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Random fluctuations will be a major factor interfering with the operation of nanometer scale electronic de-
vices. This article presents circuit architectures that can exploit such fluctuations, if signals have a particle-
like (discrete, token-based) character. We define an abstract circuit primitive that, though lacking function-
ality when used with fluctuation-free signals, becomes universal when fluctuations are allowed. Key to the
power of a signal’s fluctuations is the ability to explore the state space of a circuit. This ability is used to
resolve deadlock situations, which could otherwise only be averted by increased design complexity. The re-
sults in this article suggest that in the design of future computers, signal fluctuations, rather than being an
impediment to be avoided at any cost, may be an important ingredient to achieve efficient operation.
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1. INTRODUCTION

The trend toward reduced energy consumption of integrated circuits will eventually
lead to devices that are switched by small numbers of particles. In such a regime near
the thermal limit [Meindl et al. 2001]—when switching energy barely exceeds that of
thermal noise—the law of large numbers ceases to hold, and fluctuations will play a
prominent role [Ovchinnikov and Wang 2008]. Since noise and fluctuations compro-
mise the reliability of VLSI systems, various strategies have been devised to counter
their effects. Suppressing noise is the most conventional of those, but it only works if
signal levels are well above the thermal limit by, say, a safety factor of 100 [Mead and
Conway 1980, p. 358]. The detection and correction of errors through the redundant
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encoding of information is another strategy, but it becomes less useful if the safety fac-
tor decreases. Yet another strategy advocates limiting applications to those that have
some inherent robustness to noise, like image processing, but this restricts the class of
computation problems.

Noise and fluctuations have been part of the environment of biological organisms
for as long as evolution has run its course. Organisms have mechanisms in place, not
only to cope with fluctuations, but also to exploit them as a driving force in biological
processes [Frey and Kroy 2005; Yanagida 2008]. The operation of molecular motors,
for example, revolves to a great extent around Brownian motion [Hänggi et al. 2005;
Reimann 2002; Yanagida 2008], which is the random motion of particles that results
from collisions with the atoms or molecules of the medium in which the particles are
suspended. In the original context of Brownian motion [Brown 1828], the medium is
a fluid and the particles immersed in it are micrometer sized, but the term is used
for fluctuations in systems with nanometer scale features as well [Hänggi and Ingold
2005]. In biological organisms, Brownian motion is thought to play a role in randomiza-
tion [McAdams and Arkin 1999] and in facilitating processes involving small numbers
of molecules [Frey and Kroy 2005]. The randomness of Brownian motion increases the
likelihood that reactable molecules move to each others’ vicinity, and thus provides
a free search mechanism [Dasmahapatra et al. 2006; Yanagida 2008], without there
being a need for an explicit control mechanism. Can similar mechanisms be used in
the framework of nanoelectronics, and if so, how can we avoid negatively affecting
operating time?

An early proposal, by Bennett [1982], of computation driven by Brownian motion
uses a mechanical microscale Turing machine, in which signals randomly search their
way through the machine’s circuitry, restricted only by the circuit’s topology. This pro-
cess resembles a random walk through a maze, from which one will eventually emerge
at an exit. Driven by thermal noise, computations in this model move forward and
backward evenly, taking a long time to complete, but they can be sped up by biasing
them forward through expending energy. Bennett points out similarities of Brownian
computation with the tape-copying machine embodied by RNA polymerase [Bennett
1982].

Noise and fluctuations have also been used in simulated annealing on a Boltzmann
machine based on Single Electron Tunneling devices [Yamada et al. 2001]. This
method utilizes signal fluctuations to search in an energy landscape, thus showing
similarities with the Brownian search in Bennett’s Turing machine. Its main focus,
however, is on optimization by neural networks, rather than on computation.

This article proposes a class of circuits that uses signal fluctuations as a fundamen-
tal mechanism underlying computations. Like the Turing Machine of Bennett [1982],
the proposed circuits use a random search through the circuit topology to drive com-
putation, but unlike Bennett’s mechanical construct, the circuits are formulated in
a more abstract framework (Section 2), which facilitates a mathematical analysis of
their behavior. Lacking a clock, the circuits are asynchronous, and a wide range of
formal models are available in this framework to analyze them, like the Petri Nets
used in this article. We define a circuit primitive (Section 3) and prove that signal
fluctuations are essential for this primitive to be universal for the proposed class of
circuits (Sections 4 and 5). Universality implies that any arbitrary circuit in the class
can be constructed from this primitive. The power of signal fluctuations derives from
their ability to search and backtrack out of deadlocks (Section 5). The use of Brownian
search to backtrack out of deadlock situations is illustrated by Video 2 of the Supple-
mentary Online Materials (for details see Figure 11 in Section 4). The theory developed
in this article on Brownian circuits includes conditions to decide when a computation
is finished—an issue that is not trivial since a Brownian circuit may repeatedly move
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Fig. 1. Primitive modules for delay-insensitive token-based circuits (left half) and the corresponding Petri
nets that define their functionality (right half). (a) Merge, which merges two streams of tokens on input lines
I1 and I2 into one stream on output line O. (b) Fork, which duplicates every input token from input line I to
its two output lines, O1 and O2. (c) Tria, which joins two input tokens into a single output token as follows.
Upon receiving one token each from input lines Ii (i ∈ {1, 2, 3}) and Ij (j ∈ {1, 2, 3} \ {i}), it outputs a token
to line O6–i–j. If there is a token on only one of the input lines, it is kept pending, until a token on one more
input line appears. (d) Net of the Merge, (e) Fork, and (f) Tria. Diagrams typical for Petri nets are used:
places are represented by circles and transitions by short line segments orthogonal to the in- and out-going
arrows that denote the flow relation.

in and out of its final state (Section 6). We show how a Brownian circuit can be sped up
by placing so-called ratchet-devices—a kind of diode—at selected locations in a circuit
(Section 7).

2. TOKEN-BASED CIRCUITS

2.1. Introduction

Tokens are discrete indivisible units that are used as signals in circuits or systems.
They are graphically represented by fat dots, like in the left of Figure 5. Well-known
token-based systems are Petri nets (e.g., see Murata [1989]), which are commonly
used for modeling purposes. Token-based circuits are relevant for physical imple-
mentations in which signals have a discrete character, such as found in charge-state
logic [Korotkov and Likharev 1998]. In such logic, the behavior of devices and circuits
depends on the movement and interaction of individual electrical charges, like in
Single Electron Tunneling circuits [Lageweg et al. 2004; Ono et al. 2005]. Charge-state
logic is uncommon in current commercially available electronics; rather most circuits
employ voltage-state logic, in which signals are represented by voltage levels.

The token-based circuits in this article are delay-insensitive, which means that
they allow arbitrary delays of signals in lines or in circuit elements, without this
compromising the circuit’s operations. Delay-insensitive circuits are not governed by a
clock, so they belong to the class of asynchronous circuits [Sparsø and Furber 2001].

Token-based delay-insensitive circuits can be constructed from a fixed set of circuit
primitives, analogously to synchronous circuits, which use, for example, NOT-gates
and AND-gates as primitives. When a set of primitives offers sufficient functionality
to construct any circuit possible in a class of circuits, this set is universal for that
class. Figures 1(a)–(c) shows one such universal set for the class of delay-insensitive
token-based circuits [Lee et al. 2005]: the Merge (called P-Merge in [Lee et al. 2005]),
the Fork, and the Tria [Patra and Fussell 1996]. A fundamental aspect of the Tria is
its so-called join functionality, according to which an output token is only produced
when there are two input tokens available. The presence of merely one input token
will keep that token pending on its input terminal until the second input token arrives
at another input terminal. Join functionality thus synchronizes tokens on a local scale.
It is of fundamental importance in delay-insensitive circuits, because it substitutes for
the clock in synchronous circuits.
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2.2. Formalization

The Brownian circuits in this article are expressed in the framework of Petri Nets,
which are described by the following definitions—most of them being standard.

Definition 2.1. A Net is a 3-tuple N = (P, T, F), where:

(1) P (places) and T (transitions) are finite sets with P ∩ T = ∅,
(2) F ⊆ (P × T) ∪ (T × P) is the flow relation,
(3) ∀t∈T ∃p, q∈P : (p, t), (t, q)∈F,
(4) ∀t∈T, p, q∈P : (p, t), (t, q)∈F ⇒ p 
= q.

Condition (3)—no dangling transitions—and condition (4)—no self-loops of
transitions—are included in this definition to avoid having to deal with special cases
in proofs. Nets are represented graphically by the diagrams common for Petri nets.
Figures 1(d), (e), and (f) show the nets of the Merge, Fork, and Tria, respectively.

Definition 2.2. A marking of a net N = (P, T, F) is a subset of P.

The definition implies that a net is safe, i.e., that at most one token is contained in a
place. A marking is represented graphically by putting a token in each place belonging
to it.

Definition 2.3. Let x ∈ X, with X = P or X = T, then •
Nx = {y ∈ X|(y, x) ∈ F} is

the input set (or pre-set) of x in net N, and x•N = {y ∈ X|(x, y) ∈ F} is the output set

(or post-set) of x (the subscript indicating a net is omitted if the context is clear). The
expression |x•| is called the out-degree of x. Let Y ⊆ P or Y ⊆ T, then •Y =

⋃
y∈Y

•y and

Y• =
⋃

y∈Y y•.

Definition 2.4. Let N = (P, T, F) be a net and C ⊆ P be a marking. Then transition
t ∈ T is enabled in C, written as C [t〉, if •t ⊆ C and t• ∩ C = ∅.

Definition 2.5. Let N = (P, T, F) be a net, let C, D ⊆ P be markings, and let T* be
the set of all sequences of transitions in T.

(1) The transition t ∈ T fires from C to D, written as C [t〉D, if C [t〉 and D = (C– •t)∪ t•.
When the transition is not specified, we write C → D.

(2) Let t1, ..., tn ∈ T, with n ≥ 1. Then the firing sequence f = t1...tn ∈ T* is said to
fire from C to D, written as C [t1...tn〉D, if there exist markings C0, C1, ..., Cn ⊆ P

with C0 = C, Cn = D, and Ci–1

[
ti〉Ci for all i ∈ {1, ..., n}. The length of f , written as

L(f ), is the number n of transitions in it. The set of firing sequences from C to D is

denoted by FSD
C .

This definition extends the standard definition of a net’s firing behavior to include
the length of firing sequences. It plays an important role in the proof of Theorem 4.4.

Definition 2.6. Let N = (P, T, F) be a net, let C, D ⊆ P be markings, and let T* be
the set of all sequences of transitions in T.

(1) D is said to be reachable from C, written as C
*
→ D, if there exists a firing sequence

f ∈ T* such that C
[
f 〉D.

(2) The set of markings reachable from C, written as RE(C), is defined by

{D⊆P | C
*
→D}. The set of markings reachable from C within n firings of tran-

sitions is defined by REn(C) =
{

D ∈ RE(C)|∃f ∈ FSD
C : L(f ) ≤ n

}
. By definition,

RE0(C) = C.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 3, Pub. date: February 2013.



Brownian Circuits: Fundamentals 3:5

Fig. 2. Serial composition of two nets by a line.

Whether a marking is reachable from another marking is an important measure for
establishing the presence or absence in the net of deadlocks (see Sections 4 and 5).

Definition 2.7. Given two nets N1 = (P1, T1, F1) and N2 = (P2, T2, F2), a net
N = (P, T, F) is called a serial composition of N1 and N2 if:

(1) P = P1 ∪ P2,
(2) T = T1 ∪ T2 ∪ Tc, for a certain non-empty set of transitions Tc that satisfies

Tc ∩ (T1 ∪ T2) = ∅,
(3) F = F1 ∪ F2 ∪ Fc, for a certain flow relation Fc for which (i, j = 1, 2)

Fc ⊆ {(p, t), (t, q) | p ∈ Pi ∧ p•
Ni

= ∅ ∧ q ∈ Pj ∧ j = 3 – i ∧ •
Nj

q = ∅ ∧ t ∈ Tc}

and for every t ∈ Tc, it holds |•Nt| = |t•N | = 1.

Informally, a serial composition results in a net that maintains the flow relation of
the two nets, and adds a new set of transitions (Tc in Definition 2.7) connecting sink
places (i.e., with no successor transitions) of one subnet to source places (i.e., with no
predecessor transitions) of the other. A transition in Tc allows tokens to flow from one
subnet to the other in the composed net, and is therefore called a line (Figure 2). The
serial composition of two lines is a multisegmented line.

Definition 2.8. An Interfaced Elementary Net (IEN) system is a 5-tuple
N = (P, T, F, Si, Sf ), where

(1) (P, T, F) is a net,
(2) Si is the set of initial markings, and
(3) Sf is the set of final markings.

(4) For all D ∈ Sf there exists a C ∈ Si such that C
*
→ D.

Unlike in traditional EN systems [Rozenberg and Engelfriet 1998], there can be
more than one initial marking in an IEN system. Each initial marking can be thought
of as a particular input to the net. The final markings describe the possible outputs of
the net.

Definition 2.9. A Stochastic Interfaced Elementary Net (SIEN) system is a 6-tuple
N = (P, T, F, Si, Sf ,Λ), where

(1) (P, T, F, Si, Sf ) is an IEN system,
(2) Λ = {λ1, ...,λn} is a set of non-negative real numbers, whereby λi is the transition

rate of transition ti in T = {t1, ..., tn}.

A SIEN system is an IEN system in which each transition is associated with an
exponentially distributed random variable that expresses the delay from the enabling
to the firing of the transition. If several transitions are simultaneously enabled, the
transition with the shortest delay will fire first [Murata 1989]. This distribution of
a transition’s delay is assumed to be independent of the time that has elapsed and
independent of the markings of the net. The stochasticity of a SIEN system guarantees
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Fig. 3. (a) The T-element, which is a simple Token-Pass (TP) circuit. (b) Net of the T-element. The lines a–a′

and b–b′ in the arms of the T are the choice lines, while the line c–c′ in the base of the T is the base line. The
T-element requires one token as input on its base line and one token on one of its choice lines. The resulting
transition moves the two tokens pairwise through the T-element to output them. If there are input tokens
at the base line as well as at both choice lines, then the T-element makes an arbitrary choice as to which
of the choice line tokens is processed, while leaving the token on the other choice line pending. (c) Circuit
constructed from two T-elements, and (d) its net divided in paths P1 to P5 and Transition Clusters T1 to T4.
Path P3 represents the loop that corresponds to the pair of lines connecting the bases of the two T-elements.

that sufficient randomness is present in its transitions to avoid deadlocks and livelocks
due to periodic behavior (see Section 5).

3. TOKEN-PASS CIRCUITS

A Token-Pass circuit is a circuit through which tokens pass via linear paths, on the
way possibly interacting with one other, but never veering from their paths. Defined
with physical plausibility in mind, Token-Pass circuits keep the number of tokens un-
changed, be it on interconnection lines or inside modules.

Definition 3.1. Let N = (P, T, F) be a net. A binary relation V is defined over the
elements of T as follows. Let t1, t2 ∈ T, then t1Vt2 if and only if •t1∩

•t2 
= ∅ or t•1∩t•2 
= ∅.
The transitive closure of V divides T into equivalence classes indicated by T1, ..., Tn.
These equivalence classes are called the Transition Clusters of N.

Definition 3.2. The net N = (P, T, F) is Token-Pass (TP) if for all i ∈ {1, ..., n}, with
n being the number of transition clusters in N, it holds that •Ti ∩ T•

i = ∅ and there
exists a bijection αi : •Ti → T•

i such that

(1) For all p ∈ •Ti and all t ∈ Ti: (p, t) ∈ F ⇐⇒ (t,αi(p)) ∈ F.
(2) For all p ∈ •Ti: |p

•| = |•αi(p)|.

A circuit is called Token-Pass (TP) if its net is TP.

Definition 3.3. Let N = (P, T, F) be a net that is Token-Pass. A binary relation W is
defined over the elements of P as follows. Let p1, p2 ∈ P, then p1 W p2 if there exists
an i ∈ {1, ..., n} such that αi(p1) = p2 or αi(p2) = p1. The transitive closure of W divides
P into equivalence classes indicated by P1, ..., Pm. These equivalence classes are the
Paths of N.

An example of a Token-Pass circuit is the T-element in Figure 3(a), which plays a
pivotal role in this article. It has three lines passing through it, corresponding to the
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Fig. 4. (a) A module that is not Token-Pass, and (b) its representation as a net. The module assumes two
tokens as input, one at one of the a-lines (left) and one at one of the b-lines (bottom). If a token is input to
a0, then the token at the b-lines passes through the module uncrossed, i.e. it moves from bj to b′

j
(j ∈ {0, 1}),

while the other token moves to a′

0. If a token is input to a1, then the module operates as if the b-lines were
crossed, i.e., the token at bj moves to b′

1–j
, while the token at a1 moves to a′

1. If there is only one input token,

then it remains pending until a second input token arrives.

paths {a, a′}, {b, b′}, and {c, c′} in the net in Figure 3(b). The line c–c′ passing through
the base of the T-element is the base line. The other two lines, each passing through
an arm of the T-element, are the choice lines. A bijection α for this T-element maps a
to a′, b to b′, and c to c′. There is one transition cluster in the net in Figure 3(b), which
includes both its transitions.

In a Token-Pass net the bijectivity of the α relations implies that the places in a
path can be arranged as a linear structure, either as an open path, or as a loop. A to-
ken never moves from one path to another. It will enter a path as input, if the path is
not a loop structure, and moves within a path until it is output. The circuit constructed
from two T-elements in Figure 3(c) has five paths in its net (Figure 3(d)), one of which
is a loop. This loop contains one token, which will never leave the loop. By being at
a certain location in the loop at a certain instance, this token enforces a certain or-
der at which other tokens may pass through the net. Apart from enforcing an order
of operations in a circuit, a loop may also be used to store a circuit state, as in the
1-bit memory in Figure 8(b) or (c). In general, loops are used for internal processing in
circuits.

The Token-Pass property is a strict one, as most nets lack it. The net of the module in
Figure 4(a) is not Token-Pass, because it does not satisfy the condition in Definition 3.2:
a bijection α from the input places a0, a1, b0, and b1 in Figure 4(b) to output places is
impossible.

LEMMA 3.4. The class of Token-Pass nets is closed under serial composition.

PROOF. We proceed for the binary serial composition as described in Definition 2.7
for N1, N2, and N (the extension to k components is straightforward). First, the tran-
sition clusters of Ni (i = 1, 2) are preserved in N, because neither are transitions re-
moved, nor are transitions added that have non-empty pre- or post-set intersections in
Ni. This implies that the corresponding bijections apply to the transitions in N1 and
N2, thus guaranteeing the conditions of Definition 3.2. The existence of bijections for

the clusters T̂1 . . . T̂m in Tc (m ≤ |Tc|) remains to be shown (c.f. Definition 3.2). By

Definition 2.7, for every transition t ∈ Tc, the transition cluster T̂i (i ∈ {1, ..., m}) con-

taining t satisfies |•T̂i| = |T̂•
i | = 1 and •T̂i ∩ T̂•

i = ∅. Hence for each transition t in Ti,
a bijection can be defined that associates the unique input place in •t with the unique
output place in t•. These bijections satisfy the two conditions of Definition 3.2.
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Fig. 5. Scheme of a Token-Pass circuit. Input lines and output lines all pass through the circuit.

Fig. 6. Signaling protocol of a Token-Pass circuit and its token-based equivalent. (a) Token-Pass module
with input (top) and without input (bottom), and (b) the token-based equivalents. (c) Token-Pass module
before producing output (top) and after output (bottom), and (d) the token-based equivalents. (e) Token on
a pair of lines connecting two modules is transferred through an operation of the bottom module from one
line to (f), the other line. In terms of a conventional token-based circuit in which a bottom module produces
output to a top module, the operations in (e) and (f) correspond to respectively (g) no token produced on a
single interconnections line, and (h) one token produced.

Informally, the lemma proves that connecting two paths to each other results in a
structure that is also a path. A Token-Pass circuit can be characterized as a collection
of lines that either are connected in loops, or that run through the circuit to form input
lines or output lines (Figure 5).

A token on the pre-line of an input line (left in Figure 5) denotes input to the cir-
cuit, and it passes to the corresponding post-line (right) as part of the circuit opera-
tion. All output lines have tokens on their pre-lines before the circuit operation, and—
depending on the input to the circuit—only some of these tokens are passed to the
corresponding post-lines to signify output.

Tokens are processed according to the protocol in Figures 6(a)–(d). A token on an
input pre-line indicates input for the module from that line (top of Figure 6(a)). When
processing this input, the module moves the token to the corresponding input post-
line. While an input line may lack a token on its pre-line—when there is no input
(bottom of Figure 6(a))—an output pre-line always contains a token before an operation
(top of Figure 6(c)). To signify output of the operation, the module moves the token to
the corresponding post-line (bottom of Figure 6(c)). In other words, depending on the
pattern of tokens present on the input pre-lines, a circuit will move certain tokens on
the output pre-lines to the output post-lines.
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Fig. 7. (a) Merge (top), TP-Merge (center), and net of the TP-Merge (bottom); (b) Fork (top), TP-Fork (cen-
ter), and net of the TP-Fork (bottom); (c) Tria (top), TP-Tria (center), and net of the TP-Tria (bottom). The
hollow arrows of the Token-Pass modules in the center denote the corresponding input and output lines of
the original modules at the top. The remaining line ends carry “dummy” tokens, necessary to guarantee that
the number of tokens remains unchanged from input to output. For example, the TP-Fork, displayed with
the symbol 3 in it (see Figure 9 for details), consumes three tokens as input (of which two are dummies)
and it produces three tokens as output (of which one is a dummy). The thick lines in the nets at the bottom
correspond to the nets of the respective token-based modules in Figures 1(d), 1(e), and 1(f). (d) Transition
describing an operation of a Tria, and (e) the equivalent operation of a TP-Tria.

While the protocol in Figures 6(a)–(d) defines the external input/output behavior
of Token-Pass circuits, it can also be used for interconnections between modules
(Figure 6(e)(f)). Token-Pass modules are then connected to one other via a pair of lines
that contains one token. The line among this pair on which the token resides deter-
mines the state of the signaling between the modules. There are two cases. In the first
case (Figure 6(e)), the token is on the pre-line of the bottom module, waiting to be let
through and become output of the module. This results in the second case (Figure 6(f )),
in which the token is on the pre-line of the top module, waiting to be accepted as input
to this module. Once the token is accepted and let through, the first case applies again.
In terms of a conventional token-based circuit, these two cases correspond to no tokens
(Figure 6(g)) respectively one token (Figure 6(h)) on an interconnection line between
two modules.

The preceding correspondence between the signaling protocols of token-based cir-
cuits and Token-Pass circuits can be carried over to the modules from which circuits
are made up. A Module in a Token-Pass circuit then has a pair of lines wherever the
equivalent token-based module has a single line. When the Token-Pass equivalent of a
token-based module M is denoted by TP-M, we then obtain the TP-Merge (Figure 7(a)
center), the TP-Fork (Figure 7(b) center), and the TP-Tria (Figure 7(c) center). The
TP-Merge turns out to be identical to the T-element, as a comparison of their nets
reveals.

Token-Pass modules operate just like their token-based counterparts, though more
lines and more tokens are involved. An operation of the TP-Tria is illustrated in
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Fig. 8. (a) 1-Bit token-based memory. The state of the memory is stored by two tokens on the left of the two
lower Trias (state 0, in this case), or on the right (state 1). State 0 or 1 is written into the memory by inputing
a token to the input line W0 or W1 respectively. The writing operation is acknowledged by a token from line
A0 or A1, respectively. By inputing a token to line R, the memory is read out, and a token is produced on
either line R0 or R1, depending on the state of the memory. (b) Token-Pass equivalent of the 1-bit memory.
Modules are connected to each other by pairs of lines, which effectively form loops, each containing a token.
The memory’s state is encoded by the positions of four tokens (encircled) in the loops on which they reside. (c)
Simplified version of the Token-Pass 1-bit memory. Acknowledge lines are dropped, and their task is taken
over by the post-lines of W0 and W1. See also Video 1 in the Supplementary Online Materials.

Figure 7(d), together with its token-based counterpart (Figure 7(e)). The equivalence
of token-based circuits and Token-Pass circuits is used in the following theorem.

THEOREM 3.5. The set {TP-Merge, TP-Fork, TP-Tria} is universal for the class of
Token-Pass circuits.

PROOF. Follows from the equivalence of token-based circuits and Token-Pass cir-
cuits, and universality of the set {Merge, Fork, Tria} for token-based circuits [Lee et al.
2005].

The circuit for the 1-bit memory [Peper et al. 2004] in Figure 8(a) is token-based. The
corresponding Token-Pass circuit is constructed by replacing Merge, Fork, and Tria by
their Token-Pass equivalents and connecting them by pairs of lines (Figure 8(b)). The
same circuit, but with Acknowledge lines A0 and A1 left out, is shown in Figure 8(c); the
function of the Acknowledge lines is taken over by the post-lines of the Writing lines
W0 and W1. More efficient constructions for the 1-bit memory are given in Section 5.

4. THE T-ELEMENT

4.1. More Powerful than Expected?

Though the T-element introduced in the last section is the same as a TP-Merge, its
functionality is more powerful than would be expected from the simple functionality
of the Merge: the T-element can be used to construct the TP-Fork, as Figure 9 shows,
while a conventional Fork cannot be constructed from a Merge.

The key to the increased power of the T-element is its inclusion of Join functionality
(Section 2.1), its larger number of input and output lines, and the use of these lines
to connect to other modules in a way that is richer than the pair-of-lines scheme in
Figures 6(e) and (f). Can other modules be constructed from the T-element, in partic-
ular the TP-Tria? This question is important, because—as implied by Theorem 3.5—it
determines whether the T-element qualifies as universal for the class of Token-Pass
circuits or not. We show in this section that such a construction of the TP-Tria is
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Fig. 9. (a) The TP-Fork, shown with the symbol
3 in it, has three tokens as input to the lines a,
b, and c, and produces three tokens as output to
the lines a′, b′, and c′. Input of less than three to-
kens results in the tokens being kept pending until
there are three input tokens. (b) The TP-Fork con-
structed from three T-elements. In each T-element
one arm remains unused.

Fig. 10. (a) SPL-net: the two places share a transi-
tion in their post-sets, but at most one of the places
has out-degree exceeding 1. (b) Not an SPL-net: the
out-degree of both places exceeds one, while they
share a transition in their post-sets.

impossible. It will become clear in Section 5, however, that adding fluctuations of
tokens to the scheme completely alters this outcome.

4.2. Analyzing the Token-Pass Tria

A TP-Tria is constructed from T-elements by connecting the T-elements to each other
such that the resulting circuit has the external input/output behavior of a TP-Tria.
If in whatever arrangement of T-elements, there is a possibility of pathological in-
put/output behavior, like a failure to produce output due to a deadlock, we consider the
construction of the TP-Tria impossible. This section proves that there is no arrange-
ment of T-elements that produces exact TP-Tria-like behavior. Key to this result is the
underlying structure of the corresponding Petri net, which is largely limited by two
properties: the Token-Pass property and the SPL property defined in the following.

Definition 4.1. A net N = (P, T, F) is Simple (SPL) [Commoner 1972; Hack 1972] if
for all p, p′ ∈ P it holds that p 
= p′ ⇒ (p• ∩ p′• = ∅ or |p•| ≤ 1 or |p′•| ≤ 1).

SPL nets are a subclass of the more general Extended Simple (ESPL) nets, which
are also denoted in the literature as Asymmetric Choice nets. Informally, an SPL net
is a net in which, of all places having a transition in common in any of their post-sets,
at most one of the places has out-degree larger than 1 (Figure 10(a) but not (b)). The
T-element’s net is SPL, as can be confirmed from Figure 3(b).

LEMMA 4.2. The class of SPL nets is closed under serial composition.

PROOF. Let Tc be the new set of transitions used to compose N1 and N2 (c.f. Defini-
tion 2.7). Since the only places in N1 and N2 that are modified in the composition are
those with empty postsets, the outdegrees of these places will become at most 1 after
the composition, so the conditions of SPL nets will be fulfilled for all places in N1 and
N2. Finally, because every transition t ∈ Tc satisfies |t•| = |•t| = 1, every two places
p, p′ ∈ •Tc with p 
= p′ will satisfy p• ∩ p′• = ∅.

This lemma implies that all circuits constructed from T-elements have a net that is
SPL. The significance of the SPL property is that it is a cause for deadlocks.
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Fig. 11. (a) TP-Tria constructed from three T-elements. The TP-Tria has the same input tokens as in the
left of Figure 7(e). (b) TP-Tria after one step in its operation. T-element E1 now has tokens on all its pre-
lines, implying that it has the choice between two ways to process its input. (c) One way leads to the correct
output. (d) The other way causes a deadlock. The encircled tokens cannot be processed any further. (e) The
net corresponding to the TP-Tria in deadlock. Labels pi, p′

i
, qi, and q′

i
(i = 1, 2, 3) are as in Figure 17 in the

Appendix. The net is SPL. See also Video 2 in the Supplementary Online Materials.

Definition 4.3. A net N = (P, T, F) is deadlock-free from the set of markings S to the
set of markings S′ if for all C ∈ S there exists a D ∈ S′ such that for all markings

C′ ∈ RE(C): C′ *
→ D. The net N has a deadlock from the set of markings S to the set of

markings S′ if N is not deadlock-free from S to S′.

Informally, a net is said to have a deadlock if, after receiving input, there is a possi-
bility that the net fails to produce output.

THEOREM 4.4. Let N = (P, T, F, Si, Sf ) be the IEN system of a TP-Tria. If N is

Token-Pass and SPL, then N has a deadlock from Si to Sf .

PROOF. See Appendix.

COROLLARY 4.5. A deadlock-free TP-Tria can not be constructed from T-elements.

PROOF. Every serial composition of T-elements is Token-Pass (Lemma 3.4) and SPL
(Lemma 4.2), proving the corollary.

Theorem 4.4 is illustrated by Figure 11, where a TP-Tria constructed from three
T-elements runs into a deadlock via the sequence in Figure 11(a),(b),(d). The marking
of the net in Figure 11(e) corresponds to the deadlock of the circuit in Figure 11(d). This
marking results from a legal combination of inputs, but it will produce no outputs.
The deadlocked tokens get stuck in places with out-degrees 1 (Figure 11(e)), like in
the proof of Theorem 4.4. The same combination of inputs to the TP-Tria could also
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Fig. 12. (a) Brownian T-element (same symbol as non-Brownian T-element) represented as a net. The thick
lines correspond to the non-Brownian equivalent of the net. (b) Net of a Brownian line (multisegmented).
Transition rates are not indicated here.

result in an output marking without deadlock (Figure 11(c)), but such a marking is
not guaranteed to occur, since the order of the transitions in the net is unpredictable.
This result affects not only TP-Trias, but also circuits containing TP-Trias. The 1-bit
Token-Pass memory in Figure 8(b) or Figure 8(c), for example, has no deadlock-free
construction based on T-elements.

5. BROWNIAN CIRCUITS

Circuits are Brownian when tokens fluctuate in lines and modules. Unlike with the
monotonous behavior of tokens in the previous sections, operations in a Brownian cir-
cuit are done and undone repeatedly, as tokens move forward and backward. The net
of a Brownian circuit is constructed from its non-Brownian equivalent by inserting a
reverse transition for each transition in the original net and assigning positive transi-
tion rates to all transitions. Figure 12 shows the nets of the Brownian equivalent of a
T-element and of a multisegmented line.

Definition 5.1. Let N = (P, T, F, Si, Sf ) be an IEN system. Then the Brownian

Equivalent of N is a SIEN system Ñ = (P̃, T̃, F̃, S̃i, S̃f ,Λ) for which

(1) P̃ = P,

(2) T̃ = T ∪ T̆, whereby transition t̆ ∈ T̆ if ∃t ∈ T : (•t̆ = t•) ∧ (̆t• = •t),

(3) F̃ = F ∪ F̆, whereby (p, t̆) ∈ F̆ if ∃t ∈ T : (t, p) ∈ F and whereby (̆t, p) ∈ F̆ if
∃t ∈ T : (p, t) ∈ F,

(4) S̃i = Si,

(5) S̃f = Sf ,

(6) The transition rates λ1, ...,λn ∈ Λ, with n = |T̃|, are all positive.

The Brownian equivalent Ñ of an IEN system N preserves all the transitions of N, as
well as the flow relation and the initial and final markings. Furthermore, the new flow

relation F̆ added to obtain F̃ does not introduce new states in the reachability graph
of the net, rather it only adds new arrows, and it does not interfere with existing
transitions. This implies that the functionality of Ñ includes that of N, so circuits
designed for a non-Brownian mode of operation, also work when fluctuations of tokens
are allowed. Delays of tokens due to fluctuations do not affect the correctness of a
circuit’s operation, since the circuit is delay-insensitive.
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Fig. 13. (a) Simplified net of the TP-Tria in Figure 11. (b) Corresponding continuous-time Markov chain.
The states are marked by the labels, each corresponding to a place that contains a token. The three ini-
tial states are pointed to by the arrows at the left, and the final states are indicated by double circles. (c)
Continuous-time Markov-chain corresponding to the Brownian equivalent of the net in (a).

The added value of allowing tokens to fluctuate is that, due to the reverse transitions
in the net of a Brownian circuit, it is possible to undo transitions, including those that
lead to deadlocks. A circuit thus gains the ability to backtrack out of deadlocks, and
this is why a TP-Tria constructed from three Brownian T-elements according to the
circuit design in Figure 11 has no deadlocks.

Preventing deadlocks alone is not sufficient, though, because there is one more cause
in a Petri Net of a process’s failure to progress, and this is a so-called livelock [Sifakis
1980]. In terms of a Brownian circuit, a livelock occurs when for example, a token
input to a choice line of a T-element becomes synchronized with a token input to a
base line—possibly through some mutual interactions or some periodic behavior—in
such a way that when one token moves away from the T-element, the other moves
toward it, and the other way around. The T-element will then never produce output,
since it requires both tokens to be at its input terminals at the same time. This type
of pathological behavior is ruled out by imposing a sufficient degree of randomness on
the model, which is achieved here by modeling the Brownian equivalent of a net as a
Stochastic Interfaced Elementary Net system (see Definition 2.9). This allows the use
of the extensive apparatus available for Continuous-Time Markov Chains (CTMC):

THEOREM 5.2 ([MOLLOY 1982]). Any finite-place, finite-transition, marked sto-
chastic Petri Net is isomorphic to a discrete-space continuous-time Markov chain.

The isomorphism used in this theorem is a mapping between the state space of
a stochastic Petri Net’s reachability graph and the state space of a CTMC. Since
every transition in the Brownian equivalence of a net is accompanied by a reverse
transition—both transitions having a positive transition rate—the corresponding
Markov chain contains a transition and its reverse transition—both also with positive
rate—between the states representing the corresponding markings in the Petri net.
Whenever a state S1 of a Petri Net can be reached from a state S2 and the other
way around, the corresponding states M1 and M2 in the Markov chain are said to
be communicating. Communication between states is an equivalence relation, so
it divides the set of states of the Markov chain in equivalence classes. Each class
contains at least one state corresponding to an initial marking in a SIEN system.

Figure 13(a) shows a non-Brownian stochastic net (with transition rate left out) and
Figure 13(b) its corresponding CTMC, in which no states are communicating. When
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reverse arrows are inserted in the CTMC, we obtain a CTMC with three equivalence
classes of communicating states Figure 13(c)). This CTMC corresponds to the Brow-
nian equivalent of the net in Figure 13(a). Each equivalence class in the CTMC in
Figure 13(c) represents a single Markov chain that is irreducible, because the chain
is aperiodic due to it being continuous-time (e.g. Steward [2009]). According to a well-
known result, all states in an irreducible Markov chain with a finite number of states
are positive recurrent. This means that every state will be visited infinitely often with
probability 1, and that the mean time between two subsequent visits of a state is finite.

Definition 5.3. Let the SIEN system Ñ = (P̃, T̃, F̃, S̃i, S̃f ,Λ) be the Brownian equiva-

lent of the IEN system N = (P, T, F, Si, Sf ). Then the set S̃i can be partitioned into two
subsets, namely

(1) The set of computable markings S̃(c)
i

, for which it holds that for all C ∈ S̃(c)
i

there

exists a D ∈ S̃f such that C
*
→ D,

(2) The set of noncomputable markings S̃(nc)
i

, i.e., the markings not in S̃(c)
i

.

Since these two subsets of S̃i are disjoint, the CTMC corresponding to the SIEN
system can be partitioned in two disjoint CTMCs, one containing equivalence classes
corresponding to the computable markings, and the other covering the noncomputable
markings. Figure 13(c) shows equivalent classes that are all computable, because a
final marking can be reached for each of the possible initial markings. Markings are
noncomputable when the corresponding equivalence class in the CTMC contains no
final state. In this case, transitions will take place between the states of the equiva-
lence class associated with a certain input, without there being an end to the process.
In other words, we will find ourselves in an infinite loop of transitions, none of which
leads to a final state—a typical case of livelock. For this reason, the following theorem
only covers initial markings that are computable.

THEOREM 5.4. Let the SIEN system Ñ = (P̃, T̃, F̃, S̃i, S̃f ,Λ) be the Brownian equiva-

lent of the IEN system N = (P, T, F, Si, Sf ). Then Ñ is deadlock-free from the computable

markings S̃(c)
i

to S̃f .

PROOF. Let C ∈ S̃(c)
i

and C′ ∈ RE(C). Then all markings C′ ∈ RE(C) represent states

in the corresponding Markov chain that are in the same equivalence class. Let D ∈ S̃f

be a state for which C
*
→ D, then D corresponds with a state in the Markov chain that

is also in the same equivalence class. We then obtain C′ *
→ D, which implies that Ñ is

deadlock-free from S̃(c)
i

to S̃f .

Apart from guaranteeing the absence of deadlocks, Theorem 5.4 also rules out live-

locks resulting from initial markings in the set S̃(c)
i

. For initial markings in the set

S̃(nc)
i

, however, livelocks do occur, because the SIEN system will fail to reach a final
marking in this case.

COROLLARY 5.5. The Brownian T-element is universal for the class of Token-Pass
circuits.

PROOF. The TP-Merge is implemented as a Brownian T-element, and the TP-Fork
is designed according to Figure 9(b). The TP-Tria is constructed from the Brownian
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Fig. 14. Brownian 1-bit memory constructed from eight T-elements. The labels W0, W1, R, R0, and R1 have
the same meanings as in Figure 8. (a) The memory in its initial state 0. The state is stored by the positions
of two tokens in two different loops, one token at position Bit 0 stored and the other token at position Bit
1 erased. A token in the bit-stored position may cause a token to flow into the corresponding Overflow
of stored bit line and back again, due to token fluctuations. This is an intermediate stage of erasing the
memory during a writing operation. (b) Writing the state 1 in the memory. Tokens that have just moved
to a new position are encircled by rays, and the T-element just used in the operation is colored gray. Tokens
can fluctuate forward and backward as part of the writing operation, for example, through steps T2 and
T′

2 before bit erasure. The write control unit ensures that erasure takes place (step T3) before a new bit
is written (step T5). The writing operation is acknowledged by a token output at the post-line of W1. (c)
Reading out the memory (only lower half shown). Again, tokens fluctuate forward and backward, leading
to dead ends in the search (via T6), from which backtracking occurs (via T′

6), but eventually the memory’s
state is output to the post-line of R1 after step T9. See also Video 3 in the Supplementary Online Materials.

T-element according to the design in Figure 11. The initial markings of the TP-Tria
are computable. The corollary then follows from Theorems 3.5 and 5.4.

The Brownian equivalents of the 1-bit memories in Figures 8(b) and (c) built entirely
from T-elements are deadlock-free and livelock-free. Being designed without consider-
ations of token fluctuations in mind, however, these memories are inefficient, since the
searching behavior of fluctuations is only exploited inside their three TP-Trias, and
not in other parts of the circuits. The 26 T-elements required to build the memory in
Figure 8(c)—five for the TP-Merges, three for each of the four TP-Forks, and three
for each of the three TP-Trias—can be reduced to merely eight T-elements if the 1-bit
memory is redesigned such that fluctuations are exploited to a fuller extent (Figure 14).
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Fig. 15. (a) Logic circuit for the conjunction A∧B∧C. (b) Logic circuit for the disjunction of three lines that
are logically exclusive: inputs are A ∧ U ∧ V, A ∧ ¬U ∧ V, and C ∧ ¬V, and the output is the disjunction of
these three inputs at the bottom right of the circuit. The U and V variables are used to ensure that the three
inputs are logically exclusive to each other. (c) Brownian Half-Adder constructed from seven T-elements. The
lines A0 and A1 indicate the dual-rail encoded input A, and a similar representation is used for the other
input B, the carry C, and the sum S. See also Video 4 in the Supplementary Online Materials.

Is there a systematic method to design Brownian circuits from T-elements? Unlike
in conventional logic circuits, which use a single line to carry a binary value, two lines
are required in token-based circuits. These lines, labeled 0 and 1, respectively, rep-
resent a binary value by the presence of a token on one of them. Called dual-rail
encoding (e.g., Mead and Conway [1980, Ch. 7]), this scheme is also used in the pre-
vious 1-bit memories for the lines W0 and W1, as well as for the lines R0 and R1
(see Figures 8(c) and 14(a)). A dual-rail encoded AND-gate with input lines A0 and
A1 to represent one input, input lines B0 and B1 to represent the other input, and
output lines C0 and C1 to represent the gate’s output is then defined by the terms
C0 = (A0 ∧ B0) ∨ (A0 ∧ B1) ∨ (A1 ∧ B0) and C1 = A1 ∧ B1. A logical function in a Boolean
algebra can thus be expressed in canonical form as a sum of minterms of the individual
dual-rail encoded values. Figure 15(a) illustrates the principle to construct a minterm
of three variables from three T-elements. Generalized to a minterm of n variables,
this results in a construction in which each variable (or complement of a variable) has
the base line of a T-element assigned to it, whereas the minterm is represented by a
line passing through one of the choice lines of each of the n T-elements. Since each
minterm in a canonical form contains a unique combination of the input variables or
their complements, only one minterm will have the logical value 1 for a given logical
assignment of variables. In other words the minterms are logically exclusive to each
other. A disjunction of three logically exclusive terms is implemented by the two T-
elements connected to each other in the way shown in Figure 15(b), and this can be
extended to more terms by feeding the right T-element’s base line output side into a
choice line of the next T-element.

Using these constructions, we design a half-adder in Figure 15(c). This half-adder
consists of seven T-elements. It is left as an exercise to the reader to construct logic
gates, like a (N)AND, (N)OR, or XOR, by stripping the half-adder. For these designs,
only six T-elements per gate are required.
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6. END CONDITIONS

When tokens are subject to fluctuations, a circuit may enter states repeatedly without
it becoming clear when an output state is reached. What conditions should be satisfied
in order to reliably read output from a Brownian circuit?

Definition 6.1. Let N = (P, T, F, Si, Sf ,Λ) be a SIEN system. A non-empty set of
non-empty markings E is an End Condition of N if

(1) for all markings C ∈ E there exists a marking D ∈ Sf such that C ⊆ D, and
(2) for all markings D ∈ Sf there exists a marking C ∈ E such that C ⊆ D.

An end condition can be interpreted as a set of representatives of the final markings
of a SIEN system.

Example 6.2. The Brownian TP-Tria’s SIEN system, labeled as in Figure 11(e), has
the set of final markings

Sf = {{p′
2, p′

3, q′1, q2, q3}, {p′
1, p′

3, q1, q′2, q3}, {p′
1, p′

2, q1, q2, q′3}}.

It has the end conditions (among others):

— {{p′
2, p′

3}, {p′
1, p′

3}, {p′
1, p′

2}},

— {{p′
2, p′

3, q′1}, {p′
1, p′

3, q′2}, {p′
1, p′

2, q′3}},

— {{q′1, q2, q3}, {q′2, q1, q3}, {q′3, q1, q2}, {q′1}},

— {{q′1}, {q′2}, {q′3}}.

The following sets are not end conditions:

— {{p′
2, p′

3, q′1}, {p′
1, p′

3, q′2}}, because there is no marking that is a subset of

{p′
1, p′

2, q1, q2, q′3},

— {{q′1}, {q′2}, {q′3}, {p1}}, because {p1} is not in a final marking.

Definition 6.3. Let N = (P, T, F, Si, Sf ,Λ) be a SIEN system. An end condition E

of N is monotonous if for all elements B ∈ E, for all S ∈ Si, and for all markings

C ∈ RE(S), it holds that there exists a D ∈ Sf and a firing sequence f = [t1, ..., tn〉 ∈ FSD
C

with the sequence of markings C = C0, ..., Cn = D determined by Ci–1

[
ti〉Ci for all

i ∈ {1, ..., n} such that: Ci–1 ∩ B ⊆ Ci ∩ B.

A monotonous end condition indicates that a SIEN system is in a final marking, or
close to a final marking to the extent that no backtracking of tokens already in a place
that is part of a final marking is necessary to reach a completed final marking. This
absence of the need to backtrack implies that once a token reaches a place that is in an
element of a monotonous end condition, it can be kept there, without this preventing
other tokens from reaching their places in the final marking.

The last two end conditions in Example 6.2 are monotonous, but the first two are not,
because they contain the places p′

1, p′
2, and p′

3: some markings with tokens in these
places require backtracking to reach a final marking (e.g. compare with Figure 11(e)).

Definition 6.4. A monotonous end condition Em is minimal if for all markings Cm ∈
Em there is no monotonous end condition E with a configuration C ∈ E such that
C � Cm.

Monotonous end conditions that are minimal allow us to decide whether a Brownian
circuit has completed its operation through observing a minimal set of places for the
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Fig. 16. (a) Ratchet on a line and the corresponding net. (b) Ratchets on the output post-lines of a Brownian
TP-Tria. These ratchets will not introduce deadlocks, while the ability to backtrack out of deadlocks inside
the TP-Tria is preserved.

presence of tokens. A minimal end condition tends to correspond with the set of out-
put post-lines in a Token-Pass circuit, or a subset thereof. The fourth end condition
{{q′1}, {q′2}, {q′3}} in Example 6.2 is minimal. A minimal end-condition is not neces-
sarily unique. The Brownian equivalent of the T-element’s net in Figure 3(b) has the
two minimal end conditions Em = {{c′}} and Em = {{a′}, {b′}}, if the set Sf of final

markings is defined by Sf = {{a′, c′}, {b′, c′}}.

7. SPEEDING UP BROWNIAN CIRCUITS

Fluctuations of tokens allow us to avoid deadlocks, but this is a mixed blessing, since
it may require a long time to settle a circuit into its final state. How can Brownian
circuits be sped up without giving up their advantages? One way of achieving this is
to limit the extent to which tokens undergo fluctuations by minimizing the lengths of
lines. Given that the mean 1-dimensional displacement of a particle through Brownian
motion is proportional to the square root of time [Einstein 1956], the expected time for
a token to move along a line of length L is of the order O(L2). This significant overhead
can be mitigated by keeping lines short.

Further speed-ups can be achieved by using ratchets. A ratchet is a device that is at-
tached to a line to restrict the motion of tokens to one direction, somewhat like a diode
in an electronic circuit. Ratchets are well-known in nature, where they are thought to
play a crucial role in the operation of molecular motors [Hänggi et al. 2005; Reimann
2002]. In the representation of a Brownian circuit as a net, the insertion of a ratchet
results in the removal of a backward transition, as in Figure 16(a). Placement of ratch-
ets at constant-order distances D from each other will speed up the circuit by a factor
of O(L/D).

When ratchets are placed on all lines of a Brownian circuit according to the direction
that tokens are supposed to flow, the searching ability of the circuit will be taken
away. This speeds up the circuit, but it leaves us where we departed: non-Brownian
circuits, which may contain deadlocks. To avoid such situations, ratchets should be
placed only at locations in which they do not interfere with backtracking. Section 6
suggests some candidates for such locations: at output post-lines that correspond to
monotonous end-conditions.

Figure 16(b) shows the Brownian TP-Tria with ratchets placed in such a way.
These ratcheted modules can be placed as-is in the Brownian equivalents of the
1-bit memories in Figures 8(b) and (c). In these memories, ratchets may be placed any-
where outside their three TP-Trias, because no backtracking is required there. Speed-
ing up the Brownian 1-bit memory in Figure 14 may be done by placing ratchets at the
post-lines of W0, W1, R0, and R1. Placing ratchets at the inside of this circuit, however,
should be done with care, so as not to interfere with Brownian search processes.
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In physical implementations the prodigal use of ratchets may be disadvantageous
for yet another reason: ratchets consume energy, as shown by Feynman [2006]. There
is thus an incentive to not overuse them, and to strive for a good trade-off between
speed, energy consumption, and exploration ability.

8. CONCLUSIONS AND DISCUSSION

The presented Brownian circuit model uses fluctuations to explore the computational
state space of token-based circuits. Central in this framework is a circuit primitive
called T-element that is at the boundary of universality. Fluctuations provide tokens
with the ability to search for computation paths in a circuit built from T-elements,
allowing backtracking out of deadlocks and avoiding livelocks. It is this ability that
sways circuits in favor of universality. The stochastic nature of search in Brownian cir-
cuits is confined to their internal operations, and is not reflected in their functionality,
which is deterministic. Delays at which results emerge from output terminals of the
circuits do not affect the correctness of the results; in other words, Brownian circuits
are delay-insensitive.

Searching based on backtracking is a well-known strategy in computer science, and
it is even the basis of the program language PROLOG [Clocksin and Mellish 2003].
The analogy goes even further: ratchets, proposed in this article to limit movements
of tokens to one direction, are similar to the cut predicates in PROLOG. Both restrict
search processes with the aim of speeding up computation, and both require a careful
consideration of their placement so as to avoid adverse side effects to searching.

The placement of ratchets appears closely related to end conditions, as pointed out
in Section 7. This article defines end conditions, but it lacks a method to compute
them. Especially in large circuits, such methods will be important, since manual ad
hoc methods are extremely time-consuming. Structural theory of Petri nets may be
useful in this respect: traps in Petri nets, for example, appear to closely resemble end
conditions, and algorithms are known to find them.

The searching and backtracking functionality afforded by fluctuations allows de-
signs of circuits and circuit primitives to become simpler, since the functionality they
supplement would otherwise need to be realized explicitly in the form of additional
lines or states of circuit primitives, or in the form of more extensive circuitry. The
Brownian 1-bit memory in Figure 14, for example, requires fewer resources—in terms
of number and complexity of primitives—than the non-Brownian 1-bit memory in
Figure 8(a).

The T-element—as useful as it is in the theoretical framework of this article—is
not optimal from an implementation point of view. More simplicity is provided by the
two Brownian circuit elements in Lee and Peper [2008], both of which have fewer
input and output lines. These circuit elements, however, operate in only one mode,
i.e., when tokens fluctuate. A nonfluctuating mode cannot be defined for them, unlike
with circuits in this article that are based on T-elements. In other words, the main
result of this article—that fluctuations of signals can make the difference between
universality and the lack thereof—cannot be formally proved through the use of the
simpler Brownian circuit elements in Lee and Peper [2008].

Brownian circuits may bring reduced energy consumption and relaxed operating
temperatures in nanoelectronics a step closer, but there are still limitations to the fluc-
tuations of tokens—and therefore to the allowable temperature under which a Brow-
nian circuit operates. The model in this article requires tokens to fluctuate, but not
to the extent that they leave a line or a module when they should not. Physical real-
izations of Brownian circuits will need to abide by these conditions. It is assumed in
the proposed model that tokens do not interact with each other on lines or ratchets. In
physical realizations, this condition may be difficult to satisfy for some types of tokens,
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Fig. 17. Labeling of input and output places of TP-Tria’s net for the proof of Theorem 4.4. The input pre-
lines of the net are represented by the places p1, p2, and p3. and the corresponding input post-lines by p′

1,
p′

2, and p′

3 respectively. The output pre-lines are represented by q1, q2, and q3, and the corresponding output
post-lines by q′

1, q′

2, and q′

3 respectively.

for example for electrons, which are subject to electromagnetic interactions. Though
ignored here, interactions between tokens can actually be exploited in certain Brown-
ian circuits [Lee and Peper 2010], where repulsion of electrons could be used to steer
them away from each other toward the proper input terminals of a module.

Petri nets—used for modeling Brownian circuits in this article—provide not only
an abstract particle-like representation of signals, they are also compatible with the
physical structures that will likely be employed to hold and propagate those sig-
nals. Quantum dots come to mind in this context [Reed et al. 1988], and their dis-
crete nature is remarkably similar to the places in Petri nets. Tunneling of particles
between Quantum dots is a stochastic phenomenon, and stochastic Petri nets (e.g.,
Murata [1989]) appear well-suited to describe such phenomena quantitatively, which
will allow a more detailed evaluation of Brownian circuit performance, like speed. The
fascinating journey beyond Moore’s law has just begun, and the concepts discussed in
this article may give a glimpse on the prominent role noise and fluctuations will play
in it.

APPENDIX

Proof of Theorem 4.4

PROOF. Assume the net of a TP-Tria is Token-Pass and SPL. Let input and output
places be labeled as in Figure 17. Throughout the proof, it is assumed that i, j, k ∈
{1, 2, 3} and i 
= j 
= k 
= i, so k = 6 – i – j. Define the following input markings of the net:

Ii = {pi, q1, q2, q3}

Iij = {pi, pj, q1, q2, q3}.

Ii corresponds to an incomplete (single) input to the TP-Tria, whereas Iij corresponds
to a complete (double) input to the TP-Tria. So, the set of initial markings is Si =
{I12, I23, I31}. Likewise, the following output markings of the net are defined:

Ok = {q′k, qi, qj, p′
i, p′

j}.

The set of final markings is Sf = {O1, O2, O3}. According to the TP-Tria’s definition,

Iij
*
→ Ok but the markings Oi and Oj are not reachable from marking Iij. Moreover, Oi,

Oj, and Ok are not reachable from any of the markings Ii, Ij, and Ik.
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Since p1, p2, and p3 are three different places, each with an empty pre-set, they
belong to different paths. Let the path containing pi be Pi (i ∈ {1, 2, 3}). Define the set
Tij of transitions as follows:

Tij = {t ∈ T | •t ∩ Pi 
= ∅ ∧ •t ∩ Pj 
= ∅}.

Let tij be a transition in Tij with the shortest firing sequence from Iij, including tij itself,
and let the length of this firing sequence be Lij. In a similar way, we define the sets Tik

and Tkj, and select corresponding transitions tik and tkj, respectively. We then compare
Lij, Lik, and Lkj, and select an element from {tij, tik, tkj} with a minimum-length firing
sequence. Since i and j can be chosen freely at this point, we assume without loss of
generality that tij is such an element.

Let p̂i be the place in •tij ∩ Pi and p̂j be the place in •tij ∩ Pj. Due to the linearity
of the paths Pi and Pj, these two places are uniquely determined. Since the net of the
TP-Tria is SPL, at most one of the places in p̂i and p̂j has out-degree larger than 1, and
the other place out-degree 1. Suppose (without loss of generality) that |p̂•

i | = 1.
In the remainder of the proof, we show that the net N has a deadlock from the input

marking Iik to the output marking Oj, and that this deadlock occurs in p̂i. To this
end it is shown that p̂i is included in a marking in RE(Iik) from which Oj cannot be
reached.

First, we prove that transition tij is not enabled by any marking reachable from Iik.
Assume tij would be enabled by such a marking, then it would hold that tij ∈ Tik is an
element with the shortest firing sequence in Tik due to the definition of tij. We would
then proceed in a similar way as for the input Iij, and obtain the place p̂k ∈ •tij ∩ Pk.
Since Pi, Pj, and Pk are different paths, tij will be enabled by a marking containing all
of the places p̂i, p̂j, and p̂k, but not by a marking that lacks p̂k. This contradicts the
definition of tij, which implies that tij is in a firing sequence starting from Iij. So, the
assumption that tij can be enabled by a marking reachable from Iik is false.

Second, we prove that place p̂i is in a marking reachable from Iik. Let fi = τi1τi2...
be a firing sequence from Ii to a marking Ci, for which p̂i ∈ Ci, and let the associated
sequence of markings be Ii = Ci0, Ci1, ..., Cin = Ci, whereby Ci,r–1

[
τir〉Cir (r ∈ {1, ..., n}).

Inserting a token in pk in the marking Ii results in the marking Iik. Since pk is an input
place, it will not be in any of the markings Cir, so fi will also be a firing sequence from
the marking Iik to the marking Ci ∪ {pk}.

Place p̂i is thus in a marking that is reachable from Iik, but since tij is the only

transition in p̂•
i (because of the out-degree being |p′

i
•| = 1), it follows that a token

ending up in place p̂i due to input Iik cannot be removed from p̂i through the firing of
tij. So, Oj is not reachable from marking Ci∪{pk}. Consequently, the net of the TP-Tria
has a deadlock from Si to Sf .
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