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Abstract—We present Brown Dog, two highly extensible ser-
vices that aim to leverage any existing pieces of code, libraries,
services, or standalone software (past or present) towards pro-
viding users with a simple to use and programmable means of
automated aid in the curation and indexing of distributed col-
lections of uncurated and/or unstructured data. Data collections
such as these encompassing large varieties of data, in addition to
large amounts of data, pose a significant challenge within modern
day “Big Data” efforts. The two services, the Data Access Proxy
(DAP) and the Data Tilling Service (DTS), focusing on format
conversions and content based analysis/extraction respectively,
wrap relevant conversion and extraction operations within arbi-
trary software, manages their deployment in an elastic manner,
and manages job execution from behind a deliberately compact
REST API. We describe both the motivation and need/scientific
drivers for such services, the constituent components that allow
for arbitrary software/code to be used and managed, and lastly
an evaluation of the systems capabilities and scalability.

Index Terms—digital preservation, unstructured data, web ser-
vices

I. INTRODUCTION

Over the past decades we have seen exponential growth in
the amount of digital data with the growth only increasing
as it continues to become cheaper and easier to create data
digitally. This continuing shift away from physical/analogue
representations of information to digital forms has created a
number of social, policy, and practical problems that must be
addressed in order to ensure the availability of these digital
assets [1]. One aspect of these problems are that of the storage,
movement, and computation on large datasets, what most
think of when one hears the term Big Data, i.e. problems
involving large quantities of data. Another aspect involves that
of indexing and finding data as well as accessing the contents
of data long term, a problem involving large amounts of data
but further hindered by problems involving large varieties of
data. This latter problem is a significant issue for several
reasons including the rapid evolution of technology, relatively
short lifespans of software, commercial interests, and the ease
and reward towards creating data versus curating data. As
digital software and digital data have become key elements in
just about every domain of science the preservability of data
has become a major concern within the scientific community
with regards to ensuring the reproducibility of results. This

has become a particular concern for what is often referred
to as the “Long-Tail” of science, spanning the vast majority
of grants involving one or more graduate students and little
funds for a significant data management effort (most especially
post-award). Research and development addressing this second
aspect has focused on preserving the execution provenance
trail [2], building repositories for scientific code/tools [3],
developing user friendly content management systems [4],
dealing with format conversions and information loss [5, 6],
building test suites [7], as well as efforts within the artificial
intelligence and machine learning communities such as com-
puter vision [8, 9] and natural language processing [10].

We focus on two of the lower level problems involved with
this latter category, a lack of appropriate metadata describing
the contents of files, needed to find information of interest
within large collections of data, and the lack of format
specifications describing how the data is laid out within a file
so that one can get at its contents (e.g. 3D/depth data, pixels,
text, waveforms, etc.) independent of how it is represented on
the storage medium/file system. With regards to each of these
there are a number of efforts, tools, and frameworks that have
been built to help users curate their own data [11, 12] and
access file contents or convert to a format that can then be
accessed1,2,3. More accurately subsets of functionality towards
this exists across a wide variety of software. For example with
regards to file formats, conversion capabilities exists across a
heterogeneous set of libraries and software (from command
line tools such as the popular ImageMagick to the GUI driven
software that we use every day). With regards to metadata a
similar argument can be made if we for the moment relax the
typical use of the term to be solely that of data describing
data, data useful for searching/indexing collections of data
and its contents. In this context a wide variety of tools exist
that take data and analyze it for some higher level piece
of derived information that is then produced (e.g. machine
learning classifiers, models of all kinds, statistical software,
and actual metadata extractors).

Needs for such tools permeate the day to day workflows

1http://www.opendocumentformat.org/
2https://cloudconvert.com/
3https://www.ps2pdf.com/



of just about everyone. Use cases span ecology, biology, civil
environmental engineering, hydrology, oceanography, material
science, library & information science, social science, and
so forth to including the public at large. For example many
communities utilize a wide variety of models to predict/sim-
ulate events, e.g. plant growth at various areas over different
time frames. These models typically support data in unique
formats. Efforts such as PEcAn [13], one of our use cases,
aims to make it easier to connect data sources to models
by providing these conversion capabilities for an extensible
number of data sources (e.g. Ameriflux4, NARR). Similarly
with navigating large collections of unstructured data. For
example in biology automatically classifying microscopy im-
ages of fossilized pollen (in addition to converting out of
proprietary microscopy formats), in entymology the tracking
of bees within a colony, identifying plant phenology, deriving
data from digitized handwritten documents, in medicine clas-
sifying/tracking cells in microscopy images, extracting data
from publications (i.e. tables, figures) as no other source of the
data may be available, extracting data from spreadsheets of all
kinds (with different internal layouts and naming conventions),
labelling land coverage in satellite and Lidar data, in material
science identifying failed fabrication experiments in SEM data,
finding and tracking people in social science experiments, and
so on. This applies to the public at large as well with the
format conversion needs we deal with regularly (e.g. between
document formats, image formats, video formats, etc.) and
indexing needs such as finding desired files in our photo/video
collections, or smarter ways of searching a folder of documents
(e.g. via NLP techniques, etc). Tools to help with portions of
these are everywhere. We aim to be able to leverage all of
them whether they exists as libraries, command line tools, GUI
applications, or web services, and make these capabilities as
trivial to users/applications as possible while simultaneously
combining their abilities, and perhaps preserving these tools
at the same time.

In the sections below we outline the Data Access Proxy
(DAP) for file format conversions and the Data Tilling Service
(DTS) for metadata extraction which make up the Brown Dog5

effort. Both exist as services/frameworks that aim to make it
as easy as possible to incorporate arbitrary conversion and
extraction capabilities from 3rd party software and services,
connect them to obtain the union of their capabilities, scale
them dynamically to meet the demands of the service, and
manage them towards a robust service. Both the DAP and DTS
are modeled so as to fit a role within the internet analogous to a
DNS service in terms of setup and usage by other applications.
In the sections below we describe the architecture of the
two services, how they interact with arbitrary software, their
scalability and extensibility, an evaluation of the two services,
and a number of prototype client applications.

4http://ameriflux.lbl.gov/
5Playing on the notion of a mutt.

Figure 1: Architecture of the Brown Dog services. Both the DAP
and DTS exist as web services behind a load balancer coordinating
between a potentially distributed number of Clowder and Polyglot
instances respectively. Each Clowder or Polyglot instance in turn
manages a number of distributed extractors and/or Software Servers
respectively which handle elements of a job.

II. ARCHITECTURE

The DAP built off of the Polyglot framework [5, 14] and
the DTS built on top of the Clowder framework [4, 12] are
architected to manage a number of heterogeneous tools dis-
tributed across the web, specifically conversion and extraction
tools respectively, and provide access to the union of their
capabilities via a fairly compact REST interface (Figure 1).
These tools, essentially black boxes of code/functionality, are
tracked and managed by the head node services and elastically
grown/shrunk to accommodate user demands. Both emphasize
extensibility in the sense of allowing new converters/extractors
to be added and deployed across a DAP/DTS instance as
trivially as possible. A typical workflow might involve calling
the DTS to index and find relevant data according to some
criteria within a collection of data and using the DAP to
convert the files in that collection to a format that can be
processed.

A. Data Tilling Service

Clowder is an open source web based content management
system which allows users to upload files, create datasets and
collections, socially curate data by assigning tags, metadata,
and leaving comments, then publishing their data to a long
term archive for preservation once work with the data has been
completed [12]. It also provides auto-curation through a suite
of extensible extractors that are automatically triggered and
executed based on appropriate file types. These extractors can
do anything from pulling metadata within the file, analyzing
the file’s contents and tagging it according to some specific
classification or criteria, towards the generation new data
such as metadata, previews, sections (i.e. areas of interest),
etc. Clowder’s extractors exist within a cloud environment
distributed across any number of physical or virtual machines
and listen to a distributed messaging bus for new files to the
system. The Brown Dog Data Tilling Service (DTS)6 builds

6We use data tilling, like in farming, to emphasize a notion of churning data
in various ways towards enhancing its usability via the uncovering of various
higher level data products useful for indexing or otherwise using the data.



GET /api/extractions/inputs Lists the input file format supported
by currently running extractors

POST /api/extractions/url Uploads a file for extraction using the
file’s URL

POST /api/extractions/file Uploads a file for extraction of meta-
data and returns file id

GET /api/extractions/{id}/status Checks for the status of all extractors
processing the file with id

GET /api/files/{id}/metadata Gets tags, technical metadata, and
content based signatures extracted for
the specified file

GET /api/extractions/extractors Lists the currently running extractors
GET /api/extractions/extractors/

details
Lists the currently details running ex-
tractors

GET /api/extractions/servers Lists servers IPs running the extrac-
tors

Table 1: The DTS REST API for metadata, tags, and signature
extraction.

on top of Clowder, emphasizing its REST interface towards
allowing other applications to leverage its extraction capabil-
ities, making it easier to create and deploy new extractors,
building up an extensive catalogue of extractors, hardening
the representation of derived data/metadata, enhancing the
scalability and adding an elastic component to grow and
shrink capabilities intelligently and dynamically based on user
demand.

The DTS serves as a web based service where client
applications or users can pass in one or more files or URLs and
get back JSON or JSON-LD containing a number of derived
products from tags, metadata, or other derived files that are
typically higher level than the original data and/or holding
some semantic information. Given this derived information
applications can then use it to index, compare, and/or further
analyze collections of data, in particular uncurated and/or
unstructured data collections. As stated previously the main
interface to the DTS is its REST API (Table 1).

At the heart of the DTS is a distributed messaging bus
(Figure 1), specifically RabbitMQ7. A widely used and hard-
ened framework, RabbitMQ can be used to reliably distribute
and manage job execution in a distributed environment by
placing messages in a queue for each extractor, taking them
off when jobs are completed, and automatically resubmitting
messages should a job fail. The DTS Clowder head node
handles all messages to and from the distributed queue and
further manages the moving and storing of intermediary files.
Files uploaded to the DTS for processing are either stored or
referenced and given a unique ID. At this time a message is
put on the bus with the file ID along with a key based off
of the files mime-type. Any extractor capable of handling that
type of file takes the message off of the queue, uses the ID
to obtain the file for further processing, processes the job,
then returns any derived data back to Clowder associating it
with the file’s ID. Data and metadata stored within Clowder
can be placed into one of a number of extensible storage
options such as MongoDB, iRODs [15], or the local filesystem.
By default we use MongoDB which is convenient in that
all communication between the various Clowder components
uses JSON and MongoDB is JSON document based. The
underlying mongo database can further be sharded for added

7https://www.rabbitmq.com/

Figure 2: Creating an extractor for deployment within the DTS is
simplified through the use of various language specific libraries. For
example the pyClowder library allows one to create python extractors
with essentially the three pieces of code shown here which: connects
to the distributed queue, carries out or calls the analysis code, then
lastly returns the derived data.

capacity, performance, and reliability. Lastly, the DTS Clowder
head node is designed so as to be stateless allowing it to be
replicated and placed behind a load balancer, e.g. NGINX, in
order to increase performance and reliability.

Extractors can be written in any language so long as it is
capable of interacting with RabbitMQ and HTTP in order to
access the Clowder REST interface (e.g. Java, C/C++, Scala,
Python, Ruby, etc). In addition to carrying out some sort of
analysis of the data, often times by wrapping some external
piece of code/software, an extractor requires a relatively small
amount of code in order to interact with the rest of the
system. Specifically, it must register itself with the RabbitMQ
bus and specify what keys it will respond too, listen for
incoming messages and pick up those that it can process,
and lastly return derived tags, metadata, etc. to Clowder. To
further simplify the creation of extractors we have written a
library, pyClowder8, that reduces this setup to a handful of
boilerplate lines of code (Figure 2). Additional libraries are in
development for commonly used languages in research such
as R9 and Matlab10.

Three types of metadata are differentiated by the system:
technical metadata, versus metadata, and previews. Technical
metadata is automatically generated, derived data, by the
extractors, e.g. obtaining text contents within an image, clas-
sification of an object, a Greenness Index, coordinates of the
specific sections of a file, etc. Versus metadata, obtained from
an extractor leveraging the Versus framework [16], are the
signatures extracted from a file’s contents. These signatures,
effectively a hash for the data, are typically numerical vectors,
which capture some semantically meaningful aspect of the
content so that two such signatures can then be compared
using some distance measure (capturing either similarity or
dissimilarity). These signatures along with Versus allow con-
tent based retrieval [9] tools to be included/provided by the
DTS towards yet another means of comparing and sifting

8https://opensource.ncsa.illinois.edu/stash/projects/CATS/repos/pyclowder/
9http://www.r-project.org/
10http://www.mathworks.com/products/matlab/



GET /api/conversions/outputs Lists all output formats that can be
reached

GET /api/conversions/inputs List all input formats that can be ac-
cepted

GET /api/conversions/inputs/
{input format}

List all output formats that can reach
the specified input format

GET /api/conversions/outputs/
{output format}

List all input formats that can reach
the specified output format

GET /api/conversions/convert/
{output format}/{file URL}

Convert the specified file to the re-
quested output format

POST /api/conversions/convert/
{output format}

Convert the uploaded file to the re-
quested output format

GET /api/conversions/software List all available conversion software
GET /api/conversions/servers List all currently available Software

Servers

Table 2: The DAP REST API for format conversions.

through data. The final type, previews, as well as other types
of derived file products, are also generated by the extractors.
These can include things such as thumbnails, image pyramids,
sections/clips, maps, spreadsheets, etc. These derived products
again aid in the navigation of data, this time in the manual
human sense, perhaps providing a visualization of the data or
collection of data. This may also be used as an intermediary
in a chained extraction process where some other extractor
will then be triggered to extract something more meaningful
from this new data (e.g. generating a signature from a key
frame extracted from a video). For each type of metadata the
system also keeps track of the source extractor that created it
for provenance purposes.

B. Data Access Proxy

The Brown Dog Data Access Proxy (DAP) handles con-
versions between formats, ideally to one that is more readily
accessible for the user. Unlike the DTS which takes no
parameters but triggers any extractor that will fire based on
the file type, the DAP takes a single parameter specifying
the desired output format. Like the DTS, the DAP provides
a compact REST interface allowing users and applications to
call its capabilities (Table 2).

Built on top of the Polyglot framework the DAP is designed
to support the inclusion of any piece of code, library, software,
or service into its ecosystem of conversion tools. A component
tool called a Software Server [14] utilizes one or more very
light weight wrapper scripts to automate specific capabilities
within arbitrary code and then provide access to it via a
consistent REST interface:

https://<host>/software/:application/:output/:file

Applications can then call, program against, these capabili-
ties within the software as easily as they would a library.
When GUI applications are involved scripting languages such
as AutoHotKey11 or Sikuli [17] are used to wrap needed
open/save functionality. Any text based scripting language
may be used for these scripts so long as it follows certain
conventions in its comments indicating the name and version
of the software, the types of data it handles (e.g. documents,
3D), and possesses a list of accepted input and output formats
(Figure 3). The DAP also supports the use of Data Format

11http://www.autohotkey.com/

Figure 3: Adding converters to the DAP is done by simply annotating
a wrapper script for the software in the scripts comments. The first
few comments tell the DAP what the software is, what types of
data it works on, and what inputs and outputs it supports. This is
sufficient for the DAP to manage and delegate conversion jobs to
that software. The remainder of the script either carries out or calls
another application to do the conversion.

Definition Language (DFDL) schemas [18], a relatively re-
cently standardization of a machine readable language for
format specifications, through the use of a specialized wrapper
script for Daffodil, an open source implementation of DFDL.
New schemas can be incorporated into the DAP by making
a minor modification to this template script. DFDL schemas,
generating XML representations from data contents for a given
format, possibly mapping elements to standardized ontologies,
provide a long term/preservable means of capturing the layout
of file contents, particularly important for the many ad hoc
formats scientists/graduate students utilize in their work (e.g.
for tabular, spreadsheet like data, or other representations for
data).

When a Software Server comes online, each potentially
hosting one or more applications, it will attempt to connect
to a specified RabbitMQ bus and then listen to one queue
per software that it controls. The DAP Polyglot head node
instance monitors the RabbitMQ bus, specifically the queues
and the consumers of the queues, leveraging it as a discovery
service for new Software Servers, software, and conversion
capabilities. For each Software Server found, it queries it for
the applications provided and the input and output formats
each in turn supports. From this a graph is constructed, referred
to as an input/output graph or I/O-graph, with formats as the
vertices and applications as directed edges between vertices
indicating conversions they are capable of carrying out. Given
an input format and a desired output format the DAP will
search this graph for a shortest path between the source and
target format, allowing conversions to occur that would require
multiple applications, possibly running on different machines.
The constructed job is stored in a MongoDB instance, where
one or more DAP Polyglot instances will monitor it and move
it across the path, placing portions of the job on the appropriate
application queues as need be. Since all information about the
job is stored in a shared MongoDB instance the Polyglot head
nodes are also stateless as in the case of the DTS and can
be placed behind a load balancer for added performance and
reliability. Software Servers will monitor the relevant software
queues, pull off jobs, execute them on the local hardware,
and return a link to the resulting output file back to the DAP
head node. All files are preferably passed between the DAP,
each Software Server, and even the external source, as URLs



in order to minimize file transfers. This saves transfers in
a number of instances, e.g. returning the output of the last
Software Server called to the DAP head node which then
returns it to the user, or should a Software Server possess
the needed applications for two parts of a conversion path.

As a cloud based service it is expected that the applications
and Software Servers are elastic, i.e. new ones will come on
line on occasion, and current ones will go offline on occasion.
As such the I/O-graph must be updated continuously so that
all currently valid conversion paths are represented. A thread
within each DAP Polyglot instance will continuously poll the
consumers on the RabbitMQ bus. When new Software Servers
are found their vertices and edges are simply added to the
graph, which represents the union of capabilities among all
discovered Software Servers. When a found Software Server
no longer responds, for whatever reason, the constituent edges
for its applications are pruned from the graph. In order to make
the traversal and the appending of new applications to the
graph efficient the I/O-graph is represented as an adjacency
list in memory. This however, makes the removal of edges
and vertices somewhat costly, especially for large graphs, thus
pruning is done sparingly and limited only to the edges which
is sufficient to eliminate invalid conversion paths.

C. Elasticity

The two building blocks of Brown Dog, the DTS and
DAP, which are built to utilize arbitrary code/software as
extractors/converters, need to have the ability to handle heavy
loads, adapt to spikes in requests, handle a mix of long
running and short running jobs, and support heterogeneous
architectures. Specifically, the two services need to be able
to auto-scale up/down based on the demand of the system.
Towards this end, we designed and implemented an elasticity
module that focuses on auto-scaling the DTS’s extractors
and DAP’s Software Servers by leveraging cloud computing
Infrastructure-as-a-Service. The module could be extensible
to other services as well with some modifications. Based on
extractor/converters types, the module needs to support mul-
tiple operating system (OS) types, including both Linux and
Windows, for its proper execution. Further we wish to support
a variety of Virtual Machine (VM)/container frameworks to
allow extractors and Software Servers to be deployed on a
variety of different resources.

We considered a number of cloud computing software plat-
forms, both open source such as OpenStack, Cloud Stack, and
Eucalyptus; and commercial such as Amazon Web Services
(AWS), Microsoft Azure, and VMWare; as well as other
related technologies such as Olive, OpenVZ and Docker. AWS
is relatively mature but can be costly as when CPU and
memory usage go up the cost of using AWS also goes up. In
the open source space, OpenStack is mature, widely adopted,
and supports both Linux and Windows. For our initial setup
we chose OpenStack as the top level VM technology, Unix
system services as the low level technology, and Docker as
an intermediary level technology candidate with regards to
the level of granularity by which we control the elasticity

Algorithm 1 BDMonitor()
1: Read the control parameters’ values from the config file
2: while TRUE do
3: Build OpenStack Server Map
4: Build Run-time Mapping between Services and running VMs, srvc2rVMMap
5: Obtain VMs usage information, e.g., loadAverage and numvCPU and build

vmInfoMap
6: ScaleUp()
7: ScaleDown()
8: end while

(e.g. Docker has a smaller resource usage overhead and faster
VM/container startup time compared with OpenStack).

1) Elasticity Module Design: There have been a variety
of efforts with regards to elasticity in the cloud computing
context [19]. Lots of the policies discussed in these works,
and also the ones provided by many cloud providers, allow
scaling based on criteria such as i) VM internal information
e.g. CPU usage, memory, etc; ii) monitoring job queues, and
iii) predictions of workload patterns.

We make the following assumptions in our design: i) an
extractor or a Software Server is installed as a service in a
VM/container. Extractors of the same type, i.e. requiring the
same execution environments, can be deployed in the same
VM so when a VM starts, all the extractors that the VM
contains as services will start automatically and successfully,
ii) the resource limitation of using extractors/Software Servers
to process input data is largely CPU processing, iii) we
wish to support deployment across any number of available
cloud infrastructures, iv) the system uses RabbitMQ as the
messaging technology.

From this we provide an auto scaling solution that is based
on the queue lengths at the message queues for extractors
and Software Servers. The DTS web application is a loosely
coupled publish/subscribe system and RabbitMQ which acts as
a broker provides finer grained details such as queue lengths,
channel activities, connection details, consumer details etc.
through it’s management API. Based on these fine grained
details and information obtained from the cloud infrastructure
API on the VM’s internal information scaling actions at
two levels are performed: service-level and VM-level. At the
service-level, an extra instance of the service is deployed in
the VM already running the same type of services while at
the VM-level a new VM or a suspended VM containing the
service is started. In our algorithm, the module will monitor
the message queue and based on a predefined queue length
threshold will take scaling actions accordingly either using
the cloud infrastructure API to start/suspend/resume/terminate
a VM or to start/stop a service in a running VM based on CPU
load average. As per the classifications in [19], our policy is
manual reactive, and the method is a mix of horizontal (adding
VMs) and vertical scaling (adding instances on a VM).

Algorithm 1 shows the pseudo code for the auto scaling
that we use in our implementation which periodically checks
if scaling up/down is required for the service. It reads all the
parameters needed from a configuration file. Algorithm 2 and
Algorithm 3 show the pseudo code for scale up and scale
down, respectively. In Algorithm 2 Line 1, the services scale
up candidate list is obtained by following the criteria: i) the



Algorithm 2 ScaleUp()
1: Get service scale up candidate list, sList
2: for sName in sList do
3: if sName in srvc2rVMMap then
4: Get the running vmList for the sName
5: Sort vmList based on VM’s cpuLoadRoom, i.e. VM.numvCPUs

− VM.loadAverage
6: for each VM in vmList do
7: if numvCPUs > (loadAverage + cpuBuffer) then
8: Add a service instance to the VM
9: break

10: end if
11: end for
12: continue
13: end if
14: Resume a VM containing the service sName
15: if Resume is successful then
16: continue
17: else if a VM is started containing the service sName within the ScaleUpAl-

lowanceTime then
18: Skip starting a new VM
19: else
20: Start a new VM instance containing the service sName
21: end if
22: end for

Algorithm 3 ScaleDown()
1: Get service instance scale down candidate list, sList
2: for sName in sList do
3: Get the vmList for the service sName
4: for each VM in vmlist do
5: Stop and remove the idle service exName instances from the VM main-

taining minimum number of sName instances
6: end for
7: end for
8: Get Idle VM scale down candidates list
9: Suspend the idle VMs from the list based on its channel’s idle time in the message

bus while maintaining minimum number of service instances

length of the RabbitMQ queue for a service is greater than a
pre-defined threshold, such as 100 or 1000, or ii) the number of
consumers (extractors/Software Servers) for the queue is less
than the minimum number configured. In Algorithm 3, Line
1 obtains the service instance scale down list by following
the criteria: i) idle queues (no data /activity for a configurable
amount of time), ii) idle VMs by using the channels idle time
taking care of multiple channels on the same VM. Rest of the
code in both algorithms are self-explanatory.

2) Implementation: The elasticity module is a stand-alone
program written in Python. The statistics obtained from Rab-
bitMQ and Openstack, as well as the scaling actions informa-
tion, are written into a MongoDB database so these values can
later be analyzed/visualized. We run this module as a system
service so that the OS ensures it is up and running, thereby
addressing the DTS and DAP’s performance, robustness, and
availability.

III. EXTENSIBILITY

As the name suggests, a mutt of software, the Brown Dog
services, in particular via Software Servers, are designed to
use and manage potentially any piece of software to carry out
conversions and extractions. In a manner similar to Apple’s
App Store, Galaxy’s Tool Shed [20], or other such repositories
for applications12 [3] we build a Tools Catalog which allows
users to add new tools and their capabilities to the two services.
As the DAP and DTS can utilize arbitrary code to carry out

12https://www.docker.com/
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Figure 4: Comparison of average total processing time to serve 1200
job requests by each extractor in Scenarios 1, 2, and 3

operations the Tools Catalog doesn’t actually store the actual
tools (i.e. code, software), but instead references them typically
via a URL to a website or source code repository. What is
stored within the repository is information needed to both
call these referenced tools and to give credit to their creators
so as to motivate the addition of new tools. Control of the
tool is done through the wrapper scripts mentioned previously
(Figure 2 and Figure 3), and is designed to be as simple and
straight forward as possible. Credit for the time being is done
via providing citation information, such as a relevant paper,
or to the software directly13. This can be done as simply as
providing a Digital Object Identifier (DOI) and will become
more and more important as the scientific community moves
towards providing as much credit for software and data as it
does for articles.

IV. EVALUATION

With regards to performance of the proposed infrastructure
we focus on two measures, scalability, specifically with re-
gards to the very heterogeneous tools that make up the two
services, and capabilities, what types of data are we currently
able to support. Though the deliberate extensibility of the
system plays into the latter criteria it is still not trivial as
elements within the system, e.g. the I/O-graph utilized by the
DAP, allow for combinations of tools to present additional
capabilities (e.g. a chain of conversions to reach a desired
target format). Below we describe our results with regards to
the elastic scaling of the system as well as a framework we are
building towards the continuous evaluation of the capabilities
of the system.

A. Elasticity

The experimental evaluation is designed to study the ef-
fectiveness of our approach and to get insights into the auto
scaling behavior of the monitored services. Our experimental
setup comprises of:
• Two extractor types - OpenCV based (Open source Com-

puter Vision) and OCR (Optical Character Recognition),
both extractors triggered off of images. Specifically we
consider four OpenCV extractors to detect faces, eyes,
profiles and closeups of faces, and one OCR extractor.

13http://zenodo.org/



• Created two VM images based on Ubuntu Trusty (14.04)
with 1 GB RAM, 1vCPU, 10GB disk space for the two
extractor types. One image is configured to have one
instance of four OpenCV extractors (faces, eyes, profiles,
closeups) as services with OpenCV already installed.
The second VM image is configured to have one OCR
extractor.

• A single instance of the DTS, a RabbitMQ server, Open-
Stack cloud, and MongoDB.

• 60 test image files in the PNG format with varying
sizes between 10KB-4MB. Image contents have a varied
number of faces, eyes, closeups, profiles, and text. Each
of the images has been tested against the extractors to
make sure the extraction process works correctly.

• The queue length threshold is 30 and Idle Time for VM
before it could be suspended is fifteen minutes. Minimum
number of extractor instances required is two for all
extractors.

For our experiments we utilize an OpenStack cloud run out
of the NCSA Innovative Systems Lab (ISL). In each test, we
uploaded 20 iterations of the 60 images for metadata extrac-
tion using the DTS REST API. Each of the five extractors
processed all 1200 files.

When scaling up, existing suspended VMs are resumed
as opposed to created to respond faster. To evaluate this
effect on processing time, we tested three scenarios: without
elasticity (denoted as Scenario 1), elasticity with no suspended
VMs (Scenario 2), and elasticity with suspended VMs at the
starting of a test (Scenario 3). Figure 4 shows the comparison
of average total processing time in the three scenarios. The
elasticity module reduced the total processing time for all
extractors. Among the five extractors, the OCR and closeup
recognition extractors take the least CPU time, while the facial
profiles extractor is the most CPU-intensive. The reduction rate
was 32–68% in Scenario 2, and 45–79% in Scenario 3. The
most CPU-intensive extractor, facial profiles, in Scenario 3,
had the largest reduction rate, 79%.

The queue length graphs in Figure 5 (top) confirm that with
suspended VMs, the system responded to demand surges faster
than without, while the bottom graphs show the reason: resum-
ing VMs and adding extractor instances on VMs increased
extractor instances faster than starting new VMs. The bottom
graphs also show the scaling down behavior.

B. Curation and the CI-BER Testbed

In order to test and report on the application of Brown
Dog to archival collections, we attempt to simulate archival
processing using the CI-BER14 [7] collection housed at the
UMD Digital Curation Innovation Center. CI-BER contains
52 terabytes, 72 million objects spanning a wide variety of
file formats, scientific datasets, and organizational records.
Through scripted interactions with the services we gather
metrics and identify gaps in function. The scripts are run
over and over again and seeded with different sample data

14https://ciber.umd.edu
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Figure 5: Comparison of queue lengths (top) and the number of
extractor instances and number of VMs (bottom) for the facial
profiles (left) and OCR (right) extractors, with Scenarios 1, 2 and 3.

files. The technology we use for simulation is a testing
framework called Gatling.io15. Gatling provides a domain-
specific language (DSL) for constructing web-based tests. The
test scenarios may be run as single user tests or they may
be run in parallel as realistic load tests, simulating the same
scenario for hundreds of users at the same time. Gatling
produces detailed metrics on service performance under load,
which can be used by developers to isolate issues. We write
our simulation scripts in the Gatling DSL, seeding simulations
with a randomized set of sample files. After each simulation
runs we gather up results from Gatling log files and other
sources to build a database in MongoDB of simulation results.

1) Archival Processing Simulations: The initial approach
was to employ Brown Dog for data format conversions typical
of digital preservation systems, namely the conversion of
legacy materials into current file formats for preservation and
access. Twice a day we take a random sample of modern
and legacy office files from the CI-BER collection, attempting
to convert them all into PDF using the DAP. Any office
documents that have no conversion path are flagged as a
problem (this can change over time as this is an elastic cloud
based system). We periodically analyze missing conversion
paths and make these into feature requests for the Brown Dog
development team. The Gatling test framework records precise
timestamps at various points in the HTTP interaction. For
instance we can measure conversion time as the time between
when the last byte of the HTTP request was sent, until the time
the first byte of the HTTP response is received. Figure 6 shows
the performance of the office document conversion over time
for 100 file conversions. Each simulation consists of either
100 or 1000 users, each running one conversion. The formats
used included: DOC, DOCX, ODF, RTF, WPD, WP, LWP,
and WSD. We perform a similar file conversion test for image
file formats. Formats currently under test include: TARGA,
PICT, WMF, BMP, PSD, TGA, PCT, EPS, MACPAINT, MSP,
and PCX. These are converted to the TIFF format and any
exceptions are reported to the development team.

While TIFF and PDF are used as preservation formats by

15http://gatling.io/



Figure 6: Top: Conversion simulation results for document con-
versions to PDF. Bottom: Conversion simulation results for image
conversions to TIFF.

some archives, we do not assume that TIFF and PDF are the
most desirable formats for all archives. Instead, the TIFF and
PDF conversions ensure that the content is not trapped in
the original format, that Brown Dog can open the original
file and get content out of it. Thus far we have identified
numerous samples that are trapped in WordPerfect (WP and
WPD), Photoshop (PSD), and Windows MetaFile (WMF)
formats. A more robust simulation is also being developed
through a policy-based format migration which will sample
files randomly from the CI-BER collection and consult a
lookup table to obtain the preferred preservation format. The
simulation will report missing migration paths, as well as
missing migration policies, i.e. data files or formats for which
no preservation format has been recommended.

V. CONCLUSION

We have deployed an alpha release of the two services
and begun incorporating tools in support of a number of
our use cases (e.g. supporting ecological model conversion
via PEcAn, supporting Lidar analysis for our hydrology use
case, supporting human preference modeling for our green
infrastructure use case, as well as other capabilities suited
for more general usage). Further, towards supporting the wide
range of users across our use cases we have begun developing
a number of client interfaces16 to leverage the DAP and
DTS. These include language specific libraries, a bookmarklet
interface that can be used to call the services on arbitrary
web pages, a Google Chrome extension, a command line
interface, incorporation into a scientific workflow system [21],
and incorporation back into Clowder as an example within a
content management system. Efforts moving forward aim to
add additional cloud infrastructure support to the elasticity
module, refine the level of granularity considered during
scaling by deploying Docker instances of converters/extractors
within a single VM, exploring how we might optimize data
movement so as to as efficiently as possible handle large data
collections, and incorporating/using additional information rel-
evant to provenance such as the estimates of information loss
incurred during specific conversions described in [5].

16http://browndog.ncsa.illinois.edu/blog.html
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