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Abstract. We give some structure to the Brown–Peterson cohomology (or its p-completion) of a
wide class of spaces. The class of spaces are those with Morava K-theory even-dimensional. We
can say that the Brown–Peterson cohomology is even-dimensional (concentrated in even degrees)
and is flat as a BP ∗-module for the category of finitely presented BP ∗(BP )-modules. At first
glance this would seem to be a very restricted class of spaces but the world abounds with naturally
occurring examples: Eilenberg–Mac Lane spaces, loops of finite Postnikov systems, classifying
spaces of most finite groups whose Morava K-theory is known (including the symmetric groups),
QS2n, BO(n), MO(n), BO, Im J , etc. We finish with an explicit algebraic construction of the
Brown–Peterson cohomology of a product of Eilenberg–Mac Lane spaces and a general Künneth
isomorphism applicable to our situation.
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1. Introduction

We will be concerned with a number of cohomology theories related to Brown–
Peterson cohomology and Morava K-theory. We fix a prime p for the duration
of the paper. Recall that the coefficient ring for Brown–Peterson cohomology is
BP ∗ ≃ Z(p)[v1, v2, . . .] where the degree of vn is −2(pn − 1). Let In be the ideal
(p, v1, . . . , vn−1). We will need the p-adic completion of BP , BPp̂, and the theories
P(n) with coefficient rings P(n)∗ ≃ BP ∗/In. Letting P(0) be either BP or BPp̂ and
v0 = p we have stable cofibrations

!2(pn−1)P (n)
vn−−−→ P(n) −−−→ P(n + 1),ψ (1.1)

which lead to long exact sequences in cohomology. Let BP ⟨q⟩∗ = Z(p)[v1, . . . , vq ].
There are spectra E(k, n) with coefficient rings E(k, n)∗ ≃ v−1

n BP ⟨n⟩∗/Ik with
similar long exact sequences. A special case, when k = n > 0, is the nth Morava
K-theory, K(n)∗(X), with K(n)∗ ≃ Fp[vn, v

−1
n ].

Before we state our main theorem we have a result which makes the statements
easier to make. Throughout this paper we assume all of our spaces to be of the
homotopy type of CW complexes with H ∗(X;Z(p)) of finite type.

We will say that a graded object (such as the generalized cohomology of a space)
is even dimensional if it is concentrated in even degrees.
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THEOREM 1.2. IfK(n)∗(X),X a space, is even-dimensional for an infinite number
of n, then K(n)∗(X) is even dimensional for all n > 0.

We say X has even Morava K-theory if K(n)∗(X) is even-dimensional for all
n > 0. We use the weaker sounding assumption to prove our results, but when all is
said and done, the proofs show it is equivalent to having even Morava K-theory. We
get simple, but interesting, corollaries:

COROLLARY 1.3. If K(q)∗(X) has a nonzero odd degree element for some q > 0
then K(n)∗(X) has an odd degree element for all but a finite number of n.

This does not apply to the usual extension of Morava K-theories to include
K(0)∗(X)=H ∗(X;Q) and there are examples (X = K(Z; 2n+1), [RW80]) where
this is nonzero in odd degrees but X has even Morava K-theory. Originally, this led
us to worry a lot about the possibility of bad low Morava K-theories with K-theory
‘stabilizing’ to even degrees. We thought that our results or proofs would need exotic
types of completion. However, such examples cannot exist. Because K(0) does not
fit the pattern, we must sometimes go to the p-adic completion of BP for our results.

PROPOSITION 1.4. If X and Y have even Morava K-theory, then so does X × Y .

This follows from the Künneth isomorphism for Morava K-theories and shows
that the class of spaces for which our main results hold is closed under finite products.

We can now state our main theorem. To avoid unnecessary repetition, we have:

DEFINITION 1.5. Let P(0) be BP if lim1 BP ∗(Xm) = 0 for each space X under
discussion, and the p-adic completion of BP , BPp̂, if any of the spaces do not have
this property. Likewise, if we have chosen P(0) to be BPp̂ then we chose E(0, n) to
be the p-adic completion as well.

Remark 1.6. We make this definition so we always have the inverse limit giving
the cohomology,

lim0P(0)∗(Xm) ≃ P(0)∗(X).

DEFINITION 1.7. We say a P(k)∗-module is Landweber flat if it is a flat P(k)∗-
module for the category of P(k)∗(P (k))-modules which are finitely presented over
P(k)∗.

THEOREM 1.8. Let k ! 0. If a space X has even Morava K-theory then P(k)∗(X)

is even-dimensional and is Landweber flat.

Note that our results are strictly unstable. There are counter-examples if X is a
spectrum and not a space. Note that this includes the case of BP when there are no
phantom maps and BPp̂ if there are.
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Flatness, for BP , in the sense of our theorem has been explored by Peter Landwe-
ber in [Lan76] where he proves his exact functor theorem. He shows that flat means
that vn-multiplication on M/InM is always injective. So, we get BP flatness from
him by proving the following:

THEOREM 1.9. Let a spaceX have evenMoravaK-theory. For k!0we have short
exact sequences (where v0 = p):

0 −→ P(k)∗(X)
vk−→ P(k)∗(X) −→ P(k + 1)∗(X) −→ 0

and P(k)∗(X) is even-dimensional.

Remark 1.10. Flatness was further studied by Zen-ichi Yosimura in [Yos76] and
Nobuaki Yagita in [Yag76]. Their papers show that the above result implies that
P(k)∗(X) is Landweber flat. This follows from Landweber’s results once it is known
that P(k)∗(P (k)) is a BP ∗(BP )-module from [Yag77]. Taken together we see that
P(q)∗(X) Landweber flat is equivalent to having the short exact sequences of The-
orem 1.9 for all k ! q which in turn implies that P(k)∗(X) is Landweber flat for all
k ! q.

A Künneth isomorphism follows if one space is nice, and it must be a space as
this is an unstable result.

THEOREM 1.11. Let k!0 and letX be a space with P(k)∗(X) Landweber flat, e.g.
if X is a space with even Morava K-theory. We have a Künneth isomorphism:

P(k)∗(X × Y ) ≃ P(k)∗(X)⊗̂P(k)∗P(k)∗(Y ).

This generalizes early work of Peter Landweber. In [Lan70a] he has it for special
X and in [Lan76] he has it for Y finite without the completion. This Künneth iso-
morphism expands the number of spaces we have ‘computed’ the BP -cohomology
for quite dramatically.

Recall that our spaces are all CW complexes of finite type and that P(0) is
chosen according to Definition 1.5. There are similar isomorphisms for the theories
E(k, n)∗(−) if K(n)∗(X) is even.

Remark 1.12. By this Künneth isomorphism, if X is an H -space with even Morava
K-theory then P(k)∗(X) has all the structure of a Hopf algebra.

Although it is reasonable to ask for even Morava K-theory if you want all of
these theories to be even dimensional, Landweber flatness is the really interesting
property and it should have nothing to do with even Morava K-theory. It seems some
sort of fluke that there are so many examples of spaces with even Morava K-theory
around. Presumably such spaces have a significantly deeper reason for having even
Morava K-theory than their association with flatness. This is just the first nontrivial
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place the general phenomenon of a class of spaces having Landweber flat Brown–
Peterson cohomology has shown up. Having observed it here one would expect to
see it frequently in the future in a more general setting. That future has arrived in
the paper [Kasb] by T. Kashiwabara. For example, we can see that P(k)∗(QS2n)

is Landweber flat but we can not see that P(k)∗(QS2n+1) is. Kashiwabara can. He
pushes this type of work much further than we have gone.

Our results are a simultaneous generalization of previous observations on these
two rather different concepts: even Morava K-theory and flatness. First, if X is
a finite complex then the Atiyah–Hirzebruch spectral sequence must collapse for
K(n)∗(X) when the dimension of the space is less than 2(pn − 1), i.e. for all big
n. If K(n)∗(X) is even-dimensional for such an n and X, the mod p cohomology
must also be even-dimensional, which implies that there is no torsion and the integral
cohomology is even-dimensional. It then follows that BP ∗(X) is free over BP ∗ and
is even dimensional. Our theorem generalizes this to infinite complexes. Second,
over twenty years ago Peter Landweber, [Lan70a], computed the Brown–Peterson
cohomology (at the time he worked with complex cobordism) of BG where G is a
finitely generated Abelian group and showed it was flat and even-dimensional. This
is a special case of our result applied to the first Eilenberg–Mac Lane space, K(G, 1).
The K(G, n) have many similar properties.

Our results have nothing new to say about finite complexes. Infinite complexes
can have many a subtle unpleasant property in cohomology. This, and other factors,
motivated J. Frank Adams to steer people in the direction of homology rather than
cohomology, [Ada74], [Ada69]. What we are observing is that things are not as
bad as they seemed and that looking at cohomology can be rewarding. In particu-
lar it is turning out to be easier to compute and describe the cohomology than the
homology in several examples. Landweber’s example for BG where G is Abelian
should have showed the way. It was much later that BP∗(BG), for G an elementary
p-group, was computed ([JW85]) and little progress has been made on more com-
plicated Abelian groups. Likewise, BP ∗(BO) was computed in a reasonable fashion
([Wil84]) before BP∗(BO) was properly understood ([Yan95]). We can now add all
Eilenberg–Mac Lane spaces to the list of spaces whose Brown–Peterson cohomology
is completely described but whose Brown–Peterson homology is still a mystery.

Although for many spaces that fit our hypothesis we do not have more detailed
descriptions of the cohomology, our result is still way ahead of anything we can
produce for homology.

A brief description of our proof is now in order. First we show Proposition 4.12
that any given nontrivial element of P(k)∗(X) maps nontrivially to E(k, n)∗(X) if n

is big enough. (P(k)∗ and E(k, n)∗ were defined in the opening paragraph.) Second,
we show Lemma 5.1 that if K(n)∗(X) is even-dimensional then E(k, n)∗(X) is also.
(This allows us to ‘compute’ E(k, n)∗(X) for all spaces with K(n)∗(X) even degree.)
Thus, if X has even Morava K-theory, then P(k)∗(X) is also even-dimensional. This
is proved using the Atiyah–Hirzebruch spectral sequence. Because all of our spaces
are infinite complexes, there are technicalities to worry about. For example, we
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must show that for k > 0 there are no phantom maps in E(k, n)∗(X). This, and
more, is achieved using a generalization of Quillen’s theorem saying that P(k)∗(X),
X a space, has only nonnegative dimensional generators and a generalization of
the Landweber exact functor theorem, which says that tensoring with E(k, n)∗ is
exact in the category of finitely presented P(k)∗(P (k))-modules, i.e. that E(k, n)∗

is Landweber flat.
In the process of proof some subtle differences between cohomology and homol-

ogy for infinite complexes come to the surface. The Morava structure theorem for
complex cobordism (see [JW75]) allows one to use the Morava K-theory, K(n)∗(X),
to compute the vn-torsion free part of P(n)∗(X). Not so in the cohomology of infinite
complexes. In fact, in all of our examples, all elements of P(n)∗(X) are vn-torsion
free, but only some show up in the Morava K-theory. This partial failure of the Mora-
va structure theorem is compensated for by the lack of infinite divisibility by vk in
E(k, n)∗(X), k < n, whereas in E(k, n)∗(X) it is commonplace and shows up in the
proof of the Conner–Floyd conjecture of [RW80]. In that proof it was important that
the Morava structure theorem detected all of the vn torsion free part of homology
and that one could have infinite divisibility as well. In the present work we can live
without the Morava K-theory detecting all of the vn torsion free part but we must be
able to eliminate infinite divisibility.

The Morava structure theorem still tells us that we can recover K(n)∗(X) from
P(n)∗(X) by using

K(n)∗(X) ≃ K(n)∗⊗̂P(n)∗P(n)∗(X)

for infinite complexes, except that now this doesn’t pick up all of the vn torsion free
part. Since P(n)∗(X) is determined by P(0)∗(X) for our special spaces with even
Morava K-theory, we have a result which was first suggested in papers of Tezuka and
Yagita [TY89] and [TY90], and later in a paper of A. Kono and N. Yagita [KY93]:

K(n)∗(X) ≃ K(n)∗⊗̂P(0)∗P(0)∗(X).

In fact we can replace K(n) with E(k, n).
We started this project with the belief that the time had come to seriously attack

the Brown–Peterson cohomology of Eilenberg–Mac Lane spaces. We tried many
approaches, including the Adams spectral sequence, before we found the present
one. Calculations led us to believe that it was possible everything was even dimen-
sional; motivating our study even more. Since we began with Eilenberg–Mac Lane
spaces we have a measure of satisfaction that these spaces all satisfy our conditions
([RW80]), and we are even more pleased that we can describe their BP -cohomology
completely. We will give an algebraic construction of the Brown–Peterson cohomol-
ogy of Eilenberg–Mac Lane spaces.

There is a BP -module spectrum BP ⟨q⟩, [JW73] and [Wil75], with π∗(BP ⟨q⟩) =
Z(p)[v1, . . . , vq ] and for each q > 0 there is a stable cofibre sequence

!2(pq−1)BP ⟨q⟩
vq−→ BP ⟨q⟩ −→ BP ⟨q − 1⟩ −→ !2pq−1BP ⟨q⟩. (1.13)
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This gives rise to corresponding fibrations in the$-spectra for the BP ⟨q⟩, {BP ⟨q⟩∗}.
The following is also true using P(n) cohomology in place of BP or BPp̂. The
Künneth isomorphism, Theorem 1.11, gives us the Brown–Peterson cohomology for
all (Abelian) Eilenberg–Mac Lane spaces.

THEOREM 1.14. Let g(q) = 2(pq+1 − 1)/(p− 1). Then BPp̂
∗(K(Z(p), q + 2)) is

isomorphic to:

BPp̂
∗(BP ⟨q⟩

g(q)
)/(v∗1 , . . . , v∗q) ≃ BPp̂

∗(BP ⟨q⟩
g(q)

)/(v∗q)

and BP ∗(K(Z/(pi), q + 1)) is isomorphic to:

BP ∗(BP ⟨q⟩
g(q)

)/(pi∗, v∗1 , . . . , v∗q) ≃ BP ∗(BP ⟨q⟩
g(q)

)/(pi∗, v∗q)

for q > 0. For q = 0 delete the v∗q from the ideal.

We need the p-adic completion for K(Z(p), n), n > 2, because there are phantom
maps for these spaces. However, we don’t need it for finite groups.

Remark 1.15. Because all of this comes from spaces and maps of spaces we have
much more here than just the BP ∗ module structure. In fact, these things are as good
as Hopf algebras and the structure maps are included in what is known. Further-
more, everything is completely understood as unstable modules over BP ∗(BP ∗) (or
BPp̂
∗(BPp̂ ∗

)) from [BJW95]. Later we will give a set of algebra generators.

The q = 0 version of the theorem was known to Stong and presumably others,
in the 1960s. Landweber, in [Lan70a], showed these q = 0 cases were flat and then
calculated the result for products of these spaces.

Some explanation is called for. The ideal is generated by the images of the maps
in Brown–Peterson cohomology induced from the maps of spaces in the$-spectrum
which come from the stable maps described above in 1.13. There is a map which
induces this isomorphism. It comes from the iterated boundary maps of 1.13. Unsta-
bly, the boundary map is

BP ⟨k − 1⟩
j
→ BP ⟨k⟩

j+2pk−1.

and the iteration is

K(Z/(pi), q + 1)→ K(Z(p), q + 2)→ BP ⟨1⟩
q+2p+1 → · · ·→ BP ⟨q⟩

g(q)
.

This is the same map used by Hopkins and Ravenel [HR92] to prove that suspension
spectra are harmonic.

The reason this is a satisfactory answer for us is that everything is ‘known’ about
BP ∗(BP ⟨q⟩

g(q)
), BP ∗(BP ⟨q⟩

g(q)−2(pq−1)
), and the map v∗q between them. This is

because BP ⟨q⟩
g(q)

splits off of BP g(q) and all of the spaces BP ∗ are well under-
stood from [RW77]. In particular, in that paper we give an algebraic construction
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for BP∗(BP k). BP∗(BP ⟨q⟩
k
) is a well defined quotient of this construction for

k ! g(q) (just set all [vi] = 0 for i > q where [vi] is defined in BP0(BP −2(pi−1))

using vi ∈ π2(pi−1)(BP ) ≃ [pt, BP −2(pi−1)]). Since the spaces BP ⟨q⟩
k
, k ! g(q)

are all torsion free for ordinary homology, we know that they are BP∗ free and
the Brown–Peterson cohomology is just the BP ∗ dual. Likewise, the maps are just
the dual maps. This theorem gives insights into H. Tamanoi’s results, [Tam83b],
[Tam83a](an announcement with no proofs), (see [Yag86, Theorem 3.3]), and vice
versa. H. Tamanoi has only recently written up his work in [Tam97].

Not only do we know the BP -homology of the above spaces and use it to describe
the BP -cohomology of the Eilenberg–Mac Lane spaces, but the same can be done
for Morava K-theory. Although in principle the maps are all known, in practice it
can be difficult to compute them. Our main technical proposition about these spaces
which allows us to go up to our BP cohomology answer is (see [HRW97] and [SW]
for the category of K(n)∗-Hopf algebras):

PROPOSITION 1.16. Let g(q) = 2(pq+1− 1)/(p− 1). There is an exact sequence
in the category of K(n)∗-Hopf algebras:

K(n)∗ → K(n)∗(K(Z(p), q + 2))→ K(n)∗(BP ⟨q⟩
g(q)

)

vq∗−→ K(n)∗(BP ⟨q⟩
g(q)−2(pq−1)

).

In order to translate this Morava K-theory information into information about
Brown–Peterson cohomology we have to have some general results about exactness
for Morava K-theory implying exactness for BP . We have theorems about injectivity,
surjectivity and just enough exactness for our purposes:

THEOREM 1.17. Let spacesXi , i =1, 2, have evenMoravaK-theory. Iff : X1 −→
X2 has f ∗ : K(n)∗(X2) −→ K(n)∗(X1) surjective (injective) for all n > 0, then
f ∗ : P(k)∗(X2) −→ P(k)∗(X1) is also surjective (injective), for k ! 0.

THEOREM 1.18. Let spacesXi , i = 1, 2, 3, have evenMoravaK-theory. IfX1
f1−→

X2
f2−→ X3 has f2 ◦ f1 ≃ 0 and gives rise to exact sequences (as K(n)∗ modules)

0←− K(n)∗(X1)
f ∗1←− K(n)∗(X2)

f ∗2←− K(n)∗(X3)

for all n > 0 then for all n ! 0 we get exact sequences:

0←− P(n)∗(X1)
f ∗1←− P(n)∗(X2)

f ∗2←− P(n)∗(X3).

THEOREM 1.19. Let spaces Xi , i = 1, 2, 3, have even Morava K-theory. Assume
that

X1
f1−→ X2

f2−→ X3
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has f2◦f1 ≃ 0 and all spaces areH -spaces and all maps areH -spacemaps. Assume
also that this gives exact sequences of bicommutative Hopf algebras for all n > 0:

K(n)∗ −→ K(n)∗(X1)
f1∗−−−→ K(n)∗(X2)

f2∗−−−→ K(n)∗(X3).

Then,

P(n)∗(X1) ≃ P(n)∗(X2)/(f
∗
2 )

for all n ! 0.

The above theorem will be used repeatedly for our examples. What is surprising
is that, more often than not, our spaces do not come from fibrations.

Although we cannot give the level of detail for most of our examples that we
give for Eilenberg–Mac Lane spaces, there are some general statements which we
can make about generators and relations. Note that these results do not depend on
having even Morava K-theory but only on being Landweber flat which even Morava
K-theory implies.

THEOREM 1.20. Let a spaceX have P(n)∗(X) Landweber flat for n!0, then there
is a set Tn in P(n)∗(X) such that the elements Tn satisfy (a)–(c). Let Rn be the set
of relations on the elements Tn in P(n)∗(X). Then any set Tn which satisfies (a)–(c)
also satisfies (d)–(g).

(a) They generate P(n)∗(X) topologically as a P(n)∗-module,
(b) are all essential to generate, and
(c) are almost all in F s , the sth skeletal filtration of the Atiyah–Hirzebruch spectral

sequence, for each s ! 0.
(d) These elements, Tn, reduce to a set, Tq , in P(q)∗(X), q > n, with the same

properties.
(e) All relations must be infinite sums, in particular, the elements of Tn are linearly

independent over P(n)∗,
(f) any relation, in Rq , q > n, on the reduced set Tq in P(q)∗(X) comes from Rn,

and
(g) any relationwhose coefficients allmap to zero inP(q)∗ can bewritten

∑q−1
i=n viri ,

with ri in Rn.

The last statement is a nice generalization of ‘regular’ in Landweber’s paper
[Lan70a]. It is clear that the image of the set Tn in K(q)∗(X) generates. From the
next result we see that every element in Tn must show up in some Morava K-theory
(or else it would be unnecessary). In fact, it follows that every generator must be
detected by an infinite number of the Morava K-theories. It seems reasonable, but
we were unable to prove, that if a generator shows up in K(q)∗(X), then it also
shows up in K(q + 1)∗(X). Such is the case for Eilenberg–Mac Lane spaces. Our
next result says that if elements generate the Morava K-theories then they actually
generate everything. This is a strong result which allows us to prove our exactness
theorems and go on to attack Eilenberg–Mac Lane spaces.
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THEOREM 1.21. Let a space X have P(n)∗(X) Landweber flat. Let n ! 0 and let
Tn ⊂ P(n)∗(X) be such that

(a) the elements of Tn are almost all in Fs , the sth skeletal filtration of the Atiyah–
Hirzebruch spectral sequence and

(b) for each q!n (q > 0),K(q)∗(X) is generated topologically as aK(q)∗-module
by the image of Tn.

Then Tn generates P(n)∗(X) topologically as a P(n)∗-module.

Remark 1.22. If Tn is multiplicatively generated by a finite subset Gn of elements
of positive skeletal filtration, then Tn satisfies (a).

COROLLARY 1.23. LetX and Tn be as in Theorem 1.21 with all of the elements of
Tn essential. Then Tn satisfies the conditions of Theorem 1.20.

COROLLARY 1.24. Let X and Tn be as in Theorem 1.20. Every t ∈ Tn maps non-
trivially to K(q)∗(X) for an infinite number of q > n.

We see structure in many examples of Brown–Peterson cohomology where there
was not known to be structure before. We consider what we have done as just a
start. The problem of computing these examples more completely is a problem that
remains, but now with more than a glimmer of hope that the answers we will find will
be nice. We hope this work will inspire others to tackle these explicit computations.
We leave people with the question: If these things are so nice, what are they?

Section 2 elaborates on our examples. In Section 3, we organize the preliminar-
ies needed in the rest of the paper. After that we have Section 4 on the Atiyah–
Hirzebruch spectral sequence for our theories. Then we move on to assume even
Morava K-theory and deduce the main result in Section 5 (Theorems 1.2, 1.8, and
1.9). We then do our work with generators and relations, Section 6 (Theorems 1.20
and 1.21, and Corollaries 1.23 and 1.24), followed by our work with exactness in
Section 7 (Theorems 1.17, 1.18, and 1.19). In Section 8, we work out the details of
the Eilenberg–Mac Lane example (Theorem 1.14 and Proposition 1.16). Our final
section, Section 9, deals with the Künneth isomorphism (Theorem 1.11).

2. Examples

Before listing our examples, we need the following easy result.

PROPOSITION 2.0.1. Let

F
i−→ E

f−→ B

be a fibration in which K(n)∗(F ) and H∗(B) (= H∗(B;Z/(p))) are concentrated
in even dimensions. Then K(n)∗(i) is one-to-one, K(n)∗(f ) is onto, and K(n)∗(E)

is even degree. Moreover, if the fibration is one of loop spaces, then

K(n)∗ −→ K(n)∗(F )
i∗−→ K(n)∗(E)

f∗−→ K(n)∗(B) −→ K(n)∗

is a short exact sequence of Hopf algebras.
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COROLLARY 2.0.2. If we have a fibration of double loop spaces as in Proposi-
tion 2.0.1, F has even Morava K-theory and H∗(B) is even, then

P(n)∗(F ) ≃ P(n)∗(E)/(f ∗).

Proof of Proposition 2.0.1. The Atiyah–Hirzebruch–Serre spectral sequence con-
verging to K(n)∗(E) with E2 = H∗(B; K(n)∗(F )) collapses since it is concentrated
in even dimensions. The result follows. !

Proof of Corollary 2.0.2. The double loops implies bicommutative Hopf algebras
so this follows from Proposition 2.0.1 using Theorem 1.19. !

2.1. finite postnikov systems

All Eilenberg–Mac Lane spaces for Abelian groups not having the circle, S1, as
a homotopy factor, and all products of such spaces satisfy the conditions of our
theorems. The first from [RW80] and the products from Proposition 1.4. Furthermore,
we can describe the Brown–Peterson cohomology of all of these spaces explicitly.
See the introduction and Section 8 of the paper. This is our main example.

In Hopkins, Ravenel and Wilson, [HRW97], we show that the loop space of a
finite Postnikov system has even Morava K-theory, provided that it does not have
an S1 as a factor. If F is such a space, but with double loops replacing loops, then
K(n)∗(F ) is isomorphic as a Hopf algebra to K(n)∗(E), where E is the product
of Eilenberg–Mac Lane spaces having the same homotopy as F . In other words,
k-invariants are not seen by Morava K-theory.

2.2. classifying spaces of compact lie groups

In [HKR92] it was conjectured that the Morava K-theory of a finite group, i.e.
K(n)∗(BG), should be even-dimensional. If this conjecture had been true, then our
result would have applied to all finite groups. It is true for most groups whose Morava
K-theory is known. However, the conjecture is false, [Kri97], [KL]. As it is, our
result applies only to those groups with even Morava K-theory which have had
their Morava K-theory computed. That list starts with finite Abelian groups. Their
Brown–Peterson cohomology was known, in detail, to Landweber [Lan70a] who
also knew of their flatness. Perhaps next on the list, in terms of interest, are the
symmetric groups. Hopkins, Kuhn and Ravenel, [HKR92] and [HKR], and Hunton,
[Hun90], independently proved that the Morava K-theory of these groups is even.
These would be good examples to understand explicitly. Hopkins, Kuhn and Ravenel
give other examples where the result is known. The result is known for groups G

with rankpG ! 2. For groups with rankpG = 2 all but one case is done by Tezuka
and Yagita in [TY89] and [TY90]. All cases, including the missing one, are done in
[Yag93]. M. Tanabe also has an interesting class of examples in [Tan95].

The result about symmetric groups mentioned above is a consequence of the
following statement. If the conjecture is true for a finite group G, then it is also true
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for the wreath product Z/(p) ≀G. By this we mean the evident semidirect product in
the split group extension Gp −→ Z/(p) ≀G −→ Z/(p) in which Z/(p) acts on Gp

by permuting the factors cyclically. The proofs given by Hunton; Hopkins, Kuhn and
Ravenel differ slightly in the assumption made about K(n)∗(BG). The latter assume
that it is additively generated by images under the transfer map of Euler classes of
representations of subgroups H ⊂ G, while Hunton assumes that there is a map
f : BG → Y with K(n)∗(f ) onto and K(n)∗(Y ) a finitely generated power series
ring. He calls such a map a ‘unitary like embedding’ because in the case where G is
Abelian, Y can be taken to be BU(m) for a suitable unitary group U(m).

We can improve on the wreath product result of [HKR92] as follows. For a groupG

let TreK(n)(G) denote the subalgebra of K(n)∗(BG) generated by transferred Euler
classes of irreducible representations of subgroups of G, and similarly for TreBP (G)

and TreP(n)(G). (In [HKR92, Cor. 8.3] it is shown that the module generated by
transferred Euler classes of all representations of subgroups of G is the same as this
algebra.) We let Tr∗ denote the transfer and e(ρ) the Euler class of a representation
ρ. Then Tr∗(e(ρ)) stands for the transferred Euler class of a representation.

We will say that a group G is good if K(n)∗(BG) = TreK(n)(G), for all n. We
know that finite Abelian groups and groups G with rankpG ! 2 are good. A group
G is good if its p-Sylow subgroup is. In [HKR92] it was shown that W = Z/(p) ≀G
is good if G is. The following result is a consequence of Theorem 1.21.

COROLLARY 2.2.1. Let G be a finite group which is good in the sense above,
and let W = Z/(p) ≀ G. Then, with P(0) = BP, P (n)∗(BG) = TreP(n)(G), and
P(n)∗(BW) = TreP(n)(W).

Proof. First note that for X = BG or BW , we know from [BM68] and [Lan72]
that lim1BP ∗(Xm) = 0, so P(0) is BP as in Definition 1.5.

Now let Tn ⊂ P(n)∗(BG) be the subalgebra generated by the set of transferred
Euler classes of irreducible representations of subgroups of G. There are finitely
many such classes, so Tn is multiplicatively generated by a finite set as required by
Remark 1.22 so the statements about the cohomology of BG follow from Theorem
1.21.

Let T ′n ⊂ P(n)∗(BW) be similarly defined. Since W is good, T ′n also satisfies the
hypotheses of Theorem 1.21 because of Remark 1.22 and the statements about the
cohomology of BW follow. !

We want to give a more detailed description.

THEOREM 2.2.2. LetG be good and BP ∗(BG)⊗BP ∗ Z/(p) ≃ Z/(p){bλ}, that is,
the bλ are BP ∗ generators. Then

BP ∗(B(Z/(p) ≀G))⊗BP ∗ Z/(p) ≃
Z/(p){P(λ), σ (λ1, . . . , λp)ys, ys′ | s ! 0, s′ > 0, ∃λi ̸= λj }
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where

σ (λ1, . . . , λp) = Tr∗(bλ1 ⊗ · · ·⊗ bλp),

with

Tr∗ : BP ∗(BGp)→ BP ∗(B(Z/(p) ≀G)),

y = π∗(ỹ) with

π∗ : BP ∗(BZ/(p)) ≃ BP ∗[[ỹ]]/[p](ỹ)→ BP ∗(B(Z/(p) ≀G)),

P (λ) = Tr∗(e(ρ̂λ)) if bλ = Tr∗(e(ρλ)) for some representation ρλ of H ⊂ G, and
ρ̂λ is the representation of Z/(p) ≀H with ρ̂λ|Hp = ρλ ⊗ · · ·⊗ ρλ.

Proof. The exact sequence

1 −→ Gp −→ Z/(p) ≀G −→ Z/(p) −→ 1

induces the spectral sequence

H ∗(BZ/(p); K(n)∗(Gp)) 1⇒ K(n)∗(B(Z/(p) ≀G)).

In [HKR92, between 8.3 and 8.6], the differentials are computed and they get a sim-
ilar theorem as ours for K(n) except that there are some restrictions. One must use a
subset of the b’s, s ! pn− 1 and s′! pn− 1. All of the elements in the statement of
the theorem can be defined for BP cohomology and we now see that their reductions
generate all of the Morava K-theories. Our result follows from Theorem 1.21 and
we see that all of these elements are necessary as well. !

Now let X = BG, where G is a compact Lie group. From Buhs̆taber and
Mis̆c̆henko, [MM68], and Landweber, [Lan72], it is known that lim1BP ∗(Xm) = 0.
In [KY93], Kono and Yagita conjecture that BP ∗(X) is even degree and flat in our
sense. They go on to prove this for O(n), SO(2n + 1), PU(3) and F4. The Brown–
Peterson cohomology of BO, BO(n) and MO(n) was computed in [Wil84].

Remark 2.2.3. Our results show that the Hopkins, Kuhn and Ravenel conjecture
about finite groups is equivalent to the Kono and Yagita conjecture (for finite groups).
Since the first is false, so is the second.

2.3. the sphere spectrum

The evenly indexed spaces in the$-spectrum for the sphere, QS2n, have even Mora-
va K-theory as they are the limit of spaces which have even Morava K-theory.
(This follows from Hunton’s theorem about the Morava K-theory of wreath prod-
ucts [Hun90].) We want to thank Takuji Kashiwabara for bringing this example to
our attention. Kashiwabara has, since we proved our basic theorems, pushed this
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example to its ideal conclusion in [Kasa]. There, he shows that if E is a bouquet of
BP spectra and there is a map, f , from BP to E such that

0←− BP ∗(S0)←− BP ∗(BP )
f ∗←− BP ∗(E),

is an exact sequence, then there is an exact sequence of K(n)∗-Hopf algebras

K(n)∗ −→ K(n)∗(QS2k) −→ K(n)∗(BP 2k)
(f2k)∗−→ K(n)∗(E 2k)

which, by Theorem 1.19, gives BP ∗(QS2k) as a quotient, BP ∗(BP 2k)/(f
∗
2k). Note

that these maps and spaces do not form a fibration.
It is easy to come up with a spectrum E and a map from BP . A minimal one, for

example, is just to have E be the wedge of !2(p−1)pi
BP for each i ! 0. The maps

just cover the generators for BP ∗(BP ). In principle, this gives complete information
not just for BP ∗(QS2k) but for K(n)∗(QS2k). Everything about the map from BP

to E is known and one can use the techniques developed in [BJW95]. Kashiwabara
has recently pushed his work even further, see [Kasb].

2.4. image of J and related spaces

We thank Stewart Priddy and Fred Cohen for tutorials which allowed us to include
this example.

We will outline a computation of K(n)∗(J ) for an odd prime p, where J is the
fibre of

BU(p)

ψk−1
−−−→ BU(p)

for a suitable choice of the integer k, namely it must be congruent to a primitive
(p − 1)th root of unity mod p but not mod p2. It is also known that if k is a power
of some prime other than p, then the fibre of the map above is the p-localization of
algebraic K-theory of the field Fk [Qui72]. In any case this space is known to be a
direct limit of the classifying spaces of finite groups studied by Tanabe in [Tan95]
([Qui72]). He shows that each of them has even Morava K-theory.

In particular J has even Morava K-theory, so the theorems of this paper apply to
it. Moreover, the fibration

J −−−→ BU(p)

ψk−1
−−−→ BU(p)

gives a short exact sequence of Hopf algebras in Morava K-theory by
Proposition 2.0.1. Corollary 2.0.2 then gives us the result that

BP ∗(J ) ≃ BP ∗(BU(p))/((ψ
k − 1)∗)

because there are no lim1 problems (J is torsion and BU(p) has no torsion).
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This discussion could be made self contained, and thus not dependent on Tanabe,
by showing that (ψk − 1)∗ is surjective as a map from K(n)∗(BU(p)) to itself.
A simple argument then shows that K(n)∗(J ) is even. As it is, Tanabe, with the
collapsing of the spectral sequence, gives us this surjectivity.

The effect of the map ψk − 1 in BP-cohomology can be computed with the
help of the formal group law and the splitting principle. We have BP ∗(BU) =
BP ∗[[c1, c2, . . .]], the power series ring on the Chern classes. Consider the formal
expression c(t) =

∑
i"0 cit

i , where c0 = 1. Under the splitting principle, we can
write c(t) =

∏
j (1 + xj t), which should be understood to mean that ci is the ith

elementary symmetric function in the xj . Then we have

(ψk)∗(c(t)) =
∏

j

(1 + [k]BP ∗(xj t)),

where [k]BP ∗(x) denotes the k-series for the formal group law associated with BP ∗

and this gives the action of (ψk)∗ on our generator for BP ∗(CP∞). The expression
on the right is symmetric in the xj , so the coefficient of t i is a certain symmetric
polynomial (with coefficients in BP ∗) in the xj , so it can be written in terms of the
elementary symmetric functions. Then (ψk)∗(ci) is the corresponding polynomial
in the Chern classes. In a similar sense we have

(ψk − 1)∗(c(t)) =
∏

j

(
1 + [k]BP ∗(xj t)

1 + xj t

)

.

2.5. BO

The object of this section is to recover the second author’s computation of BP ∗(BO)

[Wil84] using the results of this paper. It is shown there that BP ∗(BO) is a certain
quotient of BP ∗(BU) = BP ∗[[c1, c2, . . .]] (the power series ring on the Chern
classes of the universal complex vector bundle) under the map Bi: BO → BU

induced by the complexification map i : O → U . Let c∗i denote the ith Chern class
of the conjugate of the universal bundle [MS74, page 167]. Then the result of [Wil84]
which we want to reprove is

BP ∗(BO) = BP ∗(BU)/(ci − c∗i : i > 0).

We do not know if similar methods can be used to recover BP ∗(BO(m)). For
more on BO(m) the reader should see [Kri97, Section 5].

We first observe that BO does not have a lim1 problem so that we really can use
BP and not BPp̂. In general this is done by Landweber in [Lan72] but in this case it
is quite easy to see because the rational cohomology of BU surjects to BO. The only
way there can be an infinite number of differentials in the Atiyah–Hirzebruch spectral
sequence, giving a phantom class, is if there are an infinite number of differentials
on one of the integral classes of BO. Some multiple is in the image of the spectral
sequence from BU and that spectral sequence collapses, so this cannot happen.
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Next we observe that BO has no odd prime torsion so we have nothing to prove
to get the result at odd primes.

For p = 2 we begin by showing that BO has even Morava K-theory. K(n)∗(BO)

can be computed as follows. We know that (the mod 2 homology) H∗(BO) =
P(b1, b2, . . .) where bi ∈ Hi(BO) is the image of the generator of Hi(RP∞).
The action of the Milnor primitive Qn is given by

Qn(bi) =
{

bi+1−2n+1, if i is even and i ! 2n+1,
0, otherwise.

It follows that in the Atiyah–Hirzebruch spectral sequence for K(n)∗(BO) we have

d2n+1−1(bi) =
{

vnbi+1−2n+1, if i is even and i ! 2n+1,
0, otherwise,

so we have

E2n+1 = K(n)∗[b2, b4, . . . b2n+1−2]⊗K(n)∗[b2
2i : i ! 2n].

It follows that K(n)∗(BO) and K(n)∗(BO) are even-dimensional.
Recall that we are trying to show that the map Bi : BO → BU induces a surjection

in BP -cohomology. Bott periodicity ([Bot59]; see also Milnor’s treatment in [Mil63,
§24]) gives us a fibre sequence

Z× BO
Bi−→ Z× BU

$j−→ Sp/U = $Sp.

Delooping this gives $2Sp −→ U
j−→ Sp where j is the usual inclusion map.

Delooping twice more gives Sp
f−→ U −→ $2O, where f is the usual inclusion

map.
Now $Sp has even-dimensional homology. To see this, recall [Whi78, §VII.4]

that

H∗(Sp;Z) = E(x3, x7, . . . , x4m+3, . . .) with |x4m+3| = 4m + 3.

The Eilenberg–Moore spectral sequence for the homology of its loop space collapses,
giving

H∗($Sp;Z) = P(x2, x6, . . . , x4m+2, . . .) with |x4m+2| = 4m + 2.

Likewise, the bar spectral sequence collapses giving

E0H∗(BSp;Z) = ((x4, x8, . . . , x4m, . . .) with |x4m| = 4m

where ( means the divided power Hopf algebra.
Hence Proposition 2.0.1 and Corollary 2.0.2 apply to the fibration

BO
Bi−→ BU

$j−→ $Sp
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and we have

BP ∗(BO) ≃ BP ∗(BU)/(($j)∗)

which is not quite what we want yet. It came from a short exact sequence of Hopf
algebras from Proposition 2.0.1

K(n)∗ → K(n)∗(BO)→ K(n)∗(BU)→ K(n)∗($Sp)→ K(n)∗.

Now consider the fibration

Sp/U −−−−→BU
Bj

−−−−→BSp
∥∥∥∥

∥∥∥∥

$Sp
$f

−−−−→$SU.

All three spaces have even dimensional homology, so by Proposition 2.0.1 we have
another short exact sequence of Hopf algebras

K(n)∗ → K(n)∗($Sp)→ K(n)∗(BU)→ K(n)∗(BSp)→ K(n)∗.

Thus we get a diagram

Z× BO
Bi

−−−−→Z× BU −−−−−
$(fj)
−−−−→Z× BU

∥∥∥∥

∥∥∥∥

$U
$j

−−−−→$Sp
$f

−−−−→$U

and we can splice together the two exact sequences to get an exact sequence

K(n)∗ −→ K(n)∗(BO) −→ K(n)∗(BU) −→ K(n)∗(BU).

This no longer comes from a fibration but the result of can be recovered by using
Theorem 1.19 after we have identified the self-map$(fj) on BU as the one inducing
the difference between the universal complex bundle and its conjugate. To do this,
consider the composite

U(2m)
j−→ Sp(2m)

f−→ U(4m).

To study this we suppose that we have inclusions

R2m ⊂ C2m ⊂ H2m = C2m + jC2m

where the quaternion j ∈ H has its usual meaning. Then for M ∈ U(2m) ⊂ Sp(2m)

and a, b ∈ C2m we have M(a + jb) = Ma + jMb; note here that conjugation in
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U(2m) is well defined since we have chosen a real subspace of C2m. It follows that
the map fj sends M to

(
M 0
0 M

)
∈ U(4m).

It follows that $(fj) = 1⊕$c where c : U → U is the conjugation map. All that
remains is to show $c = −Bc. Restricting to $U(1) ≃ Z, we see that $c induces
multiplication by−1 in π0. To evaluate$c on the 0-component BU ≃ $SU , recall
[Mil63, Theorem 23.3] that this equivalence is derived from a certain map

Gm(C2m)
g−→ $SU(2m)

where Gm(C2m) is the Grassmannian of complex m-planes in C2m. (Bott proves the
complex case of his theorem by showing that the map g is an equivalence through
a range of dimensions that increases with m.) The map is defined by associating to
each point in Gm(C2m) a path in SU(2m) from I to −I as follows. Choose a basis
of C2m such that the m-dimensional subspace in question is spanned by the first m

basis elements. We parametrize the path by θ ∈ [0,π ] with

θ 5→
(

eiθI 0
0 e−iθI

)

∈ SU(2m),

where I here denotes the identity element in U(m). In other words (independently
of the choice of basis) we send θ to a unitary transformation having eigenvalue eiθ

on the given subspace and e−iθ on its complement.
Again we note that there is a well defined conjugation map c on SU(2m), given

our choice of a real subspace ofC2m. Applying it does two things. First it conjugates
the basis, replacing each subspace by its conjugate. It also conjugates the coefficient
eiθ , so that with respect to the conjugated basis the map above becomes

θ 5→
(

e−iθI 0
0 eiθI

)

∈ SU(2m).

Thus the direction of the path gets reversed, which effectively replaces the conjugated
subspace by its unitary complement.

It follows that the conjugation map c on SU(2m) restricts on the subspace
Gm(C2m) to the map which sends each complex m-plane through the origin in C2m

to the complement of its conjugate. Passing to the limit as m→∞, we see that

Z× BU
$c−→ Z× BU

is the map inducing the Whitney inverse of the conjugate universal bundle as required.

2.6. connective covers of BU and related spaces and spectra

Let BU⟨2m⟩ denote the (2m − 1)-connected cover of BU for m ! 2 and consider
the fibration F → BU⟨2m⟩ → BSU . Then K(n)∗(F ) is even-dimensional for
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n > 0 by [HRW97], as is H∗(BSU). Thus Proposition 2.0.1 applies and we conclude
that K(n)∗(BU⟨2m⟩) is even-dimensional. We also know that K(0)∗(BU⟨2m⟩) (the
rational homology of BU⟨2m⟩) is even-dimensional. Thus the results of this paper
give information about BPp̂

∗(BU⟨2m⟩), and similarly for MU⟨2m⟩, the associated
Thom spectrum.

Localizing at an odd prime, we can say the same about the fibration F ′ →
BO⟨4m⟩ → BSO, so we can say a lot about BP ∗(BO⟨4m⟩) and BP ∗(MO⟨4m⟩).

3. Preliminaries

We need a large selection of theories to state and prove our results. First, there is
the Brown–Peterson cohomology, BP ∗(−), associated with a prime, p. Some basic
references for BP are Brown–Peterson, [BP66], Adams, [Ada74], Quillen, [Qui69],
Ravenel, [Rav86], and Wilson, [Wil82]. Next, we need the p-adic completion of BP ,
BPp̂, defined by

BPp̂ = lim0(BP ∧M(pi)) (3.1)

where M(pi) is the mod pi Moore spectrum. The coefficient ring for BP , BP ∗,
is Z(p)[v1, v2, . . .] where the degree of vn is −2(pn − 1). The coefficient ring for
BPp̂ is just the p-adic completion of this. Either of these theories can be labeled
P(0). Next, we need the theories introduced by Morava, P(n). Their coefficient
rings are BP ∗/In where In = (p, v1, . . . , vn−1). For references, see Johnson and
Wilson, [JW75], Würgler, [Wür77], and Yagita, [Yag77]. Thanks to their construction
using Baas–Sullivan singularities, [Baa73], [BM71], they come equipped with stable
cofibrations:

!2(pn−1)P (n)
vn−−−→ P(n) −−−→ P(n + 1), (3.2)

which give us long exact sequences in cohomology. Note that P(0) can be either BP

or BPp̂ in this cofibration (let v0 = p). Letting BP ⟨n⟩∗ be Z(p)[v1, . . . , vn], theo-
ries, E(k, n), can be constructed, using Baas–Sullivan singularities and localization,
which have coefficients v−1

n BP ⟨n⟩∗/Ik , and similar stable cofibrations. These spec-
tra are discussed by Baker and Würgler in [BW89, page 523] and in [Hun92]. The
earliest reference to these theories is probably in [Yos76, Prop. 4.6] (where they
go by a different name). The theories without localization play a prominent role in
[Yos76], [Yag76] and [BW]. For k = 0 these theories are usually denoted by E(n).
They come in two flavors; regular and p-adically complete. They have been studied
in [JW73], [Lan76], [Rav84], and others. It is proven in [JW73, Remark 5.13, p.
347], and later follows from the Landweber exact functor theorem of [Lan76], that
E(n)∗(X) = E(n)∗ ⊗BP∗ BP∗(X). A similar result for k > 0 (with BP∗ replaced
by P(k)∗) was proved in [Yag76]. As a special case, when k = n > 0, we have the
nth Morava K-theory, K(n), see [JW75], [Hop87], [Rav86], [Rav92], [Wür91] and
[Yag80].
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One of our main tools is the Atiyah–Hirzebruch spectral sequence

E∗,∗r ⇒ G∗(X) (3.3)

where

E
s,t
2 ≃ Hs(X; Gt) (3.4)

which we will denote E
∗,∗
r , E

∗,∗
r (X), or E

∗,∗
r (G∗(X)), depending on the context.

The differential, dr , has bidegree (r, 1− r). When G is one of our connected spectra
this is a fourth quadrant spectral sequence. If not, it is a first and fourth quadrants
spectral sequence. Let Fs = ker(G∗(X) → G∗(Xs−1)) where Xs−1 is the s − 1
skeleton of X. Then we have F s/F s+1 ≃ E

s,∗
∞ and F∞ gives the phantom maps.

The spectral sequence really converges to G∗(X)/F∞ so it will be important for
us to be able to show that F∞ is zero in our cases. By Milnor’s theorem, [Mil62]:

THEOREM 3.5. There is a short exact sequence

0→ lim1G∗−1(Xm)→ G∗(X)→ lim0G∗(Xm)→ 0.

Since the term on the right of Milnor’s theorem is what the Atiyah–Hirzebruch
spectral sequence converges to, the triviality of F∞ is equivalent to the lim1 term
being zero.

Remark 3.6. One way to show the lim1 term is zero is by using the Mittag–Leffler
condition. In our case, we have a sequence of subgroups Im{Gn(Xm+i )→ Gn(Xm)}.
If they stabilize for big i and all n we say the Mittag–Leffler condition is satisfied.
In this case, the lim1 term in Milnor’s theorem is zero. See [Ada74] for more details.
Various assumptions on the G or X can give us the Mittag–Leffler condition:

(i) If E
s,t
2 is always finite. This can happen if one of Gs or Ht(X) is always finite

and the other is finitely generated. This is the case for several of our theories;
e.g. P(n) and K(n), n > 0.

(ii) If E
s,t
∗ always has only a finite number of nontrivial differentials on it. We show

that this is the case for E(k, n) when 0 < k < n, which is a bit surprising and
our most difficult technical lemma.

Remark 3.7. When the Mittag–Leffler condition is not satisfied for BP then we
need to move to our p-completion (because the lim1 term is not zero, [Lan70b]). The
Mittag–Leffler condition is still not satisfied when we p-complete! However, because
of the compactness of the p-adics we do have the lim1 term is zero (see [Ada74]).
Thus, by our choice of P(0), we always have P(0)∗(X) ≃ lim0P(0)∗(Xm).

The skeletal filtration of G∗(X) associated with the Atiyah–Hirzebruch spectral
sequence also gives a topology on G∗(X) which is nontrivial if X is an infinite
complex. Since all of our spaces are infinite complexes this topology is always there.
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For a detail reference on such things, see [Boa95]. We will not need much about the
topology here except that when we look at subgroups generated by a set of elements,
we will mean topologically generated, i.e. the closure of the literal subgroup. When
G is a p-adic completion then we need a slightly different topology. Here we use
finite complexes which are torsion in the sense that the identity map is stably torsion.
An open neighborhood of zero is the kernel of G∗(−) when we map a torsion finite
complex to X. If X is a finite complex and G is BPp̂ then the topology is just the
p-adic completion. Then, since these are finitely generated they are compact and our
lim1P(0)∗(Xm) is always zero as above. When we look at the p-adic completion of
E(n) we lose our compactness but since E(n)∗(Xm) is E(n)∗ ⊗P(0)∗(Xm) we still
have our lim1 zero.

We need three theorems which generalize known results. First we need a gener-
alization of Quillen’s theorem.

THEOREM 3.8 ([Qui71] for n = 0 and [BW] for n > 0]). For X a finite complex,
P(n)∗ (X), n ! 0, is generated by non-negative degree elements.

Quillen proved the n = 0 version of this in [Qui71]. A second proof for Quillen’s
result, n = 0 of this, was given in [Wil75]. More recently, Quillen’s result follows
from abstract information about unstable BP operations, [BJW95]. When we started
this project we believed the result could be proven for n > 0 using Quillen’s approach.
By the time we discovered that this was not the case, there were two proofs, analogous
to those in [Wil75] and [BJW95], following from the splitting theorem of [BW] and
are included there.

All of our proofs go through for p = 2. Normally, there can be problems with
this case because most of our theories that are mod 2 do not have a commutative
multiplication on them. However, in our case they are always even-dimensional.
In [Wür77], Würgler computes the obstruction to commutativity and shows that it
factors through odd degrees and is thus of no concern to us. Where it could bother
us because we do have odd degree elements, is in the Atiyah–Hirzebruch spectral
sequence, but that is commutative by itself so it is no problem. The rest of the
arguments are no problem.

The next result that we need is a generalization of the Landweber exact functor
theorem, [Lan76].

THEOREM 3.9 ([Lan76] for k = 0. [Yos76] and [Yag76] for k > 0). Let In,k be the
ideal (vk, . . . , vn−1) inP(k)∗.M is Landweber flat, i.e. flat for the category of finitely
presented P(k)∗(P (k))-modules, if vn multiplication is injective onM/In,kM for all
n ! k.

Note that this result is not a cohomological version of the Landweber exact functor
theorem, but merely an algebraic statement about finitely presented P(k)∗(P (k))-
modules.

We also need a generalization of the Landweber filtration theorem.
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THEOREM 3.10 ([Lan73] for k = 0. [Yos76] and [Yag76] for k > 0). Let In,k be the
ideal (vk, . . . , vn−1) in P(k)∗. Let M be a finitely presented P(k)∗(P (k))-module.
There exists a finite filtration of M by P(k)∗(P (k))-modules,

M = M0 ⊃ M1 ⊃ · · · ⊃ Mj = {0},

where

Ms/Ms+1 = P(k)∗/Ins,k.

THEOREM 3.11 (Boardman–Johnson–Wilson). Let M be an unstable BP module
which is bounded above and of finite type, then there is a (finite) unstable Landweber
filtration, as in Theorem 3.10, with the generators of the quotient modules all in
non-negative degrees.

Remark 3.12. This is from Theorem 20.11 of [BJW95]. The bounds on the degrees
of the quotient modules are much more refined in [BJW95] than we give here. It is also
stated quite differently in [BJW95]. There it is assumed that M is finitely presented,
but the assumption is never used. In fact, finitely generated need not be assumed
because of the algebraic version of Quillen’s theorem, [BJW95, 20.3], which says
the generators are all in nonnegative degrees. The proof of this theorem inductively
constructs cyclic submodules whose generators are in nonnegative degrees, thus
reducing the size of the nonnegative part with each step. Finite presentation follows
from the finiteness of the filtration. In [BW], a P(k) version of this theorem is proven.

For our X of finite type, BP ∗(X)/F s is an unstable module, including the case of
s =∞. We show later, Corollary 4.8, that F∞ = 0 for P(k), k > 0. Our work relies
heavily on the unstable Quillen–Boardman–Wilson result. The unstable Landweber
filtration is a stronger statement. Our interest in it is the following.

COROLLARY 3.13. Let X be a space, then BP ∗(X)/F s+1 ⊂ BP ∗(Xs) is a
BP ∗(BP ) module which is finitely presented over BP ∗.

Proof. This is an unstable module which fits the hypothesis of Theorem 3.11.
!

Remark 3.14. In fact, we prove this corollary ourselves in Lemma 6.1 for P(k)

except when k = 0 and P(0) is the p-adic completion of BP . For the p-adic com-
pletion we must resort to the unstable Landweber filtration. The only place in this
paper where we need this result is when we prove the Künneth isomorphism 1.11 for
k = 0 when X has lim1 BP ∗(Xi) nonzero.

Remark 3.15. Since P(k)∗ is a coherent ring, all of our finitely presented modules
are coherent, and, of course, coherent implies finitely presented, see [Smi69].

Remark 3.16. The unstable Landweber filtration answers the cohomology version
of an old question of Landweber’s from [Lan71, Problem 4]. It shows that for X of
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finite type, BP ∗(X)/F∞ is pseudo-coherent, i.e. every finitely generated submodule
is finitely presented. This is still not known for homology despite being bounded
below, unlike the cohomology which is not bounded in either direction. Likewise,
similar theorems are true for P(k).

4. The Atiyah–Hirzebruch Spectral Sequence

In this section we develop the Atiyah–Hirzebruch spectral sequence for the things
which we need. In particular, we accomplish two main goals. First, we show that
there are no phantom maps in G∗(X) for all of the theories that we are concerned
with except BP . This simplifies our life considerably. Originally it seemed that some
sort of exotic completions would be necessary to state our theorem, but because of
this lack of phantom maps in general, the only place we have to go to completion is
occasionally with BP where we have to resort only to p-adic completion. This lack
of phantom maps is just the same as having all elements of G∗(X) represented in the
Atiyah–Hirzebruch spectra sequence; i.e. having the infinite filtration, F∞, equal to
zero. We must eliminate the phantom maps so that in the next section we can show
K(n)∗(X) even implies E(k, n)∗(X) is also even. With the advantage of hindsight, an
alternative route to these results might be to use Yosimura’s work [Yos88]. Second,
we show that for any given element of P(k)∗(X), k!0, there is some N such that the
element maps nontrivially to E(k, n)∗(X) for every n > N . Our proof is somewhat
technical and uses the Atiyah–Hirzebruch spectral sequence extensively. However,
to see what is going on is not so difficult. Consider the k = 0 case where we are
working with BP and E(0, n) = E(n), the localization of BP ⟨n⟩. From [Wil75] we
know that BP ⟨n⟩

i
splits off of BP i for i ! 2(pn+1 − 1)/(p − 1). It is easy to see

that it splits off of E(n)
i

as well. Any 0 ̸= x ∈ BP i(X) must reduce to a nontrivial
element in BP ⟨n⟩i (X) for some large n. Thus we can see, quite geometrically by
looking at the classifying spaces, the result we want. No such splitting was around for
k > 0 when we wanted to generalize this. Our proof depends heavily on the theorem
that P(n)∗(X) is generated by nonnegative degree elements for finite complexes.
Since this proof, a splitting theorem has been found, [BW], which would allow us to
prove the result by looking at the representing spaces for the cohomology theories.
This gives an alternative approach to this part of the proof as well.

Unless otherwise stated, let E
∗,∗
r (X) ⇒ P(n)∗(X), n ! 0, be the Atiyah–

Hirzebruch spectral sequence with X a space. Although we do not need X to be
a space for the first few lemmas we will assume it anyway. X could just as well be a
(−1)-connected spectra. We will point out when having X a space becomes neces-
sary. Let R be either the integers localized at p or the p-adic integers, depending on
which P(0) we are using for a given X. We define

L(0, N) ≃ R[v1, v2, . . . , vN−1] ⊂ P(0)∗
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and

L(n, N) ≃ Z/(p)[vn, . . . , vN−1] ⊂ P(n)∗

for n > 0.

LEMMA 4.1. Let E∗,∗r (X) ⇒ P(n)∗(X), X a space, with n ! 0. For each r and s

there is a number N = N(s, r) such that there is a finitely generated L ≡ L(n, N)-
module,As

r = A
s,∗
r , generated in nonpositive degrees (second degree) and satisfying

E
s,∗
r ≃ As

r ⊗L P (n)∗.
Proof. The proof is by induction on r . For r = 2 we can take As

2 = Hs(X;Z/(p))

and N = n. (For n = 0 we use Hs(X; R) and N = 1.) Assume the case r . Then
we have integers N(s, r) as in the lemma for all s. Let {yi(s)} be a (finite) set of
generators of As

r with (second) degree |yi(s)|. Now fix an s. Write

M = max{N(k, r) : 0 ! k ! s + r}
S = L(n, M)

d = min{|yi(k)| : 0 ! k ! s + r, i > 0}.

Then, for n > 0, there is a bigraded S-module B
q
r = B

q,∗
r generated by {yi(q)} for

0 ! q ! s + r , such that

Eq,∗
r ≃ Bq

r ⊗S P (n)∗, 0 ! q ! s + r,

with 0 ! |yi(q)| ! d for all 0 ! q ! s + r . Consider the differential

dr(yi(s
′)) =

∑

j

ci,j (s
′ + r)yj (s

′ + r), ci,j (s
′ + r) ∈ P(n)∗

for 0 ! s′! s. Then,

1− r + |yi(s
′)| = |ci,j (s

′ + r)| + |yj (s
′ + r)|,

so that ci,j (s
′ + r) ∈ L(n, M ′), where M ′ is the smallest number such that

−2(pM ′−1 − 1) ! 1 − r + d. Take Sr+1 = L(n, M ′). Then dr induces an Sr+1
map

dr : Bs
r ⊗Sr Sr+1 −→ Bs+r

r ⊗Sr Sr+1

such that

ker(dr : Es,∗
r → Es+r,∗

r ) = ker(dr |Bs
r ⊗Sr Sr+1)⊗Sr+1 P(n)∗.

Similarly, consider dr : E
s−r,∗
r → E

s,∗
r . Then E

s,∗
r+1 ≃ As ⊗Sr+1 P(n)∗ for some

Sr+1-module As = As,∗. As is a subquotient of the finitely generated Sr+1-module
Bs

r ⊗Sr Sr+1. Hence As is finitely generated as an Sr+1-module since Sr+1 is Noethe-
rian. Take N = N(s, r + 1) as M ′ and As

r+1 as As . This completes the induction.
!
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Recall Xm is the m-skeleton of X and i : Xm→ X is the inclusion.

LEMMA 4.2. Let E∗,∗r (X)⇒ P(n)∗(X), X a space, n ! 0. For each r ,

Es,∗
r (X) ≃ Es,∗

r (Xm) for all 0 ! s ! m− r(r − 1)/2.

Proof. Since E
s,∗
2 (X) ≃ E

s,∗
2 (Xm) for s ! m − 1 and |dr | = (r, 1 − r) this

follows by an easy induction. !

LEMMA 4.3. LetE∗,∗r (X)⇒ P(n)∗(X),X a space, n!0. For allm!(s+1)s/2+s

and all r , i∗ : E
s,∗
r (X) −→ E

s,∗
r (Xm) is injective.

Proof. By Lemma 4.2 we have an isomorphism for r ! s + 1 when 0 ! s ! m−
(s + 1)s/2, i.e. m ! (s + 1)s/2 + s. Then, because |dr | = (r, 1− r), E

s,t
r is not in

the image of dr for r > s so we have

E
s,∗
s+1(X) ======== E

s,∗
s+1(X

m)
,⏐⏐

,⏐⏐
∪ ∪

E
s,∗
r (X)

i∗
−−−−→ E

s,∗
r (Xm)

,⏐⏐
,⏐⏐

∪ ∪

E
s,∗
∞ (X)

i∗
−−−−→ E

s,∗
∞ (Xm)

for r > s. This implies the result. !

The next lemma uses the Boardman–Wilson version (Theorem 3.8) of Quillen’s
theorem for P(n)∗(−), and is the main technical lemma which makes the Atiyah–
Hirzebruch spectral sequence approach work. At this stage it becomes essential that
we are working with spaces and not spectra.

LEMMA 4.4. LetE∗,∗r (X)⇒ P(n)∗(X),X a space, n > 0 or ifP(0) = BP , n = 0.
For each s there is an m such that

i∗ : Es,∗
∞ (X) ≃ Es,∗

∞ (Xm)

and dr(E
s,∗
r (X)) = 0 for r > m, i.e. Es,∗

m+1(X) ≃ E
s,∗
∞ (X).

Remark 4.5. The result is not true if P(0) = BPp̂ because if the Mittag–Leffler
condition does not hold for BP then it still fails for BPp̂ even though we have no lim1

problems there.

Proof. Since each group E
s,t
r is finite, for n > 0, (if n = 0, each group is finitely

generated over Z(p)), we can find a T ! s such that dr restricted to {Es′,t ′
r |s′! s, t ′!

−s′} is zero for all r!T . (For n = 0, if we had an infinite number of differentials then
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the Mittag–Leffler condition would not be satisfied. We see from [Lan70b] that the
Mittag–Leffler condition is equivalent to the lim1 term being nonzero. This would
contradict our choice of P(0) = BP .) From Lemmas 4.2 and 4.3 we can find m≫ s

such that E
s′,t
T (X) ≃ E

s′,t
T (Xm) for all s′! s and i∗ : E

s′,t
r (X)→ E

s′,t
r (Xm) injects

for all r and s′! s. Certainly

E
s,∗
m−s+1(X) ↪→ E

s,∗
m−s+1(X

m) ≃ Es,∗
∞ (Xm).

We want to show that E
s,∗
m−s+1(X) ≃ E

s,∗
∞ (X). Assume there is some 0 ̸= x̃ ∈

E
s,t
r (X), and r ! m− s + 1 with dr(x̃) ̸= 0. We have

i∗(x̃) = x̃m ∈ Es,t
r (Xm) ≃ Es,t

∞ (Xm).

This is nonzero by our injectivity. Furthermore, t < −s because our original choice
says dr = 0 if t !−s. Thus the total degree of x̃ is negative. By Boardman–Wilson’s
version of Quillen’s Theorem for P(n)∗(Xm), Theorem 3.8, we know there are non-
negative degree P(n)∗ generators, gm

i , for P(n)∗(Xm)/F s+1 in E
s′,t ′
∞ (Xm) with

s′! s and t ′ ! −s′, which our starting assumption says is isomorphic to E
s′,t ′
∞ (X).

(The fact that X is a space rather than a connective spectrum is crucial at this point
of the proof. In the latter case, Theorem 3.8 would not give us the precise control we
need on the dimensions of these generators.)

Thus P(n)∗(X)/F s+1 surjects to P(n)∗(Xm)/F s+1 in nonnegative degrees. So
we can choose generators {gi ∈ P(n)∗(X)} which reduce to the generators {gm

i ∈
P(n)∗(Xm)/F s+1}. This is a finite set because E

s′,t ′
2 , s′! s and t ′ ! −s′, is finite

(for n = 0, finitely generated over Z(p)).
If we have our dr (x̃) ̸= 0, then

x̃m = i∗(x̃) ∈ Es,t
r (Xm) = Es,t

∞ (Xm)

is not in the image of i∗ : E
s,t
∞ (X) → E

s,t
∞ (Xm). Let xm ∈ P(n)∗(Xm)/F s+1 be

an element represented by x̃m. Then xm =
∑

v(i)gm
i . Define z =

∑
v(i)gi ∈

P(n)∗(X). Then i∗(z) = xm so z̃ must be in E
s′,t
∞ with s′ < s. This is so because x̃m

is not in the image but the element it represents is; therefore the element representing
the element that hits it must be in E

s′,t
∞ with s′ < s. But, that means z̃ must go to zero

in order to do its duty of changing filtrations to hit x̃m. This contradicts the injectivity
of Lemma 4.3 and we have E

s,∗
m−s+1(X) ≃ E

s,∗
∞ (X). The argument just given also

shows that E
s,∗
r (X) maps surjectively to E

s,∗
r (Xm) for r ! m− s + 1. !

We have some quick corollaries now.

COROLLARY 4.6. Let X be a space and let n > 0 or if P(0) = BP , n = 0. For
each r , there is an m such that

P(n)∗(X)/F r ≃ P(n)∗(Xm)/F r

where Fr is the rth filtration of the Atiyah–Hirzebruch spectral sequence.
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COROLLARY 4.7. Let X be a space and let n > 0 or if P(0) = BP , n = 0.
P(n)∗(X) is (topologically) generated by nonnegative degree elements.

COROLLARY 4.8. Let X be a space. Let n ! k ! 0 and n > 0. Let G be P(k),
E(k, n), v−1

n P (k), or K(n). Let E∗,∗r (G∗(X))⇒ G∗(X) be the Atiyah–Hirzebruch
spectral sequence. (For k = 0 we use the p-adically complete E(k, n) if we use it
for P(0).)

(a) Then F∞ = 0, every element in G∗(X) is represented in E
∗,∗
∞ , G∗(X)

≃ lim0 G∗(Xm) ≃ lim0 G∗(X)/Fm+1, and lim1G∗(Xm) = 0 = lim1

G∗(X)/Fm+1.
(b) Furthermore

E∗,∗r (E(k, n)∗(X)) ≃ E∗,∗r (P (k)∗(X))⊗P(k)∗ E(k, n)∗

≃ E∗,∗r (v−1
n P (k)∗(X))⊗

v−1
n P (k)∗ E(k, n)∗

and
(c) E∗,∗r (v−1

n P (k)∗(X)) ≃ E∗,∗r (P (k)∗(X))⊗P(k)∗ v−1
n P (k)∗,

which is just localization.

Remark 4.9. This is not true for spectra. For example, P(n)∗(k(n)) = 0 but
K(n)∗(k(n)) is not, so the first line for k = n cannot hold.

Proof. The statements of (a) are all equivalent so it is enough to show any one
of them. For G = P(k), k > 0, we have that P(k)s is finite so E

s,t
r is finite. By

the Mittag–Leffler condition, Remark 3.6(i), we are done. For k = 0 we can use
Remark 3.7 to see that F∞ = 0, the main purpose of our choice of P(0). There is
nothing to prove in this case as it is really part of our assumptions. The other G will
follow from the displayed tensor products (of (b) and (c)) and Lemma 4.4. Keep in
mind that K(n) is just a special case of E(k, n), with n = k. All of the tensor products
(of (b) and (c)) are true for E

∗,∗
2 . Since the tensor product of (c) is just localization,

and localization preserves exactness, we see that it is true. E
s,∗
r for P(k) is always

a finitely generated P(k)∗(P (k)) module so tensoring with E(k, n)∗ is exact by the
generalized Landweber exact functor theorem for P(k)∗(−) which says that E(k, n)∗

is P(k)∗ flat in this situation, Theorem 3.9. This gives the first equivalence of (b).
Lemma 4.4 gives the first equivalence (of (a)), (F∞ = 0), for E(k, n) (with k > 0)
by Remark 3.6(ii). If k = 0 and P(0) = BP then this also follows. If P(0) = BPp̂,
then E(0, n)∗ is a module over the p-adics and by compactness, see Remark 3.7,
F∞ = 0. The second isomorphism of (b) follows from the first (of (b)) and (c). !

Remark 4.10. Although this is a very technical result, it is an exciting one because
it removes most of our lim1 problems. Since all of our theorems are about infinite
complexes, worrying about phantom maps was a major concern which this corol-
lary eliminates. For example, certain types of elements cannot exist. In the spectral
sequence for P(n)∗(X) it is quite possible, as we shall see in the next section (see
Remark 5.6), to have an element whose filtration is raised every time you multiply
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by vn, and which is never zero. Such an element, by the corollary, can never give rise
to an element in K(n)∗(X) even though it is a torsion free element.

COROLLARY 4.11. Let X be a space. Let 0 ! k < n. If x is infinitely divisible by
vk (v0 = p) in E(k, n)∗(X), then it is zero.

Any such element would have to be a phantom map, and there are none.

Proof. By Corollary 4.8 we have E(k, n)∗(X) ≃ limE(k, n)∗(Xm) so if x is
nonzero it maps nontrivially to some E(k, n)∗(Xm) and is still infinitely divisible by
vk there. This is the difficult step, reducing the proof to looking at a finite complex.
To complete the proof we use the generalized Landweber filtration of Theorem 3.10.
We have

P(k)∗(Xm) = M = M0 ⊃ M1 ⊃ · · · ⊃ Mj = {0}.

By the generalized Landweber exact functor Theorem 3.9, E(k, n)∗ is exact. We can
tensor the filtration with E(k, n)∗ to get a filtration of E(k, n)∗(Xm) with successive
quotients given by E(k, n)∗/Ins,k . If ns > n then this is zero. Eliminating the zero
quotients we have a finite filtration

E(k, n)∗(Xm) = M ′ = M ′0 ⊃ M ′1 ⊃ · · · ⊃ M ′j ′ = {0},

with M ′s/M ′s+1 = E(k, n)∗/Ins,k , ns ! n. We need to show that there is no x ∈
E(k, n)∗(Xm) which is infinitely divisible by vk . Assume that there is such an x.
Find the maximum s with such an x ∈ M ′s . This x must reduce nontrivially to
M ′s/M ′s+1 = E(k, n)∗/Ins,k and still be infinitely divisible by vk here, which is
impossible. (If it were not infinitely divisible by vk then there would have to be such
an x ∈ M ′s+1, contradicting the assumption on s.) !

PROPOSITION 4.12. Let X be a space. Let k ! 0. Given 0 ̸= x ∈ P(k)∗(X), there
exists an N such that x maps nontrivially to E(k, n)∗(X) for all n ! N .

Proof. Let k > 0. The element x is represented in the Atiyah–Hirzebruch spectral
sequence by an element x̃ in E

s,∗
∞ , which, by Lemma 4.4 is isomorphic to E

s,∗
r for

some big r . For degree reasons we can pick an N such that x̃ is a P ′(N)∗-generator
where P ′(N)∗ is a subalgebra of P(n)∗ isomorphic to P(N)∗ and E

s,∗
∞ is P ′(N)∗

free. Using Lemma 4.1 we can assure that N is big enough so that x̃ survives the tensor
product of Corollary 4.8 to the spectral sequence for E(k, n)∗(X) for n > N . In this
spectral sequence we still have E

s,∗
r ≃ E

s,∗
∞ so our element x maps nontrivially.

For the case of P(0) we use Lemma 4.3 with r = ∞. For m big enough we have
an injection: E

s,∗
∞ (X) −→ E

s,∗
∞ (Xm). The right-hand side is very nice and we can

tensor it with our (p-adically complete) E(0, n)∗ for big n, forcing what we need,
as above, for the left-hand side. !

5. Even MoravaK-Theory

We complete the proof of the main Theorem 1.8 in this section.
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LEMMA 5.1. Let X be a space. Let 0 ! k ! n and n > 0. If K(n)∗(X) is even-
dimensional, then E(k, n)∗(X) is even-dimensional and has no vk torsion (v0 = p).

Remark 5.2. For k = 0 this is E(n)∗(X) or its p-adic completion if necessary.
It follows from the proof that E(n)∗(X) maps onto K(n)∗(X). This was proven by
Hunton in [Hun92, Theorem 11], for finite complexes. This is improved in [BW91],
p. 559, to give a surjection of Ê(n)

∗
(X), the In-adic completion. As we only need

p-adic completion our result is somewhat stronger.

Proof. We prove this by downward induction on k. Since E(n, n) = K(n) our
induction is grounded by our assumption. By induction, assume that E(k+1, n)∗(X)

is even-dimensional and has no vk+1 torsion. We have a long exact sequence from
the cofibration analogous to 3.2:

E(k, n)∗(X)
vk−−−−−−−−→ E(k, n)∗(X)

↖ ↙δ ρ

E(k + 1, n)∗(X)

.

Since E(k + 1, n)∗(X) is even-dimensional and δ is an odd degree map, there are
two possible types of odd degree elements in E(k, n)∗(X):

(i) an element which never shows itself in E(k + 1, n)∗(X) because it is infinitely
divisible by vk and not vk torsion;

(ii) an element which is infinitely divisible by vk but is vk torsion (the element that
vk kills comes by way of δ).

Either way the element is infinitely divisible by vk , which cannot happen by
Corollary 4.11. Thus δ is zero and all elements are even degree. If any even degree
element were vk torsion, then it would have to be hit by δ coming from an odd degree
element, which doesn’t exist by our induction assumption. Thus we get a short exact
sequence and all elements are vk torsion free. !

We can now prove Theorem 1.2.

LEMMA 5.3. Let X be a space. If K(n)∗(X) is even-dimensional for an infinite
number of n, then P(k)∗(X), k ! 0, and K(k)∗(X), k > 0, are even-dimensional.

Proof. If 0 ̸= x ∈ P(k)∗(X) pick N as in Lemma 4.12 so x maps nontriv-
ially into E(k, n)∗(X) for n > N . Find some n > N for which K(n)∗(X) is
even-dimensional. By Lemma 5.1, E(k, n)∗(X) is even-dimensional so x must be
even-dimensional as well. This concludes the proof for P(k)∗(X). By Lemma
4.8, all elements of P(k)∗(X) are represented in E

∗,∗
∞ (P (k)∗(X)) which is even-

dimensional. Furthermore, E∗,∗∞ (K(k)∗(X)) is just the tensor product with K(k)∗ so
it too is even-dimensional, and it also represents elements. !

COROLLARY 5.4. LetX be a space with even Morava K-theory. For k!0 we have
the short exact sequence:

0 −→ P(k)∗(X)
vk−→ P(k)∗(X) −→ P(k + 1)∗(X) −→ 0.
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Proof. The three terms fit into a long exact sequence with odd degree connect-
ing term, by 3.2. By Lemma 5.3 all terms are even-dimensional so the boundary
homomorphism must be zero. !

COROLLARY 5.5. If X is a space with even Morava K-theory and k ! 0 then
P(k)∗(X) is even degree and is Landweber flat.

Proof. P(k)∗(X) is even-dimensional by Lemma 5.3. To prove flatness we need
only invoke the generalized Landweber exact functor theorem for P(k), Theorem
3.9, and Corollary 5.4. !

This finishes the proof of Theorem 1.9 and Theorem 1.8 follows.

Remark 5.6. This is a good time to insert a fundamental example which illustrates
the phenomenon described in Remark 4.10. This is an old, well known example but
it supplies useful guidance. Let X = BZ/(p). The mod p cohomology is E(e1)⊗
P(x2), so E2 of the spectral sequence is E(e1)⊗P(x2)⊗P(n)∗. The only nontrivial
differential takes e1 to vnx

pn

2 leaving E∞ to be a copy of P(n)∗ for each xi
2 for i < pn

and a copy of P(n + 1)∗ for each xi
2 for i ! pn. Tensoring this with K(n)∗ we get

the correct answer for K(n)∗(BZ/(p)); free on generators xi
2 for i < pn. However,

we know from our corollary that there is no vn-torsion. If you take an element in
P(n)∗(BZ/(p)) which is represented by xi

2 for i ! pn and you multiply by vn, then
it is represented by vn+1x

i−pn+pn+1

2 . So, iterating the multiplication by vn continues
to raise filtration and give a nontrivial element. However, it does not give rise to an
element of K(n)∗(BZ/(p)).

Looking briefly at P(n)∗(BZ/(p)) we see that E∞ is free over P(n + 1)∗ on
elements αi in degree 2i − 1 for i > 0 and free over P(n)∗ on βi in degree 2i for
0 < i < pn. The relations on the α come from the p-sequence. In particular, we
have vn+1αi +vnαi+pn−pn+1 mod (vn, vn+1)2. We see that all of the αi are infinitely
divisible by vn in E(n, n + 1)∗(X).

Remark 5.7. If Hk(X,Z(p)) is finite for all k then the Mittag–Leffler condition,
Remark 3.6, is satisfied and the Atiyah–Hirzebruch spectral sequence for BP ∗(X)

converges giving lim1BP ∗(Xm) = 0, so the results of Theorem 1.8 hold for BP ∗(X).
As we shall see later, this is the case for X = K(Z/(pi), n). When Hk(X) is not finite
we may have to resort to the p-adic completion of BP , such as with X = K(Z(p), n),
n > 2, which is known to have phantom maps.

6. Generators and Relations

In this section we will prove Theorems 1.20 and 1.21, and Corollaries 1.23 and 1.24.

Proof of Theorem 1.20. We know that the Atiyah–Hirzebruch spectral sequence
converges and E

s,t
r (X) is a finitely generated module. By Boardman–Wilson’s and
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Quillen’s Theorem 3.8 the generators must be represented by elements with s+ t!0.
Since t ! 0, there can only be a finite number of generators for P(n)∗(X) represented
in E

s,∗
∞ . Assume inductively that we have chosen a minimal number of generators

for P(n)∗(X)/F s . Then pick a few more, if necessary, that are represented in E
s,∗
∞

in order to get minimal generators of P(n)∗(X)/F s+1. The construction of Tn with
properties (a), (b) and (c) is now complete.

We now show (d), that Tn reduces to a set Tq with the same properties. We do this
inductively. Because we know, Remark 1.10, that P(n)∗(X) surjects to P(n+1)∗(X)

we get part (a) that Tn+1 generates. The map is a filtered map so part (c) follows.
Part (b), that all elements remain essential, is really the only thing left to prove. If
some proper subset of Tn could be used to generate P(n + 1)∗(X) then we could
write some t ∈ Tn+1 in terms of the t’s: t =

∑
citi , where ci ∈ P(n + 1)∗ can all

be lifted to ci ∈ P(n)∗ and we use the same notation for elements in P(n)∗(X) and
P(n + 1)∗(X). From the exact sequence

0 −→ P(n)∗(X)
vn−→ P(n)∗(X) −→ P(n + 1)∗(X) −→ 0

we can lift this to

t =
∑

ci ti + vn

∑
diti

in P(n)∗(X), contradicting (b). The result follows for Tq by induction.

Proof of part (e). Let FRn be the set of finite linear relations among the elements
of Tn in P(n)∗(X). A typical relation looks like

∑
i ci ti where ti ∈ Tn and ci ∈ P(n)∗.

We can write the ci in terms of monomials in the vk (where we let v0 = p for
P(0)∗). We can define the length of a monomial as the sum of the powers of v’s,
i.e. for vI = v

in
n v

in+1
n+1 . . . we define l(vI ) =

∑
ik . We now extend this definition to

the elements of FRn. We take the length of a relation to be the maximal length of a
monomial occurring in any of its coefficients, ci . There is an obvious map from FRn

to FRn+1. Because there are a finite number of coefficients, every element goes to
zero after enough of these maps have been applied. Let us find a relation, r , which
has the minimal length as defined above. Let us assume that it is in FRn and maps
to zero in FRn+1. We can do this because the length of a relation can never increase
under these maps. Recall from Theorem 1.9 that we have a short exact sequence.
Since each coefficient, ci , maps to zero in P(n+ 1)∗ it must be divisible by vn. Thus
we can divide the sum r by vn to get r/vn. This is a finite sum with a smaller length
than our minimal one so it must be a nonzero element. This cannot be true as it is
a vn-torsion element in P(n)∗(X) which by Theorem 1.9 is known to have no such
torsion. Thus there are no finite relations anywhere.

Proof of part (f). We prove this by downward induction. Let r ∈ Rq be written∑
citi with ci ∈ P(q)∗. Lift each ci to P(q−1)∗ (and note that vq−1 does not divide

them). Then the element
∑

ci ti ∈ P(q − 1)∗(X) reduces to zero in P(q)∗(X).
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If it is not zero in P(q − 1)∗(X), then it is divisible by vq−1 and we can write
0 =

∑
ci ti + vq−1r ′ where r ′ can be written in terms of the ti . Thus we have a

relation which reduces to our r .

Proof of part (g). This follows from (f). !

We need a couple of lemmas to prove Theorem 1.21.

LEMMA 6.1. Let X be a space and q ! 0, then P(q)∗(X)/F s+1 is coherent.
Proof. By Lemma 4.4 we have

P(q)∗(X)/F s+1 ≃ P(q)∗(Xm)/F s+1

for some large m except when q = 0 and P(0) = BPp̂. P(q)∗ is coherent. Since Xm

is finite, P(q)∗(Xm) is coherent. Since P(q)∗(Xm)/F s+1 is the image of the map
P(q)∗(Xm) −→ P(q)∗(Xs) we see that it is coherent. For the case of q = 0 and
P(0) = BPp̂ we have to resort to Corollary 3.13. !

LEMMA 6.2. Let X be a space and let q > 0. Let J2 = (vq+1, vq+2, . . .). Let T be
a set in v−1

q P (q)∗(X) such that

(a) all but a finite number of the elements of T are in Fs , the s filtration for the
Atiyah–Hirzebruch spectral sequence and

(b) the image of T in K(q)∗(X) generates (topologically).

Then the image of T generates v−1
q P (q)∗(X)/(F s+1 + JN

2 ) for all s and all N .
Proof. P(q)∗(X)/F s+1 is a finitely presented P(q)∗(P (q))-module and, as such,

it has a Landweber filtration, Theorem 3.10. When you localize at vq such a filtration
becomes a finitely generated free module over v−1

q P (q)∗. It is then easy to see that

K(q)∗(X)/F s+1 ≃ K(q)∗ ⊗
v−1
q P (q)∗ v−1

q P (q)∗(X)/F s+1.

Pick a set of generators xi for v−1
q P (q)∗(X)/F s+1. The image of these xi must

generate K(q)∗(X)/F s+1; as does the image of T . Thus, modulo J2, the xi must be
in the submodule generated by T . We have (finite) sums xi =

∑
v

si,k
q tk +

∑
ci,j xj

where ci,j ∈ J2. (Note that si,k ∈ Z.) Now, to show that the xi are in the image
modulo J 2

2 we just substitute the equations for the xj into this. Iterate to get the
theorem modulo JN

2 . !

LEMMA 6.3. Let q > n # 0. Let X be a space with P(n)∗(X) Landweber flat. Let

J2 = (vq+1, vq+2, . . .) and J1 = (vn, . . . , vq−1).
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Let Tn be a set in v−1
q P (n)∗(X) such that

(a) all but a finite number of the elements of Tn are in Fs , the s filtration for the
Atiyah–Hirzebruch spectral sequence and

(b) the image of Tn in K(q)∗(X) generates (topologically).

Then the image of Tn generates v−1
q P (n)∗(X)/(F s+1 + JN

1 + JN
2 ) for all s and

N .
Proof. From the short exact sequences of Remark 1.10 we see we can localize

with respect to vq to get

v−1
q P (q)∗(X) ≃ v−1

q P (q)∗⊗̂
v−1
q P (n)∗v

−1
q P (n)∗(X).

Thus, if we have x, y ∈ v−1
q P (n)∗(X) which reduce to the same element in

v−1
q P (q)∗(X), then x = y +

∑
eiri where ei ∈ J1 and the sum is possibly infi-

nite.
Fix the N and s of the Lemma. Let T be the image of Tn in v−1

q P (q)∗(X). We
can pick generators, {yi}, for P(n)∗(X) with property (a) above by picking (a finite
number of) generators for P(n)∗(X)/F s′+1, lifting them to P(n)∗(X) and extending
this choice by enlarging s′. See the first part of the proof of Theorem 1.20 above
for more detail. Map these generators to a set of generators, {xi}, for v−1

q P (n)∗(X).
Reduce these elements further to zi ∈ v−1

q P (q)∗(X). By Lemma 6.2, we can write
zi , in v−1

q P (q)∗(X)/(F s′+1 + JN
2 ), in terms of the reduction of T . Taking the limit,

we can write each

zi =
∑

di,ktk +
∑

ci,j zj

where di,k ∈ v−1
q P (q)∗ and ci,j ∈ JN

2 . The two elements, xi and
∑

di,ktk +
∑

ci,j xj

both reduce to the same element and we see from the above that

xi =
∑

di,ktk +
∑

ci,j xj +
∑

ei,mxm

where ei,m ∈ J1 and the sums are possibly infinite. Reduce this to
v−1
q P (n)∗(X)/F s+1 and the sums are now finite. As in the proof of Lemma 6.2,

substitute this formula in for the xi and iterate in order to show that the t’s generate
modulo JN

1 + JN
2 . !

Proof of Theorem 1.21. We prove our theorem by induction on s, i.e. we show
that Tn generates P(n)∗(X)/F s . Assume inductively that we have this for s. Now, if
we have an x ∈ P(n)∗(X)/F s+1 which is not in the submodule generated by Tn then
we will derive a contradiction. Since there are only a finite number of the Tn which
are nonzero, the quotient of P(n)∗(X)/F s+1 (which is coherent by Lemma 6.1) by
the submodule generated by Tn must be coherent, [Smi69]. We will show that is not
the case.
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Our x must be represented in E
s,∗
∞ . Pick an N such that we can see that our x

is not in JN
1 + JN

2 for strictly dimensional reasons. (For the case n = 0 we have
to modify this a little. Put a weight on p to act as a nontrivial degree so that the
previous statement still holds. Otherwise, we can just prove the result for n > 0 first
and then lift it to n = 0 easily afterwards, a choice we can make to avoid the use of
Lemma 6.1 in the one case which depends on [BJW95].) Pick N ′ such that vN ′ acts
freely on P(n)∗(X)/F s+1 by Lemmas 4.1 and 4.3. Thus P(n)∗(X)/F s+1 injects to
v−1
q P (n)∗(X)/F s+1 for q ! N ′. In the last group, by the previous lemma, we can

write x in terms of t’s modulo JN
1 + JN

2 . (We don’t need to do this for every q !N ′,
only for an infinite number of such q.) However, we may use negative powers of vq

to do so. Since all sums are finite, we can multiply by some power of vq , say sq ,
so that v

sq
q x is in the image of the submodule generated by Tn modulo JN

1 + JN
2 .

This is true for all q !N ′. Thus we see that there are an infinite number of relations;
one each with a term v

sq
q x in it, q > N ′. Thus it is not coherent and we have our

contradiction. x must therefore be in the submodule generated by Tn. !

Proof of Corollary 1.23. This is immediate. !

Proof of Corollary 1.24. If for some t ∈ Tn, t goes to zero in K(q)∗(X) for
q ! N for some large N , then t is not essential to generate P(N)∗(X) by Theorem
1.21. However, Theorem 1.20 says the reduction of Tn to Tq retains property (b) of
Theorem 1.20. Contradiction.

Remark 6.4. For some of the most interesting examples which we ‘understand’
completely, all of the generators reduce to mod p cohomology where they are still
independent. This is the case for QS2k and Eilenberg–Mac Lane spaces and it prob-
ably contributes a great deal to our being able to understand them. This is not always
the case though. When all generators are of this sort, then they never change filtration
when we map from the spectral sequence for P(k)∗(X) to that for P(n)∗(X), n > k.
The filtration can change when we map from P(k)∗(X) to K(n)∗(X) though. Gen-
erators that do not map to mod p cohomology must behave quite differently. They
must change filtration when we map from the spectral sequence for P(k)∗(X) to
that for P(n)∗(X) if n is large enough because the location in the spectral sequence,
x ∈ E

s,t
2 , t < 0, is zero when t > −2(pn − 1). So, as n grows, the filtration of such

a generator must keep changing and it never shows up in mod p cohomology. An
example of this behavior was pointed out to us by Takuji Kashiwabara. The example
is BSO(4) which was computed in [KY93, Theorem 5.5].

7. Exactness

Once again we want properties of Morava K-theories to imply similar properties for
Brown–Peterson cohomology. We have four theorems to prove in this section: one
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for surjectivity, one for injectivity, and two for the exactness that we need in our
applications. Although we state our theorems with the assumption of even Morava
K-theory and injectivity or surjectivity for all of the Morava K-theories, we can get
by with only assuming these things for an infinite number of the Morava K-theories.
The proofs are unchanged. The statements of the theorems are much cleaner this way
and there are no examples that need our greater generality.

In this section we give the proofs for Theorems 1.17, 1.18 and 1.19 from the
introduction.

Proof of surjectivity inTheorem1.17. By Theorem 1.20 we can pick a setT0 which
generates P(0)∗(X2). We know that it reduces to generators for each P(n)∗(X2) and
thus also for all K(n)∗(X2). Map these generators to P(n)∗(X1). By naturality and
the fact that the Morava K-theories surject, we have that the image of T0 in the
P(n)∗(X1) satisfies the conditions of Theorem 1.21 and so we see that the image
generates.

To prove the theorem on injectivity we need a lemma.

LEMMA 7.1. Let X1 and X2 be spaces with even Morava K-theory. Let f :
X1 −→ X2. If f ∗ : K(n)∗(X2) −→ K(n)∗(X1) is injective, n > 0, then so is
f ∗ : E(k, n)∗(X2) −→ E(k, n)∗(X1), 0 ! k ! n.

Proof. The proof is by downward induction on k. By Lemma 5.1 we have short
exact sequences:

0 −→ E(k, n)∗(Xi)
vk−→ E(k, n)∗(Xi) −→ E(k + 1, n)∗(Xi) −→ 0.

Given 0 ̸= x ∈ E(k, n)∗(X2), we know it cannot be infinitely divisible by vk by
Corollary 4.11. Find a y ∈ E(k, n)∗(X2) and a j such that x = v

j
k y and y maps

nontrivially to E(k + 1, n)∗(X2). By our induction, E(k + 1, n)∗(X2) injects to
E(k + 1, n)∗(X1) so y must map nontrivially to E(k, n)∗(X1). Since this group has
no vk torsion, x = v

j
k y must map nontrivially. !

Proof of injectivity in Theorem 1.17. For k!0 and x ∈ P(k)∗(X2) we use Propo-
sition 4.12 to see that x maps nontrivially to some E(k, n)∗(X2). By the injectivity
of K(n)∗(−) and Lemma 7.1 we have that this group injects to E(k, n)∗(X1). By the
naturality of maps between all of the cohomology theories involved, we must have
x mapping nontrivially to P(k)∗(X1). !

Proof of Theorem 1.18. Take the cofibre X1
f1→ X2

r→ C(f1). This gives rise
to a long exact sequence in any cohomology theory. By Theorem 1.17 we have the
surjectivity of f ∗1 . By this surjectivity of f ∗1 , we have a short exact sequence

0← G∗(X1)
f ∗1← G∗(X2)

r∗← G∗(C(f1))← 0,
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for all G = P(k). Since f2 ◦ f1 ≃ 0 , f2 factors through C(f1). By the assumption
of exactness for all K(n) the map C(f1) ← X3 is surjective for all of the Morava
K-theories. Thus, by Theorem 1.17 we have surjectivity for the P(k). We then just
patch up our surjectivity with the short exact sequence to get the result. !

Proof of Theorem 1.19. For bicommutative Hopf algebras we have that the co-
kernel can be constructed using the tensor product and the kernel from the cotensor
product, see [HRW97, Section 4] or, better yet, [Bou96, Appendix, especially Theo-
rem 10.12], so that although this is a theorem about Hopf algebras, algebras play the
main role here. We want to reduce this theorem to Theorem 1.18. Define a map F

by X2 → (X2 ×X3)/(X2 × ∗) by

X2
diag
−−−→ X2 ×X2

(I,f2)
−−−→ X2 ×X3 → (X2 ×X3)/(X2 × ∗).

We have F ◦f1 ≃ 0. Our exact sequence of Hopf algebras implies an exact sequence
of K(n)∗ modules (this is from the cotensor product model for the kernel):

0→ K(n)∗(X1)→ K(n)∗(X2)
F∗−→ K(n)∗((X2 ×X3)/(X2 × ∗)),

which dualizes to (the tensor product model for cokernel):

0← K(n)∗(X1)← K(n)∗(X2)
F ∗←− K(n)∗((X2 ×X3)/(X2 × ∗)).

The lim1 condition of Theorem 1.18 is satisfied for the product by Landweber,
[Lan70a, Lemma 6], because X2 and X3 both satisfy the condition. By Theorem
1.18 we now have an exact sequence:

0← P(n)∗(X1)← P(n)∗(X2)
F ∗←− P(n)∗((X2 ×X3)/(X2 × ∗)).

Let I (−) be the augmentation ideal. Then P(n)∗(X2)⊗̂I (P (n)∗(X3)) maps to the
last module. We claim that this map is surjective. To see this, pick sequences of
generators, {ti} and {si} for P(n)∗(X2) and I (P (n)∗(X3)) respectively. The elements
{ti ⊗ sj } map to generators of K(n)∗((X2 ×X3)/(X2 × ∗)) because K(n)∗(−) has
a Künneth isomorphism (and our X2 and X3 are very nice spaces of the sort we are
studying). Mapping these elements over to P(n)∗((X2×X3)/(X2×∗)) we see that
since they generate all of the Morava K-theories then they must, by Theorem 1.21,
generate. Since the tensor product maps onto generators, it must be surjective. The
result follows. !

8. Eilenberg–MacLane Spaces

In this section we give a purely algebraic construction for the P(0)∗ algebra which
is isomorphic to the P(0) cohomology of an Eilenberg–Mac Lane space, and then,
of course, we go on to show the isomorphism of Theorem 1.14.
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8.1. preliminaries

From [RW77] we have a completely algebraic construction for the Hopf ring
E∗(BP ∗) whenever E is a complex orientable generalized homology theory. Because
the answer is a free E∗ module we have duality and have also given a construction for
E∗(BP ∗). In particular, we can use K(n), BP , and BPp̂ for E. The nice properties
all come from the fact that H∗(BP ∗;Z(p)) has no torsion, [Wil73]. For the evenly
indexed spaces this is even-dimensional and is a bi-polynomial Hopf algebra (i.e.
both it and its dual are polynomial algebras) and for the odd spaces it is an exterior
algebra. The same is true for the cohomology. These properties lift to E∗(BP ∗),
and, by duality, give completed exterior algebras (for odd spaces) and power series
algebras (for evenly indexed spaces) for cohomology.

We really need information about the BP ⟨q⟩ ∗ and we can derive it from the above
using:

THEOREM 8.1.1 ([Wil75]). Let g(q) = 2(pq+1 − 1)/(p − 1). For k ! g(q), the
standard maps, BP k → BP ⟨q⟩

k
and BP ⟨q + 1⟩

k
→ BP ⟨q⟩

k
, split. For k < g(q)

this splitting is as H -spaces. The second splitting splits the fibration:

BP ⟨q + 1⟩
k+2(pq+1−1)

vq+1
−−−→ BP ⟨q + 1⟩

k
−→ BP ⟨q⟩

k

to give a homotopy equivalence:

BP ⟨q + 1⟩
k
≃ BP ⟨q⟩

k
× BP ⟨q + 1⟩

k+2(pq+1−1)
.

It now follows that K(n)∗(BP ⟨q⟩ 2k
) is a polynomial algebra for 2k < g(q) and

is even-dimensional for 2k = g(q). This is also true for BP∗(−).
For our computations we need the bar spectral sequence (see [RW80, pages 704–

5] and [HRW97, Section 2]). In our cases all of our maps are of infinite loop spaces
and we only need it for Morava K-theory.

THEOREM 8.1.2 (Bar spectral sequence). Let F → E → B be a fibration of infi-
nite loop spaces, then we have a spectral sequence of Hopf algebras, converging to
K(n)∗(B), with E2 term:

TorK(n)∗(F )(K(n)∗(E), K(n)∗).

Next we need to know how this behaves in a special case that has already been
computed. The following was proved in [RW80, Theorem 12.3, p. 743].

THEOREM 8.1.3. For the path space fibration:

K(Z(p), q + 1)→ PK(Z(p), q + 2)→ K(Z(p), q + 2)

the bar spectral sequence for K(n)∗(−) is even-dimensional and collapses.
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Looking at the statement of Theorem 1.14, we see that for each type of Eilenberg–
Mac Lane space we really have two statements. For them to both be true we must
have that the ideals (v∗q) and (v∗1 , v∗2 , . . . , v∗q) are equal. We will prove the theorem
for the ideal (v∗q). Since this is contained in the ‘bigger’ ideal, it is enough to show
that our map of

P(0)∗(K(Z(p), q + 2))← P(0)∗(BP ⟨q⟩
g(q)

)/(v∗q)

factors through

P(0)∗(BP ⟨q⟩
g(q)

)/(v∗1 , v∗2 , . . . , v∗q).

The stable cofibration sequence 1.13 is one of BP module spectra, [JW73]. Thus, all
of the boundary maps used to define our map

K(Z(p), q + 2)→ BP ⟨q⟩
g(q)

commute with multiplication by vj . Since the map

K(Z(p), q + 2)
vj−→ K(Z(p), q + 2− 2(pj − 1))

is homotopically trivial, we have what we need.
We admit that the equality of the two ideals was quite a surprise to us which we

did not notice until late in the game.

8.2. construction

In [RW77], a completely algebraic construction for the Hopf ring, E∗(BP ∗) is given.
By the splitting above, we know that the algebraic construction of E∗(BP k) maps
surjectively to E∗(BP ⟨q⟩

k
) for k ! g(q) and that it factors through the quotient given

by setting all [vi] = [0−2(pi−1)] for i > q (see [RW77]). There is a minor concern
that maybe there could be some other relation in order to get injectivity. However,
this is not the case. Note in the lemma that when we mod out by I (q), we are setting
elements in it equal to the [0i], not 0, although because everything is in positive
degrees it is the same.

LEMMA 8.2.1. Let ER
∗ (BP ∗) be the algebraic construction for E∗(BP ∗) from

[RW77]. If we mod out by I (q) = ([vq+1], [vq+2], . . .) we have ER
∗ (BP k)/I (q) ≃

E∗(BP ⟨q⟩
k
) for 0 < k ! g(q).

We should point out that neither the statement nor proof of Theorem 1.14 depends
on this lemma. The theorem is given strictly in terms of spaces and we do need the
splitting 8.1.1. The attraction of the theorem to us is this lemma because it gives us
a purely algebraic construction for everything in the theorem.

Proof. The map E∗(BP i)
[vq ]
−→ E∗(BP i−2(pq−1)) is just the induced algebraic

map coming from multiplication by vq . Each of the spectra BP ⟨q⟩ is a BP module
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spectra ([JW73]) so the maps between spectra commute with the maps of vq . We
prove our lemma with a multiple induction. It is enough to prove our lemma for mod
p homology because all of our spaces are torsion free and everything is therefore
E∗ free. Our main induction is on j − k in Hj(BP ⟨s⟩

k
). Our second induction is

downward induction on s. To ground our first induction, there is nothing to prove
if j = k (and k ! g(s)). To ground our second induction, we see that Hj(BP i) ≃
Hj(BP ⟨s⟩

i
) for j − i < 2(ps+1− 1) because these spaces are homotopy equivalent

in this range. For a fixed j − k we must pick s such that j − k < 2(ps+1− 1). Then
we can start the second induction to prove our result for this degree. To do the second
induction we need only observe that the split fibration in Theorem 8.1.1 must give
rise to a short exact sequence of Hopf algebras where the first map is just [vq+1]◦
multiplication. !

One can go further with this and write E∗(BP ⟨q⟩ 2k
) as a power series ring on

generators dual to the primitives E∗(BP ⟨q⟩ 2k
) for 2k ! g(q), which can be written

down directly from [RW77] as was done in [Sin76]. We will discuss this more after
the proof.

In principle, [RW77] tells you how to compute the map

BP∗(BP ⟨q⟩
g(q)

)
[vq ]◦
−−−→ BP∗(BP ⟨q⟩

g(q)−2(pq−1)
).

What that really means is that you can train a computer to do it, because, in practice,
it is very difficult although complete information is available. Because everything is
BP∗ free you can take the duals and the dual map and again, everything is, in principle,
computable. It is certain that BP ∗(BP ⟨q⟩

g(q)
)/(v∗q) is a well-defined algebraic con-

struct, as is its p-adic completion. Likewise for BP ∗(BP ⟨q⟩
g(q)

)/(pi∗, v∗q) which
comes from the product map (pi, vq)

BP ⟨q⟩
g(q)
→ BP ⟨q⟩

g(q)
× BP ⟨q⟩

g(q)−2(pq−1)
.

8.3. proof for K(Z(p), q + 2)

We can now prove Theorem 1.14 for the integral spaces. It is known that
BP ∗(K(Z(p), q)), q > 2, has phantom maps. This follows from [AH68] where
they show this for complex K-theory and [Lan72] where it is shown that the situ-
ation for complex cobordism is the same as that for complex K-theory. We must
work, therefore, with P(0) = BPp̂. In fact, because of Theorem 1.19, all we must
prove is Proposition 1.16. We just let K(Z(p), q + 2) = X1, BP ⟨q⟩

g(q)
= X2, f1

the iterated boundary map given in the introduction, BP ⟨q⟩
g(q)−2(pq−1)

= X3 and
f2 the map coming from vq . Observe that the composition of the two maps is indeed
null homotopic because the first map factors through the boundary map

BP ⟨q − 1⟩
g(q−1)+1 −→ BP ⟨q⟩

g(q)
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which is just the inclusion of the fibre of the map f2. Note that this is an example
where the spaces do not form a fibration.

The proof breaks up into two pieces. First, we need to show injectivity of the map

K(n)∗(K(Z(p), q + 2)) −→ K(n)∗(BP ⟨q⟩
g(q)

),

which we do using the Steenrod algebra and a bit of Hopf algebra machinery. Second
we need to show that the cokernel of this map injects to the third Hopf algebra:

K(n)∗(BP ⟨q⟩
g(q)

)//K(n)∗(K(Z(p), q + 2))−→K(n)∗(BP ⟨q⟩
g(q)−2(pq−1)

).

We will do this using the bar spectral sequence a few times.

8.3.1. Proof of injectivity

This is going to reduce to a calculation over the Steenrod algebra. With apologies to
the reader, understanding this proof will also require an intimacy with the Morava
K-theory of Eilenberg–Mac Lane spaces from [RW80]. From that paper we know
[RW80, Corollary 12.2, p. 742] that

lim
−→
i

K(n)∗(K(Z/(pi), q + 1)) ≃ K(n)∗(K(Z(p), q + 2)).

Furthermore, we know ([RW80, Theorem 11.1(b), p. 734]) that the very first
space in this limit, K(Z/(p), q + 1), picks up all of the Hopf algebra primi-
tives for K(n)∗(K(Z(p), q + 2)). To get our injection for this last space we want
to just show that the primitives PK(n)∗(K(Z/(p), q + 1)), and thus also for
K(n)∗(K(Z(p), q+2)), inject to those for K(n)∗(BP ⟨q⟩

g(q)
). An injection on prim-

itives automatically gives an injection on K(n)∗(K(Z(p), q + 2)), see, for example,
[HRW97, Lemma 4.2].

This calculation is probably contained in H. Tamanoi’s Master’s Thesis,
[Tam83b], and should have been deduced by us from [Yag86]. It is certainly con-
tained in [Tam97]. Those proofs are in cohomology and we work in homology but
the results are the same. H. Tamanoi computes the image of the map:

BP ∗(K(Z(p), q + 2))→ H ∗(K(Z(p), q + 2),Z/(p)).

In the proof one sees that these elements all come from BP ∗(BP ⟨q⟩
g(q)

). As it turns
out, these elements generate. At any rate, it is Tamanoi who first made the connection
between BP ∗(K(Z(p), q + 2)) and BP ∗(BP ⟨q⟩

g(q)
) more than ten years ago!

We now assume a working knowledge of [RW80]. Let A∗ be the dual of the
Steenrod algebra. We have the usual map from H∗(K(Z/(p), q + 1),Z/(p)) to A∗
which is an A∗ comodule map. K(n)∗(K(Z/(p), 1)) has elements a(i), 0 ! i < n,
in degrees 2pi which are represented in the Atiyah–Hirzebruch spectral sequence by
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the elements used to define the τi of the Steenrod algebra ([RW80, Theorem 5.7]).
Under the usual map

q+1⊗
K(n)∗(K(Z/(p), 1)) −→ K(n)∗(K(Z/(p), q + 1))

all elements a(i0) ◦ a(i1) ◦ · · · ◦ a(iq) with 0 ! i0 < i1 < i2 · · · < iq < n are non-
trivial ([RW80, Theorem 9.2]). They are therefore represented by elements which
map to τi0τi1τi2 · · · τiq in the Steenrod algebra. The elements which are primi-
tive are those with i0 = 0, ([RW80, Theorem 9.2]). It is not important, but note
that there are only a finite number of these elements. Define a subvector space,
E(q, n), of A∗ with basis τi1τi2 · · · τij with 0 ! i1 < i2 · · · < ij < n with j ! q

in A∗. This is clearly a subcomodule of A∗ over A∗ and we can take its quotient,
A∗/E(q, n) which is now a comodule over A∗. Note that the above set of elements of
H∗(K(Z/(p), q + 1),Z/(p)) which survive to primitives in the Atiyah–Hirzebruch
spectral sequence maps injectively to a subcomodule (over A∗) of A∗/E(q, n); call
it E(q). We have our map, K(Z/(p), q + 1)→ BP ⟨q⟩

g(q)
which induces a map of

A∗ comodules in mod p homology. All of the elements in H∗(BP ⟨q⟩
g(q)

,Z/(p))

survive in the Atiyah–Hirzebruch spectral sequence to the Morava K-theory because
the space has no torsion. Thus, it is enough to show that our elements which rep-
resent primitives map nontrivially and independently to H∗(BP ⟨q⟩

g(q)
,Z/(p)). In

cohomology, the iterated boundary map,

K(Z/(p), q + 1)→ BP ⟨q⟩
g(q)

,

takes the fundamental class in H ∗(BP ⟨q⟩
g(q)

,Z/(p)) to Q0Q1 · · · Qq times the
fundamental class in H ∗(K(Z/(p), q + 1),Z/(p)), see [Wil75]. This tells us two
things we need to know. First, it says our map is trivial on E(q, n) because Qi is
dual to τi and there are q or fewer τ but q +1 Q. So, we get a map of A∗ comodules,
E(q)→ H∗(BP ⟨q⟩

g(q)
,Z/(p)). Second, it says our map is nonzero on the lowest

dimensional element τ0τ1 · · · τq . All we have to do now is show that this element
forces an injection of E(q).

Recall that the coproduct on τi is

τi ⊗ 1 +
∑

0 ! j ! i

ξ
pj

i−j ⊗ τj .

We can ignore the first term in computing the comodule expansion on τI because it
will lead to a product of the τ on the right in E(q, n). Because τI always has τ0 in it
(recall these are the primitives), there is only one term we can use from its coproduct,
1⊗ τ0. Recall also that τ 2

j = 0, so we cannot use the τ0 term of any of the other τ ’s.
Thus, modulo E(q, n) we have

ψ(τI ) =
∑

0<J ! I

ξ
pJ

I−J ⊗ τ0τJ ,
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where the sum is over all q-tuples J = (j1, . . . jq) with 0 < jt ! it and ξpJ

I−J

denotes the product ξpj1
i1−j1

· · · ξpjq

iq−jq
. It is understood that τJ vanishes if the jt are

not all distinct, but the jt need not increase with t as the it are required to do. We
know that the comodule expansion on τI contains the term

ξ
p1

i1−1ξ
p2

i2−2 · · · ξpq

iq−q ⊗ τ0τ1τ2 · · · τq .

associated with J = (1, 2, . . . , q). In order to show that τI maps nontrivially, we
need to analyze the comodule expansion more carefully to be sure that these terms
are not cancelled out by J ′ which are permutations of J . The subscripts of the ξs
in this special term are in nondecreasing order, while their exponents are strictly
increasing. We claim that no other term for such J ′ has this property. To see this, let
J ′ = (σ−1(1), . . . σ−1(q)) for σ a permutation of q letters. Then the J ′th term can
be rewritten as

(−1)σ ξ
p1

iσ (1)−1ξ
p2

iσ (2)−2 · · · ξpq

iσ (q)−q ⊗ τJ .

It will agree (up to sign) with the J th term only if

iσ (t) − t = it − t for 1 ! t ! q.

Since the it are distinct, this means that the permutation σ must be the identity.
This shows that our map is nontrivial on τI for all I . Since they lie in different

dimensions (for different I ), they are all linearly independent as well. This concludes
our proof of injectivity.

8.3.2. Proof that the cokernel injects

Our proof will be by induction on q. Let us assume our exact sequence for q− 1 and
furthermore let us assume, inductively, that as algebras

K(n)∗(BP ⟨q − 1⟩
g(q−1)

) ≃ K(n)∗(K(Z(p), q + 1))⊗ PAq−1

where PAq−1 is a polynomial algebra.
This induction is trivial to ground; just use

K(n)∗(BP ⟨0⟩ 2) = K(n)∗(K(Z(p), 2))

which we know because we know K(n)∗(CP∞). Here the polynomial part is vacu-
ous.

The first step in our induction is to compute K(n)∗(BP ⟨q − 1⟩
g(q−1)+1). To do

this we use the bar spectral sequence 8.1.2 with E2 term:

TorK(n)∗(BP ⟨q−1⟩
g(q−1)

)
(K(n)∗, K(n)∗).
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By induction and the Künneth isomorphism, we see that this breaks into two parts:

TorK(n)∗(K(Z(p),q+1))(K(n)∗, K(n)∗)⊗ TorPAq−1(K(n)∗, K(n)∗)

where

TorPAq−1(K(n)∗, K(n)∗) ≃ EAq−1

where EAq−1 is an exterior algebra on the homology suspension of the generators of
the polynomial algebraPAq−1. These generators lie in the first filtration in the spectral
sequence so all differentials on them are trivial. We also know how to compute

TorK(n)∗(K(Z(p),q+1))(K(n)∗, K(n)∗)

from Theorem 8.1.3. Furthermore, we have maps of fibrations:

K(Z(p), q + 1) −−−−−− pt. −−−−−− K(Z(p), q + 2)⏐⏐⏐0

∥∥∥∥

⏐⏐⏐0
BP ⟨q − 1⟩

g(q−1)
−−−−−− pt. −−−−−− BP ⟨q − 1⟩

g(q−1)+1.

By naturality, we have no differentials on this part of the bar spectral sequence we are
using to compute K(n)∗(BP ⟨q − 1⟩

g(q−1)+1). Since there can be no differentials
on the exterior part, we see that the spectral sequence collapses and, as algebras, we
have:

K(n)∗(BP ⟨q − 1⟩
g(q−1)+1) ≃ K(n)∗(K(Z(p), q + 2))⊗ EAq−1.

All of the algebra extension problems in the K(n)∗(K(Z(p), q + 2)) part have been
solved by naturality. In case there is any question about this algebra splitting as
a tensor product, recall that EAq−1 is a free commutative algebra (if our prime is
odd) on odd degree elements. We certainly have a short exact sequence with EAq−1
the quotient. Because it is free we can split it. If p = 2 we must observe that the
generators of PAq−1 come from BP∗(BP g(q−1)) and thus, so do the generators of
EAq−1 come from BP∗(BP g(q−1)+1). Since they are exterior generators in BP there
can be no extension problems where we are working.

That ends the proof of the first step of the induction and we can move on to the
next (and final) step. We will study the bar spectral sequence for the fibration:

BP ⟨q − 1⟩
g(q−1)+1 → BP ⟨q⟩

g(q)
→ BP ⟨q⟩

g(q)−2(pq−1)
.

We know quite a lot about things already.

(i) We know that K(n)∗(BP ⟨q⟩
g(q)−2(pq−1)

) is a polynomial algebra.
(ii) We know that K(n)∗(BP ⟨q⟩

g(q)
) is even-dimensional.

(iii) We have just ‘computed’ K(n)∗(BP ⟨q − 1⟩
g(q−1)+1).
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(iv) We know that we have the injection part of our desired exact sequence

K(n)∗ → K(n)∗(K(Z(p), q + 2))→ K(n)∗(BP ⟨q⟩
g(q)

).

Because of (ii) we see that the map

K(n)∗(BP ⟨q − 1⟩
g(q−1)+1)→ K(n)∗(BP ⟨q⟩

g(q)
)

must take EAq−1 to zero. All of this allows us to simplify our computation of the E2

term of the bar spectral sequence converging to K(n)∗(BP ⟨q⟩
g(q)−2(pq−1)

). The E2

term starts out as

TorK(n)∗(BP ⟨q−1⟩
g(q−1)+1)(K(n)∗(BP ⟨q⟩

g(q)
), K(n)∗)

and simplifies, by [Smi70, Theorem 2.4, p. 67], to

K(n)∗(BP ⟨q⟩
g(q)

)//K(n)∗(K(Z(p), q + 2))⊗ TorEAq−1(K(n)∗, K(n)∗)

where the Tor is just a divided power Hopf algebra. In particular, it is even-
dimensional, as is the first part; thus this spectral sequence collapses.

We can now just read off our answers. The quotient Hopf algebra is just the coker
which we wanted to inject into K(n)∗(BP ⟨q⟩

g(q)−2(pq−1)
) and the map is just the

edge homomorphism. This gives us the desired injection. However, to complete our
induction we must show that this cokernel is polynomial. It is a sub-Hopf algebra
of a polynomial Hopf algebra and so it must be polynomial as well (this follows
immediately from [Bou, Theorem B.7]). Now we have a short exact sequence of
Hopf algebras

K(n)∗(K(Z(p), q + 2))→ K(n)∗(BP ⟨q⟩
g(q)

)→ PAq.

Because PAq is free we see that this splits as algebras and we have completed our
induction ([Bou, Proposition B.9]). We thank S. Halperin, J. Moore and F. Peterson
for help solving the above Hopf algebra problems before we found the paper by
Bousfield.

8.4. proof for K(Z/(pi), q + 1)

This proof is only a slight modification of the previous proof. Our sequence of spaces
is now:

K(Z/(pi), q + 1) −−−→ BP ⟨q⟩
g(q)

(pi ,vq)
−−−→ BP ⟨q⟩

g(q)
× BP ⟨q⟩

g(q)−2(pq−1)
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so we need an exact sequence of Hopf algebras:

K(n)∗⏐⏐⏐0
K(n)∗(K(Z/(pi), q + 1))

⏐⏐⏐0
K(n)∗(BP ⟨q⟩

g(q)
)

(pi
∗,[vq ])

⏐⏐⏐0

K(n)∗(BP ⟨q⟩)⊗K(n)∗(BP ⟨q⟩
g(q)−2(pq−1)

).

The last tensor product is just the product in the category of Hopf algebras and
we have already computed the kernel of the map [vq ] to the right side. It was just
K(n)∗(K(Z(p), q + 2)). All we have to do now is worry about the kernel of the map
pi
∗ restricted to this part. From [RW80, Corollary 13.1, p. 745], we have an extension

of Hopf algebras which solves that problem:

K(n)∗
⏐⏐⏐0

K(n)∗(K(Z/(pi), q + 1))
⏐⏐⏐0

K(n)∗(K(Z(p), q + 2))

pi
∗

⏐⏐⏐0

K(n)∗(K(Z(p), q + 2)),

and we are almost done with this case. We want to use BP as opposed to BPp̂ in this
case. Our assumptions in Theorem 1.19 require us to have lim1BP ∗(Xm) = 0 for
all spaces involved. We have this for the Eilenberg–Mac Lane space by Remark 5.7.
Because the other spaces have no torsion we know that the Atiyah–Hirzebruch spec-
tral sequence collapses and the lim1 for them is zero as well.

8.5. generators and relations

If one really wants to use the construction given above to describe BPp̂
∗(Z(p), q +2)

there are some simplifications which an intimacy with [RW77] can give you quite
quickly but which the reader has been spared the necessity of knowing so far. We
will just briefly describe here what can be done.
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Both BP ∗(BP ⟨q⟩
g(q)

) and BP ∗(BP ⟨q⟩
g(g)−2(pq−1)

) are power series rings on
generators dual to the primitives in the BP homology. In [RW77], a basis for the
primitives is written down explicitly and one can see that most of them are mapped
to basis elements for primitives in the second space. The consequence in the dual is
that we do not need to worry about those primitives at all. The remaining primitives
for BP∗(BP ⟨q⟩

g(q)
) are identified in [RW77] as

b(0) ◦ b
◦p
(j1)
◦ b
◦p2

(j2) ◦ · · · ◦ b
◦pq

(jq)

where 0 ! j1 ! · · · ! jq . This element is in degree 2(1 + pj1+1 + pj2+2 + · · · +
pjq+q). Note that as q goes up, the degree of the generators goes up much faster.
(Recall that the Brown–Peterson cohomology of the Eilenberg–Mac Lane spectra is
trivial.) When reduced to K(n)∗(BP ⟨q⟩

g(q)
) we can see that each of these elements

is in the image of K(n)∗(K(Z(p), q + 2)) for some n large enough. If we take
a bunch of dual generators, say cJ , we can see that BPp̂

∗(K(Z(p), q + 2)) is a
quotient of the power series algebra on the cJ . To see what the relations would be,
requires a good deal more work. For a slight check on reality, there is only one case
here that is degenerate enough to be familiar. Let q = 0 and we are talking about
BPp̂
∗(K(Z(p), 2)) and there is only one generator in degree 2. It may or may not be

an interesting exercise to try to say more about the relations. These generators are
those found by Tamanoi. He just did not know that he had found them all.

Because of the splitting of Theorem 8.1.1 the map

K(Z/(pi), q + 1) −−−→ BP ⟨q⟩
g(q)

is really a map to BP g(q). Tamanoi ([Tam97]) calls this the fundamental class and
from the above it is easy to see that using stable BP operations, the algebra struc-
ture, and topological completion, this class generates everything in BP ∗(K(Z/(pi),

q + 1)).

9. The Künneth Isomorphism

This section is dedicated to the proof of Theorem 1.11, which turns out to be much
more involved and much more general than we expected. We thank Michael Board-
man, Dan Christensen, Michael Mandell, Peter May, Jean-Pierre Meyer, and Hal
Sadofsky for some help with our general education about limits. We are also indebt-
ed to the paper by Jan-Erik Roos, [Roo61].

Although the result could be proven directly just for this situation, we prefer to
bring to light some very nice mathematics which we were previously unaware of. It
also makes our proof shorter. The main algebraic result we need is:
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THEOREM 9.1 (Roos, Theorem 2, [Roo61]). Let A = {Aα} be a direct system of
R-modules and M be an R-module with a finite projective resolution of finite type,
P∗, then there are two spectral sequences which converge to the same thing:

E
p,q
2 = Tor−p(limqAα, M) and E

p,q
2 = limpTor−q(Aα, M).

There is some guidance for the proof in [Roo61] and much more in [Jen72]
where this theorem appears as Theorem 4.4 with more discussion on pages 102–3.
Dan Christensen helped us understand this approach, which gives much more insight
into what is going on than our previous approach.

Proof. In the case when we are indexed over the natural numbers and we have
maps fi : Ai+1 → Ai , then we are familiar with the exact sequence of Milnor from
[Mil62],

0→ lim0Ai →
∏

Ai
f−→

∏
Ai → lim1Ai → 0,

where the map f is given by

f (a1, a2, . . .)→ (a1 − f1(a2), a2 − f2(a3), . . .).

In this case, lim∗A is just the homology of the complex
∏

Ai
f→

∏
Ai. In the

general case, there is a complex whose homology gives lim∗A and whose terms are
all (big) products of the Aα , see [Jen72, Theorem 1.1, page 32] and [Roo61]. Denote
this complex by A∗. We then get our two spectral sequences from the two standard
filtrations of the bicomplex A∗ ⊗ P∗.

Filtering first using P∗ we use only the differential on A∗. Since each Pi is a
finitely generated projective R-module, taking the tensor product with A∗ and then
taking the differential on A∗ gives us (lim∗A)⊗ P∗. Taking the second differential
to get our E2 term we have Tor∗(lim∗A, M), giving us our first spectral sequence.

Filtering next using A∗ we use only the differential on P∗. Because Pi is a finitely
generated projective R-module. (

∏
Aα)⊗P∗ is the same as

∏
(Aα ⊗P∗) and so the

homology is also the same. This is easy to evaluate as
∏

Tor∗(Aα, M), since products
are exact. To take the next differential to get our E2 term we see that this is just the
complex which gives lim∗Tor∗(Aα, M), giving our second spectral sequence.

Both spectral sequences converge (to the same thing) because of the finiteness of
the resolution P∗. !

This spectral sequence simplifies a great deal when limi is always zero for i > 1.
This is always the case for us for multiple reasons. In particular, it is the case when
we are indexed over the natural numbers, which we always are. It is also true when
the ground ring for the algebra R is Z/(p), Z(p), or Zp, which is the case for us since
R = P(n).
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COROLLARY 9.2 ([Roo61]). If all limi = 0, i > 1, and we have the conditions of
Theorem 9.1, then

where the diagonals give short exact sequences.
Proof. This follows immediately from Theorem 9.1. !

The commutativity of the tensor product and the inverse limit will be of primary
importance to us. This result measures the failure to commute explicitly. We will
show that in the cases we care about, both terms having lim1 will be zero, making the
horizontal arrow an isomorphism. Built in to all of our assumptions is that lim1 Aα
will be zero, so the lim1 Tor term is all we need to consider. At this stage we need to
get more specific about our modules and rings.

In all that follows, our tensor products and our Tor are over P(k)∗.

LEMMA 9.3. Let the Aα be P(k)∗ modules which are bounded above and of finite
type and letM be a P(k)∗(P (k))module which is finitely presented over P(k)∗. For
each degree, Tor∗1(Aα, M) is finite.

Proof. For k > 0 everything in sight is a finite dimensional Z/(p) vector space
and so our result follows immediately. We prove the k = 0 case by induction on the
Landweber filtration, Theorem 3.10. We have a long exact sequence:

. . .→ Tor1(Aα, Mq+1)→ Tor1(Aα, Mq)→ Tor1(Aα, P (0)∗/Inq )→ . . .

where if nq > 0 we have P(0)∗/Inq is finite in each degree and therefore
so is Tor1(Aα, P (0)∗/Inq ) (this uses the assumptions on Aα). If nq = 0 then
Tor1(Aα, P (0)∗) = 0 because P(0)∗ is free. By induction Tor1(Aα, Mq+1) is finite
and since Tor1(Aα, Mq) is trapped between two finite groups, it too is finite. !

COROLLARY 9.4. Let {Ai} be a direct system, indexed over N, the natural num-
bers, of P(k)∗ modules which are bounded above and of finite type, and let
M be a P(k)∗(P (k)) module which is finitely presented over P(k)∗. We have
lim1 Tor∗1(Ai, M) = 0.

Proof. lim1 of finite groups is always zero. !
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COROLLARY 9.5. Let {Ai} be a direct system, indexed over N, of P(k)∗ modules
which are bounded above and of finite type, and let M be a P(k)∗(P (k)) module
which is finitely presented over P(k)∗. Assume that lim1 Ai = 0. Then

(lim0Ai)⊗M
≃−→ lim0(Ai ⊗M).

Proof. This follows immediatedly from Corollaries 9.2 and 9.4. !

Remark 9.6. This result is what we need and it can be proven directly, but not as
nicely. Note that the proof as we have given it really shows that

Torn(lim0Ai, M)
≃−→ lim0Torn(Ai, M).

It is time to put some topology into the argument. Recall that we have
lim0 P(k)∗(Zi) ≃ P(k)∗(Z) and lim1 P(k)∗(Zi) = 0 for Z = X and Y . We have

X2i × Y 2i ⊃ (X × Y )2i ⊃ Xi × Y i,

so they give rise to two equivalent sequences and we have

P(k)∗(X × Y ) ≃ lim0P(k)∗((X × Y )i)

≃ lim0P(k)∗(Xi × Y i)

and lim1P(k)∗(Xi × Y i) = 0 by [Lan70a, Lemma 6] (If there are no phantom maps
(for MU ) for X and for Y then there are none for X × Y .), when P(0) = BP , by
Remark 3.7 when we are p-adically complete, and by Corollary 4.8(a), (F∞ = 0),
when k > 0. In particular, if Y is finite, we have lim1P(k)∗(Xi × Y ) = 0 and

P(k)∗(X × Y ) ≃ lim0P(k)∗((X × Y )i)

≃ lim0P(k)∗(Xi × Y ).

We need the following to proceed. It is possible these statements don’t warrant a
proof but we are neophytes at this business.

LEMMA 9.7. Let X and Y be spaces and let P(k)∗(X) be Landweber flat. Then

P(k)∗(X × Y ) ≃ lim0P(k)∗(X × Y i)

≃ lim0(P (k)∗(X)⊗ P(k)∗(Y i))

and lim1P(k)∗(X × Y i) = 0.

Proof. Both P(k)∗(X×−) and P(k)∗(X)⊗P(k)∗(−) are cohomology theories
for finite complexes. We have a map

P(k)∗(X)⊗ P(k)∗(−) −→ P(k)∗(X ×−)

which is an isomorphism on a point. The usual arguments by induction on the number
of cells gives us

P(k)∗(X)⊗ P(k)∗(−) ≃ P(k)∗(X ×−)
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for finite complexes. This proves the vertical isomorphism. What we need now is
either one of the two other statements since by Milnor, [Mil62], we have

0→ lim1P(k)∗(X × Y i)→ P(k)∗(X × Y )→ lim0P(k)∗(X × Y i)→ 0.

Comparing this with the other Milnor sequence, we have

0 −→ lim1 P(k)∗(X × Y i) −→ P(k)∗(X × Y ) −→ lim0 P(k)∗(X × Y i) −→ 0⏐0 ⏐0 ⏐0
0 −→ lim1 P(k)∗((X × Y )i) −→ P(k)∗(X × Y ) −→ lim0 P(k)∗((X × Y )i) −→ 0

and since the middle vertical arrow is an isomorphism and lim1P(k)∗((X×Y )i) = 0,
we must have lim1P(k)∗(X × Y i) = 0. !

By Corollary 4.8(a), we have P(k)∗(Z)/F s+1 −→ P(k)∗(Zs) induces

lim0P(k)∗(Z)/F s+1 ≃−→ lim0P(k)∗(Zs) ≃ P(k)∗(Z), (9.8)

and

lim1P(k)∗(Z)/F s+1 = 0 = lim1P(k)∗(Zs). (9.9)

Remark. In our proof below of the Künneth isomorphism we use that
P(k)∗(X)/F i+1 and P(k)∗(Y i) are finitely presented and that P(k)∗(Y )/F i+1 is
bounded above and of finite type. The first one is the only difficult one and it requires
that X be a space and so this is an unstable result. When k > 0 or if P(0) = BP ,
then our proof of Lemma 6.1 is independent of [BJW95]. The only place we need
the unstable Landweber Filtration is if P(0) = BPp̂, because lim1 BP ∗(Xi) ̸= 0.

Proof of the Künneth isomorphism, Theorem 1.11.

P(k)∗(X × Y )

≃ lim0
j P (k)∗(X × Y j ) by Lemma 9.7

≃ lim0
j (P (k)∗(X)⊗ P(k)∗(Y j )) by Lemma 9.7

≃ lim0
j ((lim0

i P (k)∗(X)/F i+1)⊗ P(k)∗(Y j )) by Equation 9.8

≃ lim0
j lim0

i (P (k)∗(X)/F i+1 ⊗ P(k)∗(Y j )) by Proposition 9.5

≃ lim0
i lim0

j (P (k)∗(X)/F i+1 ⊗ P(k)∗(Y j ))

≃ lim0
i (P (k)∗(X)/F i+1 ⊗ (lim0

j P (k)∗(Y j ))) by Proposition 9.5

≃ lim0
i (P (k)∗(X)/F i+1 ⊗ (lim0

j P (k)∗(Y )/F j+1)) by Equation 9.8

≃ lim0
i lim0

j (P (k)∗(X)/F i+1 ⊗ P(k)∗(Y )/F j+1) by Proposition 9.5

≃ lim0
i,j (P (k)∗(X)/F i+1 ⊗ P(k)∗(Y )/F j+1)
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which, by definition, is

P(k)∗(X)⊗̂P(k)∗P(k)∗(Y ). !
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