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Abstract

The Joyal bijection between doubly-rooted trees and mappings can
be lifted to a transformation on function space which takes tree-walks
to mapping-walks. Applying known results on weak convergence of
random tree walks to Brownian excursion, we give a conceptually sim-
pler rederivation of the 1994 Aldous-Pitman result on convergence of
uniform random mapping walks to reflecting Brownian bridge, and
extend this result to random p-mappings.
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1 Introduction

A mapping m : [n] — [n] is just a function, identified with its digraph
D(m) = {(i,m(7)), ¢ € [n]}. Exact and asymptotic properties of random
mappings have been studied extensively in the combinatorial literature since
the 1960s [8, 10]. Aldous and Pitman [3] introduced the method of asso-
ciating a mapping-walk with a mapping, and showed that (for a uniform
random mapping) rescaled mapping-walks converge in law to reflecting Brow-
nian bridge. The underlying idea — that to rooted trees one can associate
tree-walks in such a way that random tree-walks have tractable stochastic
structure — has been developed in many directions over the last 15 years,
and this paper, together with a companion paper [4], takes another look at
invariance principles for random mappings with better tools.

As is well known, the digraph D(m) decomposes into trees attached to
cycles. The argument of [3] was that the walk-segments corresponding to
different cycles, considered separately, converge to Brownian excursions, and
that the process of combining these walk-segments into the mapping-walk
turned out (by calculation) to be the same as the way that excursions of
reflecting Brownian bridge are combined. That proof (and its reinterpreta-
tion by Biane [6]) made the result seem rather coincidental. In this paper we
give a conceptually straightforward argument which both proves convergence
and more directly identifies the limit. The argument is based on the Joyal
bijection J between doubly-rooted trees and mappings. Being a bijection it
takes uniform law to uniform law; less obviously, it takes the natural p-tree
model of random trees to the natural p-mapping model of random mappings.
We can now outline the proof in four sentences.

o It is known that rescaled walks associated with random p-trees converge
in law to Brownian excursion, under the natural hypothesis (4) on (p”)
(section 2.5).

e There is an transformation J : D[0, 1] — DI[0, 1] which “lifts” the Joyal
bijection trees—mappings to the associated walks (section 3.3).

e J has appropriate continuity properties (section 3.2).
e J takes Brownian excursion to reflecting Brownian bridge (section 3.4).

Filling in the details is not difficult, and indeed it takes longer in section 2
to describe the background material (tree walks, mapping walks, the Joyal



bijection in its probabilistic form, its interpretation for walks) than to de-
scribe the new arguments in section 3. One unusual aspect is that to handle
the natural class (4) of p-mappings, we need to use a certain *-topology
on D[0, 1] which is weaker than the usual Skorokhod topology (in brief, it
permits upward spikes of vanishing width but non-vanishing height).

A companion paper [4] uses a quite different approach to studying a range
of models for random trees or mappings, based on spanning subgraphs of
random vertices. We will quote from there the general result (Theorem 4(b))
that rescaled random p-tree walks converge in the *topology to Brownian
excursion, but our treatment of random mappings will be essentially self-
contained.

When (4) fails the asymptotics of p-trees and p-mappings are quite dif-
ferent: Brownian excursion and reflecting Brownian bridge are replaced by
certain jump processes with infinite-dimensional parametrization. But the
method of using the operator J will still work. We will treat this elsewhere.

The recent lecture notes of Pitman [13] provide a broad general survey of
this field of probabilistic combinatorics and stochastic processes.

2 Background

2.1 Mappings

Let S be a finite set. For any mapping m : S — S, write D(m) for the
mapping digraph whose edges are s — m(s), and write C(m) for the set of
cyclic points of m (i.e. the points that are mapped to themselves by some
iterate of m).

Let 7.(m) be the tree component of the mapping digraph with root ¢ €
C(m). The tree components are bundled by the disjoint cycles C;(m) C C(m)
to form the basins of attraction of the mapping, say

Bim):= |J Te(m) 2C;(m) with | JBj(m) =5 and | JC;(m)=C(m)
c€C;(m) j j
(1)

where all three unions are disjoint unions, and the B;(m) and C;(m) are
indexed by j = 1,2,... in such a way that these sets are non-empty iff j < k,
the number of cycles of the digraph, which is also the number of basins of
the digraph. The matter of what ordering we choose will be important in
the sequel, but first we define the random mappings we will consider.



From now on, suppose that S = {1,2,...,n} =: [n]. Consider a proba-
bility law p on [n], and assume that p; > 0 for each i. A random mapping
M is called a p-mapping if for every m € [n]l"],

PO =m) = I puter (2)
z€[n]

In other words, each point of [n] is mapped independently of the others to a
point of [n] chosen according to the probability law p.

We now define an order on the basins of attraction and cycles of a p-
mapping which will be relevant to our study. Consider a random sample
(X3, X3,...) of i.i.d. points of [n] with common law p, independent of M
(our unusual choice of index set {2,3,...} will be explained in the sequel).
Then order the basins of M in their order of appearance in the p-sample.
More precisely, since p; > 0 for every i € [n], we have that { X, X3,...} = [n]
a.s., so the following procedure a.s. terminates:

— Let B1(M) be the basin of M containing X3 and Ci(M) be the cycle
included in By(M). Define r = 2.

— Given (7;)1<i<; and the non-empty (B;(M))i<i<; and (C;(M))i<i<;,
as long as Ui<i<;Bi(M) # [n], let 71y = inf{k : X} & Ui<ic;B:(M)} and
B;11(M) be the basin containing X, .

For the purpose of defining a useful marked random walk in the next
section, we must be more precise and introduce an order on all the cyclic
points, and we do that as follows. With the above notations, let ¢; € C;(M)
be the cyclic point which is the root of the subtree of the digraph of M that

contains X,. Then within C;j(M) the vertices are ordered as follows:
M(e;), M*(c), ..., MISODI (e e,

Together with the order on basins, this induces an order on all cyclic points.
Call this order (on basins, cycles, or cyclic points) the p-biased random
order.

2.2 Coding trees and mappings by marked walks

Let T¢ be the set of ordered rooted trees on n vertices. By ordered, we mean
that the sons of each vertex of the tree, if any, are ordered (i.e. we are given a
map from the set of children into {1,2,3,...}). Consider some tree T"in T?9.
Denote by H;(T) the height of vertex ¢ in this tree (height = number of edges
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between 7 and the root). Suppose that each vertex ¢ has a weight w; > 0,
to be interpreted as the time that the walk spends at each vertex. Then one
can define the height process of the tree as follows. First put the vertices in
depth-first order (the root is first, and coming after a certain vertex is either
its first child, or (if it has no children) its next brother, or (if he has no
brother either), the next brother of its parent, and so on). This order can be
written as a permutation o: we say that o(¢) is the label of the i-th vertex.
For s <377 | w,() set

i—1 7
HY = Hyo(T)  if ) wagy <5 <) wo(y),
7=1 7=1

and H%lﬂ:lwc(i) = H,,)(T) (so the process is right—contTinuous). This also

induces a map s §T from [0, . w;] to [n], where s = o(7) whenever
22;11 Wo(j) < 8 < Dimy Wo(j). With this notation, HI = Hyr(T). We say
T is visited by the height process of 7.

Now consider a p-mapping M on [n] with the assumptions above on p.

that s is a time at which the vertex s

Given the choice of a particular order on the cyclic points, say (e1,...,cx),
one can construct the “height processes” associated with the p-mapping, as
follows: in the digraph of M, delete the edges between cyclic points and

consider the tree components 7., , 7. , Tz, of the resulting random forest,

U
with respective roots ¢y, ¢a, ..., cx. The tree components are unordered trees,
but we can make them into ordered trees by putting each set of children of
the vertices of the 7¢,’s into uniform random order. This induces a depth-first
order on each T;,. Let H’% be the height process of T (where the weight w,
of a point z is its p-value p, ). Now define the mapping walk (HM,0 < s < 1)
to be the concatenation of these tree-walks, in the order dictated by the order
on the cyclic points. That is, for 0 < s <1 set

T .
m il e, TYAT) < < YT O

J<i i<

and HM = HM . As for the trees, we denote by s™ the point that is visited
by HM at time s. Also, for = € [n] let [¢M(x),d™(z)) be the interval where
x is visited by the walk associated to M. Several features of the mapping
M are coded within this walk, such as the number of cyclic points (which is
the number of points = such that H%J(x) = 0), and the shapes of the trees



planted on the cyclic points, which can be deduced from the excursions of
the walk away from 0.

Now suppose that ¢i,...,ck, and the basins By(M), Bz(M), ... are in the
p-biased random order. Put a mark 7; at the time when the i-th non-empty
basin of M has been entirely visited. This has to be a time when H™ is 0
(this is the time when the walk visits the first cyclic point of the next basin),
unless Z; is the time when the last basin has been visited, and then one has
Z; = 1. The marks 7, Z,,... determine the visits of each basin, i.e. the
portion of HM between Z;_; and Z; is the mapping walk corresponding to
the j-th basin of the mapping. In particular p(B;) = 7; — 7Z,_1.

Last, we denote by /M the number of cyclic points that are before sM in
depth-first order. Precisely,

= Z HHMi:lpo(k) =0} if Zpg(f) s8< Zpg(j)'

J<e i<i J<e

. O\ /O

I KRV
\’/OXS \ o X
o X0

Wo. N NS

- 8 O«—*0

Fig. 1: A mapping pattern digraph and a p sample
run until it has visited the three basins.

0 Z1 Z2 Z3 - 1

Fig. 2: The corresponding marked walk.
Crosses indicate visits to cyclic points.

Remark. (a) Because the walk can visit two cyclic points consecutively,
some information about the mapping pattern (i.e. the digraph with unla-



beled vertices) is lost in (HM, (Z,,7,,...)). But when we are also given
((g™(4), d™(4)))iea), which is a partition of [0, 1], we can recover the map-
ping pattern.

(b) The height process of a tree is a particular instance of a “tree walk”,
i.e. a walk associated with a tree. The fact that the walk spends time p;
at vertex ¢ is important; but other walks with this property might also be
usable.

2.3 The convergence theorem

At this point we can state precisely the result of this paper. For a probability

law p on [n] write
e(p) = [> »t

For a sequence (p{™) of probability laws on [n], introduce the uniform asymp-
totic negligibility condition

(n)

max; p;
c(p™)

This turns out to be natural because of the birthday tree construction of p-

— 0 as n — oo. (4)

trees [7], or the direct study of iterates of random mappings [4]. Tt is easy to
check that (4) implies ¢(p(™) — 0.

Let M, be a p{™-mapping. Consider the associated marked random walks
(HM» (77, 75,...)). Let BM be standard reflected Brownian bridge on
[0,1], let (Ls,0 < s < 1) be half its local time at 0, which is normalized
to be the density of the occupation measure at 0 of the reflecting Brownian
bridge. Define the random points (Dy, Ds,...) as follows: take U; uniform

on [0,1] independent of B® and let D; = inf{s > U : Bl = 0}. Then
conditionally on D; take U, uniform on [Dy, 1] independent of (Blbﬂ, D, <
s <1), and let Dy = inf{s > U, : B = 0}, and so on.

Theorem 1 Suppose (p™)) satisfies (4).
(i) There is convergence in law

c(p)y M — 2P (5)

with respect to the %-topology on D[0,1] defined in section 2.5. If p™ is
uniform on [n] then we can use the usual Skorokhod topology on D[0,1].
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(i1) Jointly with the convergence in (i), the marks (77,75, ...) converge in
law to the sequence (Dy, Da,...).

(111) Jointly with the above convergences we have the limit in law (for the
uniform topology)

(c(P™)",0 <5 <1) = (L, 0 <5 < 1), (6)
This immediately yields

Corollary 2 The following convergence in law holds jointly with (6) in The-
orem [ :

(P (B3 (M), e(p™)CM))) 1y, D (D= Dyr L, = L, g (7)

n—0oo

For uniform p(™ we have ¢(p(™) = n~'/2 and these results rederive the results

of [3]. For (p'™) satisfying (4), these results imply results proved by other
methods in [4] while adding assertion (iii) which cannot be proved by those
methods.

2.4 p-trees, p-mappings and the Joyal bijection

Let T, be the set of unordered rooted labeled trees on [n]. We define a
random object, the p-tree, as a random rooted unordered labeled tree whose
law is given by

P(T=T)= ][ o™, (8)
rei

where T, is the set of children of vertex z. It is not obvious that the normal-
izing factor on the right hand side of (8) is 1, that is, that this formula indeed
defines a probability law. This known fact [12] can be seen as a consequence
of our following discussion.

As shown by Joyal [9] and reviewed in Pitman [12] one can define a
bijection J between T, x [n] and [n]l which pushes forward the law of
the p-tree, together with an independent p-vertex Xy, to the law of the p-
mapping. This bijection maps the spine of the tree, that is, the vertices of
the path from the root Xy to the distinguished vertex X7, to the cyclic points
of the mapping. As a deterministic bijection it would involve an arbitrary
matching of two sets of some cardinality K'!, but for our probabilistic uses



it is more convenient to have the matching implemented by an explicit rule
based on external randomization, as follows.

Let (7, X1) denote a p-tree T, rooted at some vertex Xy, together with an
independent p-point X;. Let Xg = ¢1,¢a,...,¢cx = X be the path from the
root to Xy, which we call the spine of the tree. Delete the edges between the
vertices of the spine, obtaining K trees T.,,...,7.... Recall that (X,, X3,...)
is an independent random p-sample. As before the following construction
a.s. terminates:

— Let 74 = 2 and Tckl be the tree containing X,. Then bind the trees
Tcl,...,Tckl together by putting edges ¢ — ¢2 — ... = ¢, — ¢1. Let
Cy ={cr,...,cr } and By = Ui<icr, 7o,

— Knowing (7)1<i<j, (ki)i<i<j, (Ci)i<i<; and (B;)i<i<; whose union is
not [n], let 71y = inf{k : X} ¢ Ui<;<;B;}. Then let 7-Ck]+1 be the tree

containing X, , bind the trees 7—ij+17 . 77;k]+1 by putting edges ¢z 41 —

+19

Chjg2 = «or = Chyy — Chjpr. Let Cipr = {41, -0,y b and Bjgy =

41
Uk, 41<i<hypr Ter-

— When this ends (i.e. all the tree is examined), call J(7, X;) the map-
ping whose basins are By, Bs, ..., and whose digraph is given by the following
edges within each basin: within each tree 7. for ¢ € C = UC;, the edges are
pointing towards the root ¢, and the cyclic points are pointing to each other
according to the binding of trees described above.

Proposition 3 The mapping J(T,X1) is a p-mapping, and its basins and
cyclic points are in p-biased order.

Proof. Fix m, a particular mapping on [n]. We condition on the p-sample
(X3, X3,...). It is then not difficult to see that there exists a unique (7, y)
such that J(T,y) = m. This tree is obtained as follows: take the first cyclic
point ¢ of m to which X is mapped by some iterate of m. If it is not
the unique cyclic point of the basin of m in which X, has fallen, we delete
the edge between the previous cyclic point (i.e. the cyclic point ¢ such that

m(c') = ¢) and e. We then write ¢; = ¢, ¢y = m(c’),c3 = m?*(c),...,cp, = c.
We reverse the edges between these cyclic points, i.e. we put directed edges
Cky, — ... — ¢3 — ¢1. Then we do the same with the next basin discovered

by (X2, X3,...), and, with obvious notations, we put an edge cx, 41 — cx,.
We then call y the top of the spine of the tree T thus built, so that y is the
root of the tree in which the point of the p-sample (X3, X3,...) that has



“discovered” the last basin of m has fallen. In fact, what we have done here
is the way to invert the map J.

Now, the probability that (7, X), the p-tree with an independent p-
vertex, is equal to (7T, y), is easily seen to be equal to er[n] me_l(l’)l‘ Tndeed,
for each vertex x of T except y, the number of edges pointing to z is the
same as in the mapping digraph, and for y there is one ingoing edge missing,
but this is compensated by our choice of X; =Y which has probability p,.

Moreover, the probability does not depend on the values of X3, X5, .. ..
So we can uncondition on (Xz, X3,...) and then the fact that the basins of
J(T,X1) are in p-biased random order is obvious. O
Remark. As hinted before, there are different ways of implementing the
Joyal bijection in a probabilistic context. In the Brownian bridge limit setting
of Theorem 1, these lead to different recursive decompositions of Brownian
bridge, discussed in detail in [1].

In the following figure, we draw a tree with a spine (e vertices) and we
run a p sample on it. The crosses indicate the edges that must be removed
to form the mapping digraph, which is the same as in Fig. 1.

Fig. 3: A tree and a p-sample giving
the mapping of Fig. 1 by the Joyal map.

2.5 Weak convergence of random tree walks

Let 7, be a random p(-tree and let H™ = H7» be the associated height
process from section 2.2. Let B*® be standard Brownian excursion. We quote
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the following theorem: part (a) is from [2] (see [11] for recent variations) and
part (b) is [4] Theorem 4.

Theorem 4 (a) If p™ is uniform on [n] then
n"2HM 5 2B in law

with respect to the usual Skorokhod topology on D0, 1].
(b) If the sequence (p™) satisfies the uniform asymptotic negligibility condi-
tion (4) then
c(p(”))H(”) — 2B in law
with respect to the *-topology on D[0, 1] described below.

Examples show [4] that Skorokhod convergence does not hold in the complete
generality of (4). In unpublished work we have sufficient conditions on (p™)
for Skorokhod convergence, but we do not have a conjecture for the precise
necessary and sufficient conditions.

Here are the properties of the *-topology that we need (stated slightly

differently than in [4]). Write "% for uniform convergence on [0, 1].

Lemma 5 Let f* € D[0,1] and f* € C[0,1]. Then f* —* f* if and only
if there exist functions g",h™ € D|[0,1] such that

A
>
Leb{x : h"(z) > 0} —

3 Proof of Theorem 1

3.1 Representation of the mapping walk with p-trees

We are now going to use Proposition 3 to construct the p-mapping walk
HM for M = J(T,X;), from (T,X;). Recall that T,..., 7., are the
subtrees of T obtained when the edges between the vertices of the spine are
deleted, and rooted at these vertices. To each of these we can associate the
height processes H’e (with weights on vertices being the p-values). If we
now concatenate these walks together, just as in (3), it should be clear from
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Proposition 3 that the resulting process is the walk H™ associated to the
p-mapping M = J(T,X;), with the order on basins induced by the Joyal
map. With this interpretation, the mapping walk is thus what we call the
height process of the p-tree above the spine.

Next, we need to incorporate the time-marks of the mapping walk. Recall
that these time-marks give the successive intervals [7;, Z;11) of exploration
of the j-th basin. By Proposition 3, the order on basins is determined by
the visits of a p-sample of components of the p-tree. So it should be clear
that we may obtain the marks as follows (this has to be understood as a
conditional form of the recursive constructions above). Let Zy = 0. Recall
the notation [¢M(7), d™ (7)) for the interval during which the walk HM visits
the point .

— Take U uniform (0,1) independent of the p-tree. Then let 7; =
inf{g™ (i) : g™ (1) > UQ,H%J(Z») =0} A L. If Zy =1 we are done.

— Given (Z;)o<i<j with Z; < 1, let Uj45 be uniform on (Z;,1) indepen-
dent of the tree, and Z;,, = inf{gM (i) : ¢M(7) > Uj+2,H%/,(i) =0}A1If
this is 1 we are done.

Thus we can study mapping-walks directly in terms of trees, as summa-
rized in

Proposition 6 Let T be a p-tree and X, a p-sample. The marked height
process above the spine, (H,(Zy,...)), has the law of the marked walk of the
p-mapping J(T, X1), with basins in p-biased random order.

3.2 A transformation on paths

Motivated by the discrete transformation (height process — height process
above spine) above, we introduce a transformation J* : D[0,1] — DI0,1].
Fix 0 < u < 1. Consider f = (f:) € D[0,1]. Define the pre- and post-
infimum process of f before and after u, written f(u), as follows:

is(u) _ { infyes fi for s <w

inficp, q fr for s > u.

An “excursion” of f above f(u) is a portion of path of f— f(u) on a constancy
interval of f(u). Each of these excursions has a starting time g which is at
some height h = f, = ig(u), and if two or more of these excursions have

the same starting height, we stick them together in the order induced by

12



(0,1), so that each height specifies at most one “generalized” excursion of
f above f. Write ¢((+),e3(+),... for these generalized excursions, ranked for
example in decreasing order of lifetimes Iy, 3, . . ., and let h; be the height of
the starting point of excursion ¢;. We now concatenate these excursions in
increasing order of starting height. That is, for s € [0,1), let h = h; be the
unique height such that E]‘:h]<hi [ <s< Zj:hjgh,' [; and define

@My =ei|s— D U

j:h] <h;

If the sum sq of lengths of constancy intervals of f, that is E]‘ l;, equals 1,
then J*(f) is defined for all 0 < s < 1; otherwise we just define J*(f) to
equal 0 on so < s < 1. We call JU(f) the process f reflected above f(u).

Lemma 7 Let f" € D[0,1] and >~ € C[0,1]. Suppose that, for each 0 <
u < 1, the lengths of intervals of constancy of [ (u) sum to 1, and suppose
that the different excursions of f*° above ioo(uj start at different heights.
(a) If =5 [ then JU(f7) =5 3 ().

(b) If f* —* f and U has uniform(0,1) law then JU(f") —* JV(f>) in
probability.

Proof. We outline the argument, omitting some details. Fix u. Consider
an interval of constancy of f™(u), say [ay,b;]. From the hypotheses on f*

we have f(s) > f(ag) on a < s < b. Consider the case f" ™ f°°. Then for
large n there must be intervals of constancy of f"(u), say [a},b}], such that
ap = ag, by — b, f"(a}l) — f<(ax). This implies

(f"(af+s)=F"(ap),0 < s < bf—a}) =5 (f (ants) = (ar),0 < s < bp—ay).

Since Y, (b} —a}) — >, (bx — a) = 1, we easily see that in the case u =
1 we have J*(f") =y JU(f°). For general u, apply the argument above
separately to [0, u] and [u, 1], and check that the operation of “concatenation
of excursions in order of starting height” is continuous; again we deduce
JU(fm) =5 ().
Now consider the case f» —* f*. Recall the Lemma 5 decomposition
f" =¢" + h". By passing to a subsequence we may assume that for almost
all 0 <u <1
f™(u) = 0 ultimately . (9)

13



Fix such a wu; it is enough to show J*(f") —* J*(f*). The previous case
implies that J*(¢") oy Ju(f°). Consider, as in the previous argument, an
interval of constancy of [a}, b}] of ¢" converging to an interval of constancy
of [ag,by] of f. Since f™ = ¢" 4+ h™ with h™ > 0, there is a corresponding

interval of constancy of f which contains the interval [a}, b7] defined by

ap =inf{a > a} : h"(a) =0}, bF =sup{b < b} :h"(b) =0}.

Use (9) to see that INJZ —ay — bp — ax. We now see that the analog
of J“(¢") using only excursions over Uk[d}z,i)m will converge uniformly to
Ju(f*°). After adding the contribution of A" over these intervals, we will still
have #-convergence; and the contribution to J*(f") from the complement of
Uklaf, IN)Z] is asymptotically negligible for x-convergence.

3.3 Pushing forward tree walks to mapping walks

Let 7 be a p-tree on [n], and put the children of each vertex in uniform
random order. Let U be uniform on (0,1), independent of 7, and let X; be
the vertex visited by the height process H” at time U. The fact that the
height process spends time p, at vertex x implies that X is a p-sample. By
Proposition 3, M = J(T, X;) is a random p-mapping with basins in p-biased
random order. Let H™ be the associated marked random walk, constructed
as in section 3.1, which by Proposition 6 is the height process of 7 above the
spine.

So to get HM from H7 we have to extract from H7 the height processes
of the subtrees rooted on the spine. This will be done by applying the
transformation J to a slightly modified version of H7.

Write ¢, ¢,...,cx = X, for the vertices of the spine of 7 in order of
height, and as before write [¢(¢;),d(¢;)) for the interval in which the height
process H7 “visits” ¢;. Now we consider the process

(10)

else.

K — { Hg(cz')T—l_ 1 ifs € (g(¢;),d(c;)), for some i

5

In other words, we “lift” the heights of the spine vertices by 1, but we use a
small artifact here: at the point g(¢;), the process stays at the value H;ai),

and the process is not cadlag in general. Now reflect this process K above
K (U) to obtain the process JV(K).

14



Lemma 8

JY(K) 0<s<1. (11)

9

= (M =)

Proof. Suppose that the height process H” of the tree is currently visiting
a spine vertex, say ¢;, which is not the top of the spine. Write h for its
height (h = H7 (¢;) = Koy = Kyei4y —1). Then ¢; has some children,
one of them being ¢;11. Now we want to recover the height process of the
subtree 7., rooted at ¢; when we delete the edges between the vertices of the
spine. First, during the time interval (g(¢;), g(cit1)), the height process of T,
visits ¢; and the vertices of 7, that are located to the left of the spine (i.e.
the descendants of the children of ¢; located before ¢;41), if any. Then the
process examines all the descendants of ¢;;1, hence staying at heights greater
than h 41, and after that visits the children of ¢; that are to the right of the
spine, if any, starting say at time g/ > U.

Hence, Kye,) = h, Ky > h+ 1 for s € (g(¢;),g(ciy1)] and Ky > h +1
for s € (g(ciq1),U). So (g(ci),g(ciy1)) is an excursion interval of K above
K, for an excursion starting at height & + 1. This excursion is easily seen as
being (H’e — 1)* restricted to the vertices that are to the left hand side of
the spine, where H< is the height process of T..

Then K, = h+1, so g/ is the starting time of an excursion of K above
K(U), with starting height & + 1, and this excursion is now (H7s — 1)*
restricted to the vertices that are to the right hand side of the spine. The
analysis is easier if ¢; = X is the top of the spine, in which case there is no
child of ¢; at the left or right-hand side of the spine. This gives the result. O

0 U i

Fig. 4: The process H” and the process K (dashed).
The crosses and thick lines represent visits to vertices of the spine.
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Note that our “artifact” was designed to give an exact equality in Lemma
8. Removing the artifact to make processes cadlag can only change the
processes involved by +1, which will not affect our subsequent asymptotic
arguments.

Figure 4 shows the height process of the tree of Figure 3, with U such
that the spine is the same. We also draw the process K. As noted before,
the unmarked walk associated to the image of the last tree by the Joyal map
depends only on the spine, and so this walk is that of Figure 2. The next
figure depicts the process JV(K).

Fig. 5: The process JY(K) (compare with Fig. 2).

3.4 J transforms B to B/l

Lemma 9 Let B¢ be standard Brownian excursion, and let U be uniform
independent on [0,1]. Then JV(B®°) is distributed as B, reflecting Brow-
nian bridge on [0,1]

Proof. First we have by Bismut’s decomposition that conditionally on U
and BfF® = A, the paths (Bf,,0 < s < U) and (BJg,0 < s <1 -10U)
are independent Brownian paths starting at A, conditioned to first hit 0 at
time U and 1 — U respectively, and killed at these times. Now, consider the
excursions (£],¢3,...) of (B0 < s < U) above its future infimum process,
ordered in decreasing lifetimes order, and their respective heights (h{, ki, . ..).
Let also (e7,e3,...) be the excursions of (B&5,0 < s < 1 —U) above its
infimum process, also ordered in decreasing lifetimes order, and denote their
respective heights by (hi, h3,...). Then we have (e.g. [14] Proposition 6.1)
that (h{/A,R3/A,...) and (h3/A,h3/A,...) are independent conditionally on
A, and are two sequences of i.i.d. uniform[0, 1] r.v.’s. On the other hand, if
we denote by (I1,05,...) and (2,13,...) the decreasing sequences of lifetimes
of (e1,e3,...) and (e},e3,...) respectively, then conditionally on A and U,
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their laws are that of the jumps of (7,0 < & < A), the process of first
hitting times of Brownian motion before level A, conditionally on Ty = U
and Ty = 1 —U. So by the Markov property if we concatenate these two
families of lifetimes and uncondition in U we obtain a decreasing sequence
(l1,12,...) with law the jumps of (7,,0 < 2 < 2A) conditionally on T4 = 1.

It follows that JY(B™°) is a process with the same law as the follow-
ing process Y: conditionally on A take a family of Brownian excursions
(€1,&2,...) such that the sequence of their lifetimes ([1,/s,...) is that of the
jumps of (T,,0 < x < 2A), conditionally on Th4 = 1; also take a sequence
(Uy,Us, . ..) of uniform r.v.’s on [0, 1] independent of the excursions, and then

let
1/5252' S—Zl]‘ if ZZJSSSZZJ

U] <U; U] <U; U] <U;

It is well-known that such a process is a reflecting Brownian bridge on [0, 1]
conditioned to have local time 2A at level 0 and time 1. To conclude, we

recall (see e.g. [5]) that 24 = 2B has Rayleigh law, which is that of Ly, half

the occupation measure of B at level 0 and time 1. So JV(B*°) L plbi,
O

3.5 Completing the proof of Theorem 1

As in Proposition 3, we may take the p(®-mapping M, in its representation
M, = J(T,, X1,), where T, is a p™-tree and X1, 08 a p™ sample from
7. By Theorem 4(b) and the Skorokhod representation Theorem, we may
suppose that we have a.s. convergence of ¢(p™)H"" to 2B%°. (Here and
below, convergence is *-convergence in general, and uniform convergence in
the special case of uniform p(™). For each n we may use the same U to
define Xy ,. From the definition (10) of K we also have a.s. convergence of
c(p™)K™ to 2B™°. Then by Lemmas 7 and 9, the process ¢(p™)JV(K™)
converges to 2B/P"l, Hence, so does ¢(p™)HMn according to Lemma 8. This
is assertion (i) of the Theorem.

For (ii), the assertion about the marks (77, 77, ...) follows easily by in-
corporating the representation of section 3.1 into the argument above (the
only possible trouble is when a U; falls on a zero of H”, but this happens
with probability going to 0).

To obtain (iii) we observe that the number of cyclic points visited in
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depth-first order before the vertex coded by s € [0, 1] is equal (except for an
unimportant possible error of 1) to the starting height of some excursion of
K™ above K™. Now suppose that s is not a zero of BI""l, so that it is strictly
included in the excursion interval of, say the k-th longest-lifetime excursion
of 2BI" away from 0. Then for n sufficiently big, s also belongs to the
excursion interval of the k-th longest-lifetime excursion of HM» away from
0, which corresponds to the k-th longest-lifetime excursion of K™ above K™.
But this excursion’s starting height, once multiplied by ¢(p(™), converges
to the starting height of the k-th longest-lifetime excursion of 2B°*¢ above
2B, Tt now follows from classical considerations (see e.g. [14]) that this
last height is equal to L;. We can now conclude, since the limiting process L
is continuous and increasing on [0, 1], and since the lengths of excursions of
2B above 2B sum to 1, that the convergence of ¢(p(™)¢M to L holds
uniformly and not only pointwise. O
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