Brownian Excursions and Parisian Barrier
Options

Marc Chesney,
HEC, Département Finance et Economie,
1, rue de la libération,
78351 Jouy en Josas Cedex, France

Monique Jeanblanc-Picqué,
Equipe d’analyse et probabilités,
Université d’Evry Val d’Essonne, Boulevard des coquibus,

91025 Evry Cedex, France
Marc Yor,

Laboratoire de probabilités, Tour 56, 3-ieme étage,
Université P.M.C., 4, Place Jussieu,
75252 Paris Cedex, France

July 95, Revised version : December 95
To appear in Adv. Appl. Proba. March 1997
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1 Introduction

The payoff of a standard European option only depends on the price of the un-
derlying asset at the maturity date. In the barrier (or knock-out) option case, the
payoft does not only depend on the final price of the underlying asset but also
on whether or not the underlying asset has reached a barrier price during the life
span of the option.

The more volatile the underlying value is, the less sense the concept of knock-out
option makes. It is acceptable to lose the right to exercise a barrier option only
if the probability that the standard option will be in the money at maturity is
pretty low. This is not the case if the volatility is high when the option is lost (in
this case the value of the option is pretty small). Actually, after a critical level
of the volatility, the European knock-out option has a value which is a monotonic
decreasing function of the volatility.

In this paper, we define a new kind of option which we shall call a Parisian
barrier option. For conciseness, we shall often drop the term “barrier” in the
sequel. A Parisian option is close to a barrier option, studied in [20], the difference
lying in the fact that the owner doesn’t lose the option if the value of the underlying
value reaches the knock-out level, but only if it remains long enough under (or
above) this level.

With a Parisian option, the joint probability to lose the right to exercise and to
have at maturity an underlying value which is higher (resp. smaller) than the
strike price for a call (resp. for a put) can be monitored.

The Parisian option combines the advantage of the knock-out option, i.e., to reduce
the cost, with the advantage of standard options, i.e., to keep the right to exercise
longer.

The referee also pointed out another possible advantage of Parisian options; we
quote : “as far as barrier down-and-out options are concerned, an influential agent
in the market who has written such options and sees the price approaching that
limit could try to push the price below this limit, even momentarily. This will
make the options worthless, so even it the agent loses some money while doing so,
he might be compensated by the elimination of liabilities. However, in the case
of Parisian barrier options, he will have to make sure that the price stays below
that level for some time; this might prove more difficult or more expensive. This
makes the market fair in that it protects the holder of such options from deliberate
action taken by the writer.”

The paper is organised as follows: in section II, we introduce the notation and
define the assumptions. In section III, we obtain an upper and a lower bound for
the value of the Parisian option. In section IV, we attempt to value these options,
whereas in section V, we give precise formulae for the Laplace transforms of their
values. In section VI, we prove the put-call parity. We study cumulative Parisian
options in section VII. Technically, in pricing such options, we will rely upon ex-



cursion theory, the needed results from which are presented in the appendix.

The main computation made in this paper is an illustration of the following
general “principle” : to estimate the usually complicated function

o1, K) Z B[l gor (@ — K)7]

for (®;,t > 0) a Brownian functional, and T a stopping time, we compute the
Laplace transform of ¢(-, K) :

/Oo dt e Mot K) = B[ /Oo du e (D — )],
0 0

and, in many instances, the right-hand side may be evaluated with the help of the
strong Markov property. Two previous applications of this “principle” have been
made for the computation on one hand of Asian options [10], on the other hand
of double barrier options [11].

Acknowledgements: We are grateful to Glenn Kentwell and John Cornwall
from Banker Trust Australia, for their comments and useful suggestions, to the
anonymous referee for constructive remarks and to Laurent Gauthier for helpful
discussions. We are of course responsible for any possibly remaining error.

2 Definitions

2.1 Notation

Let us briefly describe what is an excursion at (or away from) the level L for an It6
process Sy, i.e., a process of the form dS; = b(t, Sy) dt + a(t, Sy) dW;. For details,
see the Appendix and Revuz-Yor [22], ch XII.

Let S; be an It6 process and call L the level of the excursion we consider. We use
the notation

gi, =sup{s <t|S, =L}, d7,=inf{s>1S, =L}

(we make the usual convention : sup()) = 0, and inf(§)) = +o0).

The trajectory of S between gfi and dit is the excursion of S at the level L,
which straddles time ¢. The variables git and dit are the left and the right ends
of the excursion. If S remains below L during this excursion, i.e., if S; < L, the
excursion is said to be below L.

The length (or life duration) of the excursion which straddles ¢ is dit — ggt. We
are interested here with ¢ — ggt, which is the age of the excursion.

In the context of a Parisian option, S; is the price of the underlying asset. We
suppose that
dSt = St(,udt—l—UdBt), SO =2 (1)



where o is a non-negative constant and B a Brownian motion.

We will denote by r the interest rate and by 6 the dividend rate if the underlying
is a stock (otherwise, for a currency, 6 will play the role of the foreign interest
rate). We assume that both r and ¢ are constant.

The maturity of the option is denoted by T" and the strike price is K.

2.2 Parisian out option

a. Down-and-out option The owner of the option loses the option if the un-
derlying asset price 5; reaches the level L and remains constantly below this level
for a time interval longer than a fixed number D, called the option window. If
not, the owner will receive a payoff ¢(Sr), with é(z) = (z — K)T for a call (resp.
(K — )% for a put) where K is a fixed value. For a down-and-out barrier option,
the case of interest is when the initial price of the underlying asset is greater than
the barrier; this is no more the case for a down-and-out Parisian option.

b. Up-and-out option The option is lost by its owner if there is an excursion
above the level L which is older than D.

2.3 Parisian in option

a. Down-and-in option: The owner of a down-and-in option receives the pay-
off only if there is an excursion below the level L which is older than D. The
down-and-in option (resp. down-and-out) refers to an option which appears (resp.
disappears) when there is an excursion which lasts long enough below the level L.

b. Up-and-in option: The owner of the option receives the payoff only if
there is an excursion above the level L which lasts longer than D.

We assume no rebate in our study; we could easily extend our computations
to that case.

3 Upper and Lower Bounds of a Parisian down-
out option

As presented in the introduction, the Parisian option combines different charac-
teristics of the knock-out option, and of the standard option. More precisely, let
us consider the two following limiting cases for down-and-out options:

o S; > L and D > T —t. In this case, the probability to have an excursion
below L, between t and T', of length at least equal to D is zero.
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The values of the Parisian call and put are the standard European options
given by the Black and Scholes formula [3].

e S, > L and D=0.
In this case, as soon as the underlying value reaches the excursion level L,
the option is lost. The option becomes a knock-out option and its value is
well known [20].

Between those two limiting cases, when D decreases from T'—1¢ to zero, the option
value decreases, because the probability to lose the right to exercise increases. We
thus have the following formulae for the call and put cases:

a. Call If z > L :

Clz,T) < xe_(STN(dl) — Ke_rT./\/(dg)

Clx,T) > 2e TN (dy) — Ke "IN (dy) (2)
—x (%) N(y) + Ke 0T e=rT (%) Ny —oVT)

b. PutIlf z > L :
Pz, T) < Ke_rT./\/(—dg) - xe_5TN(—d1)

Piz,T) > Ke_rT./\/(—dg) — xe_5TN(—d1)

Ke_rTe_(ST (i)z_ze./\/(—y + U\/T) +x (E) _ZEN(—y)
(3)

with
dl -

1 T a*T
In(— —6HT 4+ — dy = dy — T
aﬁ(n([&’)—l_(r T+ ) 2= —oVT

and A the distribution function of the normalized gaussian variable,

1 T 1 L?
— 4. — 1 T
‘ 2 + o2’ Y o T n(:z;K + 60\/_)

Notice that for each D belonging to [0,7], a Parisian option can be defined. The
two limit cases D = 0 and D = T correspond respectively to the knock-out option
and to the standard option.

4 The valuation of Parisian options

Let @) denote the risk neutral probability. Under (), the dynamics of S is given by
dSt = St ((T—5) dt—I‘O'th)7 SO =2 (4)
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where (W;,t > 0) is a @-Brownian motion and x > 0. It follows that

o?
Sy = x exp [(r—(S—?) t—l—aWt] .

Let us introduce the following notation

2
mzl(r—5—0),b:11n<L)
o 2 o x

where L is the excursion level.
The price of the asset is

Sy = xexp(o(mt + W) ).

4.1 Parisian out-option
4.1.1 Down-and-out option.

The owner of a down-and-out Parisian option loses it if S; reaches L and remains
constantly below the level L for a time interval longer than D.

This is the case if and only if [N{E,D(S) < T, where [N{E,D(S) is the first time
at which the age of an excursion below the level L for the process S, is greater
(“older”) than or equal to D

Hyp(S) = inf{t 2 0| Ls<r, (t —g7,) = D} ()

We can give a more convenient form to H r.0(S) by refering to the Brownian
motion W;. Actually, HI:D(S) = H,"}y, where

H)y = inf{t > 0| Lw,ymecs (t — g53) > D} (6)

where g7, is the left extremity of the excursion straddling time ¢ and away from
level b for the process W, + mt:

9y = sup{u <t| W, +mu = b} (7)

Relying on Cameron-Martin-Girsanov theorem, we introduce a new probability
P, which makes (Z; = Wy 4+ mt,0 <t <T) a P-Brownian motion. The price of a
down-and-out option with payoff ¢(Sr) is, in an arbitrage free model,

-7 m2 m
S <¢(ST)]1H;71,D—>T) = exp|—(r + 7)T] Ep (ﬂHb_,D>T ¢(erZT) ¢ ZT) (8)
where
Hyp = Hypy = inf{t 2 0|1y, (t - 9,) = D}
gpe = sup{u <] Z, = b}.

6



In many formulae involving a function II of the maturity 7', as in (8), the dis-
counted factor exp[—(r + %)T] appears. In order to give concise formulae, we
introduce the following notation

2

"I(T) = exp[(r + —-)TTI(T) (9)
and we shall refer to this quantity as a (r,m)-discounted value.

a. Parisian down-and-out call : We now treat in details the Parisian down-
and-out call. Let us denote by C?4(x,T; K, L, D;r, ) the value of a Parisian down-
and-out call.

This value depends on the parameters x (the value of the underlying asset), T
(the maturity) and K, L, D,r,6. When the parameters K, L, D,r, 6 are fixed, we
use the concise notation C4(z,T). From (8), we have

2

7 m 7
CHax,T; K, L,D;r,8) = exp[—(r+7)T] Ep (ﬂHbe>T (vexp(cZr) — K)T exp(mZT))
therefore, using notation (9), we obtain the following expression
*CHa,T; K, L,D;r,6) = Ep (ﬂHb_,D>T (vexp(cZy) — K)T exp(mZT))
b. Parisian down-and-out put : Using obvious notation, we get the following:
*Pix,T;K,L,D;r,é) = Ep (ﬂHb_,D>T (K —zexp(cZr))t exp(mZT))

4.1.2 Up-and-out options

The (r, m)-discounted value of an up-and-out option with payoff ¢(S57) is :

Ep (Wp o 0lae” 1) explmzy))

where
Hb-l,—D == inf{t Z 0 | ﬂZt>b (t - gbﬂg) Z D}

g = sup{u < t| Z, = b}

We denote by C¥(x,T; K, L, D;r,6) (vresp P*(x,T; K, L, D;r ¢é)) the value of an
up-and-out call (resp. put).

4.2 Parisian in options

The “in” case follows from the “out” case: for example, let us denote by

e, TR L Dir) = B (1, (0770 = K)* explmZr) )

7



the (r,m)-discounted value of a down-and-in call. Then,
“CHa,T;K,L,D;r,6) = "BS(x,T) — “Cix,T; K,L,D;r,§) (10)

where BS(x,T') is the Black-Scholes price, i.e.,

2

BS(z,T) = exp[—(r + m7)T] Ep ((:L'eUZT — K)* exp(mZT)) :
In the same way, the values of an up-and-out call and of an up-and-in call
“C(x, TyK,L,D;r,6) = Ep (ﬂ{HJD<T} (:L'eUZT - K)*t exp(mZT))

satisfy

Cia, T;K,L,D;r,6) = "BS(x,T)— *Cx,T; K, L, D;r,é)

4.2.1 Some references

A number of papers [6, 13, 15, 16, 17, 21] and [24] have been devoted to the study
of the longest duration of excursions of Brownian motion on the interval [0, 7],
and more generally to the sequences

VI(T) > W(T) > ... > V,.(T) ...

of ranked lengths of excursions during the interval [0, T, including T'— g7. A more
complete discussion of the existing literature is presented in [18], where this kind
of study is furthered by showing that the law of the normalized sequence

i(Vl(r), Va(r), oo, V(). 00)

for certain very special random times 7, is identical to the law obtained for 7 =T,
a constant time; this is in particular the case for

= Hi(D)=inf{t : Vi(t) > D}

and, more generally for 7 = H,(D) = inf{t : V,,(t) > D}. Such identities in law

have originally motivated the writing of [18] and of the present paper. We remark
T aw

V(T (fa) H, (1), an identity which has

been exploited by Wendel [24]. It would be possible to construct options based on

Hy(D), H3(D),...; however, we shall not develop this here.

that the scaling property implies that



4.3 Reduction to the case v = L

The case @ = L (or b = 0) is important, since it is possible to reduce the other
cases to it. In this case, we use the following special notation : for excursions
below the level L (with @ = L or b= 0)

€, T3 K, Dsr) = T Eg (81— KMl o)

or, using the notation (9):

“Co(x,T; K,D;r,6) = Ep ((:JceUZT — K exp(mZr) IIHO—D>T) (11)

[

We refer to this case as a zero down-and-out call. For excursions above the level
L (zero up-and-out call)

CHa, 15 K, Dir,6) = =7 B ((ST - K)ﬂlﬁh(s)ﬂ) (12)

4.3.1 Caseb>0

We show that the b > 0 (or L > ) case reduces to the case b = 0. We study the
case of call options, the general case follows immediately. Let us denote by 7} the
first hitting time of b, related to the Brownian motion (B, > 0)

T, = inf{t > 0|B, = b}

and its well known law by g (du) :

whose Laplace transform equals

\2
E(exp(—?Tb)) =exp—b\, forA>0.

a. Down call
In the case b > 0, if Hy, > 1" > D, then T, < D. Therefore, the (r,m)-

discounted value of a down-and-out call in the case L > z is

O, T;K,L,D;r,8) =

Ep (HH;DZTHTbSD[x exp(o(Zr — ZTb +b) — K]t exp(m(Z7 — ZTb + b)))



- [ " i (du) Ep (11 sl exp(o(Wr_y + 1) — K]* exp(m(Wr_, + b)))

where [:155 is the first time such that an excursion below b, for the Brownian
motion W; 4 b issued from b, is older than D. It follows

D
*CHa,T; K, L,D;r,8) :/ ,ub(du)Ep<]1H0— sr_ulrexp(aZr_,) — K]t exp(mZT_u))

0 D=
therefore, we obtain :

Proposition 1 The (r,m)-discounted value of a down-and-out call in the case
L > x can be expressed in terms of zero down-and-out calls

D
O, T5 K L, Dsr,6) = / p(du) *CF (2, T —w; K, Dyr.6)
0

where

*Co(x, Ty K,D;r,6) = Ep( IIHO_ T(:JceUZT — K)* exp(mZr))

>
and py, ts the law of Ty.

b. Up call
If b >0 and H;:D < T, then T, <T. Then, we prove the following

Proposition 2 The (r,m)-discounted value of an up-and-in call in the case L > x
can be expressed in terms of zero up-and-in calls

T
"Ci(, T; K, L, Dsr, ) :/ py(du) “CH (2, T —u; K, Dsr,6)
0

where

*CH(z,T) = Ep (ﬂ{HJfDST} (:L'eUZT — K)* exp(mZT))
corresponds to a zero up-and-in call.
4.3.2 Case b<0.
The same method leads to the following formulae :

T
*Cl?l(:z;,T;K,L,D;r,(S):/ () *C (T — s K D 6)
0

where

“C7 (2, T) = Ep (ﬂ{HO_DST} (*WUZT — K)* eXP(mZT)) :

K3

5 A formula for the valuation

We study, in this section, the valuation of a down-and-in option. The value of a
down-and-out option was obtained in (10).

10



5.1 Parisian down-and-in call

Let us denote by F;, = o(Zs,s < t) the completed filtration of the Brownian
motion (Z;;t > 0). Remark that H; j is an Fi-stopping time. We have

*cf@;T)::Ep<nH;ﬁgpr

W%@J%—KVVEJ) (13)
Thus by use of the strong Markov property

*Cfl(x, T)= EP(HH;DST PT—H;D(fx)(ZH;D)) (14)
with
fo(z) = € (2e” — K)*t (15)

and
1 (u—2)?

PUE) = o [ S esp(= 5 du

the Brownian semi-group acting on f. The same kind of formula applies for a

down option with payoff ¢(S57).

As recalled in the Appendix, the random variables 7 - and H, ;, are inde-
pendent. Let us denote the law of Z - by v(dz). 7

Consequently, we obtain

CHaT) = [ vl By ey, (F)(2)

(16)
= /_ dy fx(y) hb(Tvy)
where ,
wp_@—z—w
° 2(1 — H, p)
hy(t,y :/ v(dz) Ep | 14- : 17
()= [ ) B o — e (1)
Let us remark that hy(t,y) =0if t < D.
5.1.1 Case b<0
In this case,
dx r — b)?
P(ZH;D € dr) = o (b—x) exp(—( ZD) )}

11



We establish in the Appendix that, for A > 0 the Laplace transform ]Azb()\,y) of
hb('v y) 18

AV
DN2X U (V2AD)

o) 0 2
/ dt e Mhy(t,y) = / dz z eXp(—Z— — 10—z —y|V2X)
0 0 2D

where

U(z) = / dx x exp(—% +zx)=142V2rx exp(%)/\/(z). (18)
0
The integral
- def [ z?
Kyply—10b) = / dz z exp(—ﬁ — b=z —y|V2X)
0

can be easily evaluated.
It a =y — b <0, we obtain, using change of variables

Ky p(a) = exp(aV2)) [I = 2P VaADN (—=V2AD)] = exp(aV2)\)¥(—V2AD)
It @ > 0, a similar method leads to

Kyp(a) = e~V +2vVrAD

AD [ —av2) a A eV A
c (e N( = VWD) = N (=V2AD) 1 — A @+x/2m)])

) V2 —
If D = 0, we obtain that hy(A,y) = eﬁe_w — 2)‘7 therefore we have the

formula for a barrier option (it is easy to invert hy and thus to find the right-hand

side of (2)).

Using the explicit expression (15) of f,, we obtain

*Cf[d(x7 T7 [(7 L7 D7 r, 5) = /Oo dy emy(xegy - [()hb(T7 y)
()
1, K
where 3(x) = —hli-
oz

Particular case: K > [ In this case, we need only the value of hy(t,y) for y > b

and we obtain
U(—V2AD) vV
U(vV2AD) V2A

It can easily be proved, since that eV is a Laplace Transform, that U(—=v2AD)

is a Laplace transform. Therefore, in order to invert hy, it suffices to invert

U(v2AD)

}Alb()‘v y) =

. This is not easy : see [5] for some computation.

12



Theorem 1 In the case x > L (i.e., b < 0), the (r,m)-discounted value of a
Parisian down-and-in call with level L is

*Ci(x,T; K, L, D;r,8) = /( ) dy €™ (xe™ — K)hy(T' y)
Bz

1., K
where f(x) = —1In i
o x

The function hy(t,y) is characterized by its Laplace transform
b2\
DVaNT(VZND) / dz z exp(
where W(z) is defined in (18).
In the case K > L, the Laplace transform of hy(t,y) fory > B(x) is

\I;(_\/W) e(2b=y)V2X
U(V2AD)  V2h

Remark: In each case, it is possible to compute the Laplace transform of the

b y) = —|b— = — ylV2N)

hy(X,y) =

“Delta” term, i.e., the derivative with respect to = of the value of the option. This
Laplace transform has a somewhat complicated form. For example, in the case

ocd
9 —(x,T) is

A()) = /0 eMA() dt =

K > L, the Laplace transform of A(T) =

m—+o—\/2u
W(—+/2uD) e2bV/20 ([x’)f

U(V2uD) Zum+ o — /2

Whereﬂ:)\+m72—|—r.

X

51.2 Case b>0

In the case b > 0, the Laplace transform of h(.,y) is complicated. We obtain

/OOO dt e hy(t,y) = E(/_O:O v(dz)e Mo \/12_)\ exp(—|y — Z|\/ﬁ))

Using the results of the Appendix,
/°° dt e‘”hb(t y) = (19)
/ dzz exp(——= — |y — b+ z|V2}) / piy(da) e
0

D2\ \I/ 2)\D
—AD 22 (z — 2b)* —ly — 2|V
AR _\z—a0) y—z|V2A
%/MD/ (eXp (=3p) ~ P ~—5p )e

13



The second term of the right member of (19) is the Laplace transform of ¢(-,y)
where

Lep P (y —2)? z? (z —2b)*
g(t.y) = /i =D Joe P (m) (eXP(—E) - GXP(—T)) dz(f- |
20

Particular case If y > b, the first term on the right member of (19) is equal to

W(—V2AD) e~ v=DV2A 4D
U(V2AD)  V2x

This term is the product of four Laplace transforms, however the inverse of TV23D)
is not identified.

po(de)e (21)

Theorem 2 [In the case x < L (i.e., b > 0), the (r,m)-discounted value of a
Parisian down-and-in call with level L is

*Ci(x,T; K, L, D;r,8) = /Oo dy €™ (xe™ — K)hy(T' y)
B(e)
1., K
where (x) = —hli-
g Z

The function hy(t,y) is characterized by its Laplace transform iLb()\,y) =

1 > z? D iy A
<D\/ﬁ\11(\/m)/o dZZGXp(_E_W_HZ'\/ﬁ)/O ps(dz) e )+g(tay)

where g is defined in (20).

6 Parisian put

We establish a put-call parity in the same manner as Grabbe [12]. The (r,m)-
discounted value of a Parisian down-and-out put is

*Pix,T;K,L,D;r,é) = Ep (ﬂHb_D>T (K —ze??T)t exp(mZT))

The right side is equal to

i e—chT 1
K Ep (HH;D>T( — - g)‘l' exp((a + m)ZT))

and this expression can be reduced, by introducing the Brownian motion W, =
—Z;. Thus, the hitting time H;, related to Z is the stopping time Hj—b,D related
to W, and it follows that

eCTWT 1

*Pg(l‘,T) = J}[X’ Ep (ﬂHib,D>T (T - ?

1 expl (o + )W)

14



Writing the terms (o +m) and %- —|—r in an explicit form with (r, 6) as parameters,
it is now easy to check that

11

Pix,T;K,L,D;r,é) =z K C“( 1”Z’

Dsé,r)
For other Parisian options, the same parity relation holds. For example, for a
Parisian up-and-out put,

11

Pf(x,T;K,L,D;r,(S)—:L'BC“( [,,E

,D;o,7)

7 Cumulative Parisian options

In this section, we define and study an option which is lost by its owner when the
time spent by the underlying asset below the level L is greater than D.

More precisely, let I'7" = Ik Ilg,<p dt and et = s Ilg,>p dt. The value of
the option is

CE(x, T; K, L, D;r,8) = e Eg((St — K) sy p).
The problem reduces to the computation of

*C¥(x,T;K,L,D;r,8) = Ep(ﬂAb,j:>D($€UZT — K)texp(mZr))
T 2

Where Agl_ = fOT ]]‘Ztgb dt7 and Agl—l— = fOT ﬂZth dt

71 Caseb=0

For b= 0, the law of the pair (77, A) may be obtained from the equality in law
(Zr,97.A}) = (/T — grmy,gr,grU) where my is the Brownian meander at
time 1 (see Appendix), U is uniform on [0, 1], € is a symmetric Bernoulli variable
on {—1,+1}, the variables (my, gr, U, €) being independent.

We denote by ¢r(z)dz the sub-probability P(Z7 € dx, Af > D). Tt follows that,
since {Zr € dx, AT} = {Zy € dx, A} } for 2 <0,

le z
eXp
D /3T — s)

For x > 0, we use the decomposition

Pr(r) = ———)ds, x<0.

— )

{Zr € dl‘,A; >D}=A{Zredx, T—gy > D}U{Zr €dax, D > T—gr > D—A;—T}
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and it follows (see the Appendix for the law of (Z7,gr)) that, for > 0 :
()

eXpl—————— 22

v /T—D Nar—y) L o(r=D) /T eXP( )

T-D

% 0 S(T—S)3 /3

The (r, m)-discounted price of a cumulative Parisian zero down call (b = 0) is

vr(z) =

CHa T Ky, Dir6) = [ dy(ae™ — K)* exp(my)ir(y)

Another proof of the pricing formula of cumulative options was proposed to us
by the referee, involving some results on a-quantiles (see, e.g., [1, 7, 9]). Define
the a-quantile of {Z;, 0 <t < T} as

M(a,T) =inf{z : A7~ > oT'}

Then, in order to compute

_I_
E<HA§_>D (:L'eUZT — K) exp (mZT)) ,

we note that {A%™ > D} = {M(2.T) < b}. The decomposition in Dassios [7]

and its extension in [9] state that

D aw
1), Z0) ") (sup Z,+ int L, 2o 7o+ Zr-p)
T 0<s<D

(M(

where Z, is an independent copy of Z;. From this identity, a discrete time version
of which goes back to Wendel [23] and Port [19], one can calculate the joint density
of M(%, T) and Z7 and thus obtain an expression for the value of the option.

7.2 Down-and-out case, b < 0.

As in the case of the Parisian down-and-out call with b < 0, we establish that

T
Co(x,T;K,L,D;r,6) = / po(du) *CH(z, T — u; K, x, D;r,8)
0

C

7.3 Parity relations
Since A7 + A% = T, we have the parity relation :

C(z,T;K,L,D;r,8)+ CHa,T; K, L,D;r,é§) = BS(x, K)

C

and

1

1
Pz, T;K,L,D;r,6) =xKC_ ( [,,

L,D;é,r)
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7.4 Some references

The law of the pair (Z7, Af) is studied in [1, 9, 25, 26]. The law of the triple
(Z7, Ly, A%) where Ly is the local time at 0 is studied more completely in [14].

8 Appendix

8.1 Some definitions and notation

8.1.1 Excursions intervals

Let (Z;,t > 0) be a standard Brownian motion. For each ¢ > 0, define
g = sup{s|s<t;7,=0} (22)
dy = inf{s|s>1t;7Z,=0} (23)

We have almost surely ¢g; < t < d;.
The interval (g;, d;) is the interval of the excursion' which straddles time ¢. For
u in this interval, sgn Z, remains constant. The law of the pair (g, Z;) is

2

2]
Iy ——— exp— ds dx (24)
= 27 /s(t — s)? 2(t = s)
More generally, we can define, for b € IR,
gpy = sup{s|s <t;Z;=b} (25)
dyy = inf{s|s>1t;7; =10} (26)

Let Hyp = inf{t : T z<,(t —gs¢) = D} be the first time at which the age of
an excursion below b is greater than or equal to D. In the same way, we define
H;:D = inf{t : Nz,>5(t — gss) > D} to be the first time at which the age of an
excursion above b is greater than or equal to D. We are interested in the laws of
the pairs (ZH;Dva_,D) and (ZH;DvHI;I,—D) which are described below, in 8.3.

8.1.2 The slow Brownian filtration

We suppose that b = 0. Let us denote by (F;,t > 0) the natural filtration of the
Brownian motion Z.

If R is a random variable such that R > 0 a.s., we define the sigma-field F5 of
the past up to R as the o-algebra generated by the variables (gr, where ( is a
predictable process.

In particular, we consider the o-algebra F_ which is included in F; and is in-
creasing with respect to t. Denote by (f;;,t > 0) the slow Brownian filtration?

f;; =F,V o(sgn(Zy)).

LFor details, see Chung [4] and e.g., Revuz-Yor [22] p.107 Ex 3.23 and Ch. XII, par 3.
2See Dellacherie-Maisonneuve-Meyer [8] for details and comments.
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8.2 The Brownian meander

We denote by ¢ = g1 = sup{s <1 : Z, = 0} the left extremity of the excursion
which straddles time 1.
The Brownian meander® is defined as the process

1
\/ﬁ|Z9+u(1_g)|;U§1 (27)

The process m is a Brownian scaled part of the (normalized) Brownian excursion
which straddles time 1.
The process m is independent of Ff. The law of m; may be deduced from (24)

my, =

2

L Vs de (28)

P(my € dx) = zexp(— 5

Using Brownian scaling again, we remark that for every ¢, the process

1
<1

® - - .
" t—gt|Z9t‘|’“(t—9t)|’u—

is a Brownian meander independent of the o-field .7:;;; in particular, the law of

m® does not depend on t.

8.2.1 The Azéma martingale

We now introduce the so-called Azéma martingale p;, = (sgnZ;) \/t — ¢;, which is

a remarquable Ff-martingale. Following [2] closely, we project the Fi-martingale
2

A
exp(AZ; — ?t) on the filtration 7

A2 A
E(exp(AZ; — ?t)|f;;) =L (GXP()\ mgt) Mt — ?t)u:;;)

and, from the independence property we just recalled, we get

2

A2 A
E(exp(AZ; — ?m}—;) = exp(—?t)\ll()\,ut)

o 2
where W(z) = F(exp(zmy)) = / rexp(zx — %)dw
0

3see Chung [4] or Revuz-Yor [22] Ex 3.8 ch. XIL
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8.3 The law of (H, ), Zy- )

83.1 Caseb=0

In this case, we denote Hp, = Hyp. The variable Hp is a F[, hence a F;, stopping
time. The process

1
(\/E|Z9H5+UD| ,US 1)

is a Brownian meander independent of .7:+H5. In particular ﬁZHB is distributed
as —myq:
P(ZHB € dl’) = 3 eXp(—ﬁ) ﬂx(O d(E,

and the variables Hp and ZHB are independent. For any A > 0, the local martin-
\2
gale (\I/(—)\,ut/\HB) exp(—?(t/\Hﬁ) ,t > 0) is bounded. Hence, using the optional

stopping theorem at Hp,, we obtain
\2
B (WA exol =y 15)) = 9(0) = 1

\2
and the left hand side is equal to W(AV/D) E(exp(—?HE)). The formula

Blesl = H5) = g7

follows. Such formulae go back to Wendel [24].

8.3.2 Caseb<

This case study may be reduced to the previous one, with the help of the stopping
time 71}. Since

Hip =T+ Hyp(W)
where
Hyp(W) = inf{t 2 05 Lot — g!') 2 D} & Mg,
Wy =Zge—b; gf" =supfu<t; W, =0}
it follows, from the independence of T}, and ]:](ID(W), that

2 \? A% e
FE(exp —?H@D) = E(exp —?Tb) E(exp _?HO,D(W))
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and

dx (v — b)?
P(ZH;D € dr) = P(ZH;D —bedr—1b)= o Npep (b— ) exp — 5D
We obtain finally
A2 bA
Blexp— 2 7) = 20N
2 7 U(AD)

Note in particular that P(H; , < o) = 1.

83.3 Caseb>0

In this case, the first excursion below b begins at £ = 0. We now use the obvious
equality

E(exp —AH; p) = E(llg,<pexp —AH; p) + E(llg,spexp —AH; )
On the set {T), > D}, we have H, , = D, therefore

E(ly,spexp—AH, p) = exp(=AD)P(T, > D)
= exp(=AD) w(]D,o0f),

whereas, on the set {1}, < D}, we write, as in the previous subsection 8.3.2 H; p, =
T, + [:"TO_,D . Hence, on (T, < D), we have :
FE(exp —)\H{;D | Fr,) = exp(—ATy) E(exp —)\[:]55) )

1

Therefore F(1 exp —AH )= ————
( Ty<D €XP b,D) q}(\/m)

It follows that

E(llg,<pexp(—AT})).

1

Bllnco e M) = g |1 tde)e™

hence

Efexp-AHip) = e (1D, o)) + m [ mlda) e

The law of ZH_ can easily be deduced from the three following equalities
b,D

ZHb_D = (b4+Wy_ Jpep+ Zplpsp

Hyp
- (x —b)? dx
P(b—l— WH;;D - dl’,Tb < D) = P(Tb < D)ﬂwa(b — x) exp(— 5D )5
) dx x? (v — 2b)?
P(Z de. T, > D) = R e
(ZpedeTy>D) = =5 (eXp( op) ~ P55 ))
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8.4 The law of (H,), Zy+ )

84.1 Caseb=10

In this case, we denote Hj, = H{)':D.

Using the symmetry of the Brownian motion law, it follows that
A2 1

E(GXP(—?HE)) = W

8.4.2 Caseb> 0

The computation of the law of (HbD \ ZHb+ ) is similar to that of (H; p, ZHb—D) in
the case b < 0. 7 7

84.3 Caseb<(

The computation of the law of (HbD ) ZH+ ) is similar to that of (H; p, ZHb_D) in
the case b > 0. In particular, we find that 7

E(exp —AH;p) = e u_y(1D, oo

1 D \
Cargmny b e

8.5 Some Laplace transforms

We have defined, in the case b <0,

/ dz z exp( ZD) Y(T,b—z—y) (29)

V(o) = B ( gi?_f;m o (_m))

where

We obtain

/Ooodte_M’y(t,x) = Fp

0 1’2 e—/\t
dt exp(—
/H;D ( 2(t - pr)) 27 (t — Hip)
/\H_ / —Au
= - du exp(— )
u\2ru

The integral on the right of (30) is the resolvent kernel of Brownian motion, hence

Nou

(30)

—|z

V2X By plugging this result in the equality (30), we obtain :

o v e_(|x| - b)\/ﬁ
/Odte ’y(t,x):\/ﬁq}(\/m)

is equal to

(31)

21



References

1]

2]

[6]

7]

[3]

[10]

[11]

[12]

Akahori J. (1995) Some formulae for a new type of path-dependent option.
Ann. Appl. Prob. 5, p. 383-388;

Azéma J., Yor M. (1989) “Etude d’une martingale remarquable,” Séminaire
de probabilités XXIII. Lecture notes in Mathematics 1372. Springer Verlag.

Black F., Scholes M. (1973) “The pricing of options and corporate liabilities,”
Journal of Political Economy, 81, p. 637-654.

Chung K.L. (1976) “Excursions in Brownian motion,” Ark. fir Math. 14 p.
155-177.

Cornwall M.J., Kentwell G.W., Chesney M., Jeanblanc-Picqué M., Yor M.
(1995) “Parisian Barrier Option: a discussion” Preprint. Submitted to Risk
Magazine

Darling D.A. (1952) “The influence of the maximum term in the addition of
independent random variables,” Trans. Amer. Math. Soc 73, p. 95-107.

Dassios A. (1995) “The Distribution of the Quantiles of a Brownian Motion
with Drift” Ann. Appl. Prob. 5, p. 389-398.

Dellacherie C.,Maisonneuve B., Meyer P.A. (1992) Probabilités et Potentiel.
Processus de Markov (fin). Compléments de Calcul Stochastique. Hermann.
Paris.

Embrechts P., Rogers L.C.G., Yor M. (1995)“A Proof of Dassios” representa-
tion of the a-quantile of Brownian motion with drift,” Preprint 2581, Labora-
toire de Probabilités, Paris 6, To appear in Annals Appl. Proba.

Geman H., Yor M. (1993) “Bessel Processes, Asian Options and Perpetuities,”
Mathematical Finance, 3, p. 349-375.

Geman H., Yor M. (1995) “The Valuation of Double-barrier Options: a Prob-
abilistic Approach” Preprint.

Grabbe J. (1983) “The Pricing of Call and Put Options on foreign Exchange,
7 Journal of International Money and Finance, 2, p. 39-254.

Horowitz J. (1972) “Semi-linear Markov processes, subordinator and renewal

theory,” Z. fur Wahr. Gebiete 24 | p. 167-193.

Karatzas L. , Shreve S. (1984) “Trivariate density of Brownian motion,its local
and occupation times, with application to stochastic control,” The Annals of

Probability, 12 p. 819-828.

22



[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]

[25]

[26]

Kingman J. F. (1975) “Random distributions,” Journ. Roy. Stat. Soc , B 37,
pp. 1-22.

Knight F.B. (1986) “On the duration of the longest excursion,” Seminar on
Stochastic Processes 1985 Birkhauser, Boston, 1986.

Lamperti J. (1961) “On contribution to renewal theory,” Proc. Amer. Math.
Soc. 12, p. 724-731.

Pitman J., Yor M. (1995) “The two parameter Poisson-Dirichlet distribution
derived from stable subordinators,” Tech. report 433. University of Berkeley.
Submitted to Ann. Prob.

Port S. (1963) “An Elementary Probability Approach to Fluctuation Theory”
Ann. Math. Stat. 31, p. 1034-1044.

Reiner E., Rubinstein M. (1992) Exotic options. Working paper.

Resnik S.1. (1986) “Point Processes, regular Variation and weak convergence,”

Adv. in Appl. Prob. 18, p. 66-138

Revuz D., Yor M. (1994) Continuous Martingales and Brownian Motion Sec-
ond edition. Springer Verlag. Berlin.

Wendel J.G. (1963) “Order Statistics of Partial Sums ” .J. Math. Analysis and
Appl., 6, p. 109-151.

Wendel J.G. (1964) “Zero-free intervals of semi-stable Markov-processes,”
Math. Scandinavia 14, pp. 21-34.

Yor M., (1995) “The distribution of Brownian quantiles.” .J. App. Prob. 32,
pp. 405-416.

Yor M., (1993) “ Some remarks on Akahori’s generalized arc sine formula for
Brownian motion with drift,” Preprint, Laboratoire de Probabilités, Paris 6

23



