterified in other organs, leading to some additional energy
expenditure. The extent of adipose tissue metabolic adaptation
to prolonged cold exposure or pharmacological activation of
BAT thermogenesis has not been determined thus far. However,
adaptation of WAT TG/fatty acid cycling can reach impressive
levels in humans. For example, using stable isotope tracer
methodology in morbidly obese subjects before and 3 days, 3
months and 1 year after they underwent bariatric surgery, we
showed that WAT NEFA production rate and storage capacity
can be sustained at the same level despite a more than 3-fold
reduction in adipose tissue mass (229), likely resulting in much
enhanced energy expenditure per adipose tissue mass. Whether
such WAT adaptations may contribute to chronic shift of total
body energy balance remains to be tested.

CLINICAL IMPLICATIONS OF BAT
THERMOGENESIS AND ENERGY
SUBSTRATE UTILIZATION

The obesity epidemic is mainly driven by a chronic positive
energy balance—a difference of < 0.1% between daily intake and
expenditure—that is sustained over years. The average weight

gain which when sustained over young adulthood leads to obesity
by middle age is an incremental ∼0.5–0.7 kg per year (230, 231).
On a daily basis, this is an energy surplus of a mere ∼12–17 kcal
i.e., less than a 5 g cube of sugar, for an average energy density
of 8840 kcal/kg of body (232). It is common among people who
lose weight, to experience a drop in total energy expenditure—
on average, ∼25 kcal/day per kg of weight loss (232). This
phenomenon, however, frustrates attempts by most people to
maintain healthy weight. The inter-individual variability of this
drop in energy expenditure can also significantly influence the
rate of diet-induced weight loss (232, 233). When greater weight
loss is maintained over time, the health advantages of lifestyle-
and/or bariatric surgery-induced weight loss tend to be more
significant (234–236). However, when as little as a ∼2-kg weight
loss is maintained over a span of 10 years—i.e., an average
negative balance of ∼48 kcal per day—the incidence of T2D
is curbed by as much as 18–34% (237). Therefore, small shifts
in energy balance that are sustained over time can exert major
effects on health outcomes.

As discussed above, current estimates of BAT contribution to
energy expenditure in humans are in the range of∼7–25 kcal per
day based on 15O2 PET data recorded at room temperature or
during mild acute cold exposure. Although small, these figures
may be underestimated because of the current limitations of
18FDG PET to measure total BAT volume, especially in obese
and T2D individuals. Whether enhanced TG/fatty acid recycling
could add to BAT (or “beige” adipose tissue) thermogenesis
has not been quantified in humans. It is also clear that BAT
thermogenesis can be recruited to a significant extent with cold
acclimation (73) and that its absence or stimulation lead to
changes in cold-induced muscle shivering and non-shivering
thermogenesis (39, 113). Activation of BAT thermogenesis may
therefore be useful for people with occupational cold exposure.
Attempts to activate BAT using cold over a prolonged period of
time in humans did not result in weight loss in most (73, 74, 104,
105, 176) but not all studies (72), likely because of compensatory
increase in energy intake. Circulating endocannabinoids increase
with cold exposure (238), suggesting a possible mechanism for
cold-induced increase in energy intake. It is also important to
note that obese individuals need to reach lower skin temperature
to induce cold-induced thermogenesis, due to increased body
heat generation (i.e., increased resting energy expenditure driven
by larger lean mass), not the generally falsely assumed increased
fat layer insulation (239). The well-documented beneficial effect
of chronic cold exposure on total body insulin sensitivity (74,
104, 105, 176) is driven by muscle, not BAT thermogenic activity
(107). Therefore, cold-induced activation of BAT thermogenesis
cannot by itself be proposed to shift caloric balance in humans.
However, the possibility that it may serve as an adjunct preventive
or therapeutic avenue to lifestyle interventions and/or appetite-
suppressant drugs for obesity begs further investigations.

Rodent studies have suggested that BAT and/or WAT
“browning”may be implicated in some of the beneficial metabolic
effects of physical exercise [see (208, 240–242) for recent reviews
on this topic]. At least four mechanisms have been evoked
to drive such effects. First, physical exercise is associated with
increased adrenergic stimulation, which may lead to direct
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activation of BAT thermogenesis and WAT “browning.” Second,
exercise induces secretion of myokines such as irisin or meteorin
like, cardiac natriuretic peptides, and fibroblast growth factor 21,
that have all been implicated in BATmetabolic activity (243–245).
Third, BAT-derived circulating factor such as IL-6 (246) or the
recently discovered 12,13 diHOME (247) have been implicated in
systemic metabolic improvement in mice. Fourth, exercise may
lead to improved leptin and insulin signaling in the brain, with
enhanced pro-opio-melanocortin neurons activation leading to
WAT browning (241). However, exercise has long been shown
to reduce cold-induced thermogenesis and cold acclimation in
rats (248, 249), likely because heat produced by exercise down-
regulates the sympathetic stimulatory output signal to BAT. As
mentioned above, athletes have lower BAT volume and activity
based on 18FDG PET/CT (172, 173) and BAT glucose uptake is
reduced following short-term exercise training in healthy men
(130). Different exercise duration, intensity and type can result in
different adrenergic and systemic stress responses. Furthermore,
as discussed above, BAT glucose uptake cannot be taken as
a reliable index of BAT thermogenesis. To our knowledge,
there is no study published in humans that has measured BAT
thermogenesis per se in response to exercise. It is therefore
difficult to draw definitive conclusions on the effect of exercise
on BAT thermogenic activity in humans given the data currently
available.

From epidemiological (retrospective) studies that have
been published, there seems to be a graded South-to-North
incremental prevalence of spontaneously active BAT. For
example, the reported prevalence in Boston (latitude: 42◦21′30′′

North) is 4% (54) whereas it is 6.8% in Sherbrooke (latitude:
45◦24′30′′ North) (60). As it has been discussed above, cold
acclimation leads to clear increase in BAT thermogenic activity
and capacity in humans (73) and, therefore, cold exposure is an
important driver of this South-to-North incremental prevalence
of metabolically active BAT. Whether ethnic background
differences may explain changes in BAT metabolic activity is
more controversial. For example, direct comparison between
subjects of South Asian vs. Europid descent showed either
no change in BAT 18FDG uptake (250), or reduced BAT
18FDG volume (but not activity) (170). In the latter study,
all participants were Dutch (therefore living at the same
latitude) and participants from South Asian descent also
displayed lower resting energy expenditure and lower cold-
induced non-shivering thermogenesis. The same research group
later demonstrated that this blunted thermogenic response in
subjects from South Asian descent may be due to increased
endocannabinoid tone (238). From the limited data available,
we can conclude that cold exposure is clearly linked to
differences of BAT activity between different populations, and
that genetic/ethnic background differences may also play a role
in modulating BAT metabolic responses. More data are needed
to address this issue.

Despite encouraging results of BAT metabolic activation with
a single-dose administration of mirabegron, a beta-3 adrenergic
agonist (183), this class of agents has proven ineffective for
the treatment of obesity or T2D in early clinical trials (251,
252). Furthermore, cardiovascular safety is of concern given the

increase in heart rate and blood pressure observed with this
class of medication, likely mediated through beta-1 and/or beta-2
spillover effects. Capsinoids, catechins and caffeine activate BAT
glucose uptake and whole body energy expenditure (177, 178),
but with variable results on clinical outcomes (253–256). The
effect of beta-3 adrenergic agonists, capsinoids, and catechins
on BAT thermogenesis however remains to be determined in
humans. The intriguing possibility that BAT thermogenesis could
be used as a personalized medicine approach to guide the use
of these agents for the prevention or treatment of obesity also
remains unexplored.

CONCLUSION

BAT is a fascinating organ that possesses a very large thermogenic
potential per mass of tissue. This tissue has an astounding
capacity to rapidly mobilize its own TG content upon cold
exposure. Fatty acids from this intense intracellular lipolysis
are likely the main substrates for BAT thermogenesis, although
the metabolic fate of fatty acids in BAT in vivo in humans
has not yet been reported. The contribution of BAT and
“beige” adipose tissue to thermogenesis through accelerated
TG/fatty acid cycling also need to be quantified. BAT is of
clear physiological relevance for cold-induced thermogenesis
and is integral to a multisystem adaptive response to cold. The
current estimated contribution of BAT to energy expenditure is
however low due to its small volume measured using 18FDG
PET. The latter method has major limitations for accurate
measurement of BAT volume, likely leading to underestimation
of the true contribution of this tissue to thermogenesis, especially
in individuals with obesity and T2D. The current estimates of
BAT thermogenesis are at the lower end of energy expenditure
shifts that could lead to clinical benefits if sustained without
off-target side-effects over the long term. Currently estimated
plasma glucose, NEFA or lipoprotein utilization by BAT is also
too low to be deemed of clinical relevance to treat T2D or
lipid disorders. The development of novel imaging methods
for accurate quantification of BAT volume is however required
to delineate the true potential of targeting BAT thermogenesis
to prevent and/or treat cardiometabolic disorders. With the
demonstration of a slightly higher contribution to thermogenesis,
it is still possible that metabolic activation of BAT could serve as
an effective adjunct therapeutic target to existing treatments for
obesity and T2D. Whether monitoring of the effect of clinical
interventions on BAT thermogenesis may help personalize
treatment selection for obesity and/or T2D also needs to be
addressed in future studies.
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