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Abstract

In this paper, we study the excursion time of a Brownian motion with
drift inside a corridor by using a four states semi-Markov model. In math-
ematical finance, these results have an important application in the valu-
ation of options whose prices depend on the time their underlying assets
prices spend between two different values. In this paper, we introduce the
Parisian corridor option and obtain an explicit expression for the Laplace
transform of its price formula.
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1 Introduction

The concept of Parisian options was first introduced by Chesney, Jeanblanc-
Picque and Yor [6]. It is a special case of path dependent options. The owner of
a Parisian option will either gain the right or lose the right to exercise the option
upon the price reaching a predetermined barrier level L and staying above or
below the level for a predetermined time D before the maturity date 7. More
precisely, the owner of a Parisian down-and-out option loses the option if the
underlying asset price S reaches the level L and remains constantly below this
level for a time interval longer than D. For a Parisian down-and-in option the
same event gives the owner the right to exercise the option. For details on the
pricing of Parisian options see [6], [14], [16] and [13].

The Parisian corridor options replace the barrier by a corridor. Instead of
considering the excursion above or below a barrier, we consider the excursions
inside a corridor. For example, the owner of a Parisian corridor in option
gains the option if the underlying asset price process S has an excursion in the
corridor for longer than d before the maturity of the option. For the pricing of
the Parisian options whose prices depends on the excursion outside a corridor



see [10]. Later on, we will give the Laplace transforms which can be used to
price this type of options.

In this paper, we are going to use the same definition for the excursion as in
[6] and [7]. Let S be a stochastic process and [y, l2, I; > I3 be the level of two
barriers forming the corridor. We define

gi .+ =sup{s <t | S, =1}, i, =inf{s > t| S, =1}, i=1,2, (1)

with the usual conventions, sup{0} = 0 and inf{()} = co. Assuming d; > 0,
1=1,2,3,4, we now define

0 =inf{t>0| 1,513 (t— 97 ,) > di}, (2)

7'2S:inf {t>0| 1{12<St<l1}1{g,’5 Sg8 t}(t_glﬁ,t) ZdZ}, (3)
1,67 905t

7'35:inf {t>0| 1{l2<St<l1}1{gl5 <gS t}(t—QIi’t) ng}, (4)
1,6 S905,¢

Tf =inf{t > 0| 1{St<l2}(t - gi,t) > da}, (5)

™ =7 AT, (6)

We can see that 75 is the first time that the length of the excursion in the
corridor reaches the given level dy, given that this excursion starts from the
upper barrier [q; 7':3)9 corresponds to the one in the corridor with the given level
ds starting from the lower barrier lo; and 75 is the smaller of Tﬁg and 5. When
we take do = d3 = d, 7° is actually the the first time that the length of the
excursion inside the corridor reaches given level d, which is what we want to
study later on.

We can also see that 7 is the first time that the length of the excursion of
process S above the barrier [; reaches given level d;; 7§ corresponds to the one
below I, with required length dy. Although 7 and 7 are not of our interest in
this paper (see [10] for the pricing of the Parisian options depend on 71 and 75),
we need to use these two stopping times to define our four states semi-Markov
model.

Now assume r is the risk-free rate, T' is the term of the option, S; is the
price of its underlying asset, K is the strike price, @ is risk neutral measure. If
we have a Parisian corridor out-call option with the barrier I; and ls, its price
can be expressed as:

Pcout—call = eirTEQ (1{TS>T} (ST - K)+) ;
and the price of a Parisian corridor in-put option is:
PC’m_put = eiTTEQ (1{7.S<T} (K — ST)+) .

In this paper, we are going to study the excursion time inside the corridor
using a semi-Markov model consisting of four states. By applying the model to



a Brownian motion, we can get the explicit form of the Laplace transform for
the price of Parisian corridor options. One can then invert using techniques as
n [14].

In Section 2 we introduce the four states semi-Markov model as well as a new
process, the doubly perturbed Brownian motion, which has the same behavior
as a Brownian motion except that each time it hits one of the two barriers, it
moves towards the other side of the barrier by a jump of size €. In Section 3
we obtain the martingale to which we can apply the optional sampling theorem
and get the Laplace transform that we can use for pricing later. We give our
main results applied to Brownian motion in Section 4, including the Laplace
transforms for the stopping times we defined by (6) for both a Brownian motion
with drift, i.e. § = W*#, and a standard Brownian motion, i.e. S = W. In
Section 5 we focus on pricing the Parisian corridor options.

2 Definitions

From the description above, it is clear that we are actually considering four
states, the state when the stochastic process is above the barrier l; the state
when it is below ls and two states when it is between /; and /5 depending on
whether it comes into the corridor through /; or ls. For each state, we are
interested in the time the process spends in it. We therefore introduce a new
process

1, if Sy > Iy
75 _ 2, ifly > Sy > 12 and gfht > glsz,t
t7) 8 il >S >bandg , <g,
4, if Sy <o
We can now express the variables defined above in terms of Z;:
gia=sup{s <t|Z7# 2}, (™)
df_tzinf{szt\Zf#Zt}, (8)
inf {¢> 01,0y (t—g5,) > i}, (9)
. s
Ty = {t >0 ‘ 1{Z§:2} (t gll,t) Z d?} (]‘0)
7'?“:5 = inf {t >0 ‘ 1{Zf:3} (t gl 7,5) > d3} (11)
Tf:mf{t>0‘ 1{2524} (t 9127 ) Zd4} (12)
We then define
V=t —max (g 1, 953,0) » (13)

the time Z7 has spent in the current state. It is easy to see that (Z7,V,) is
a Markov process. Z; is therefore a semi-Markov process with the state space
{1,2,3,4}, where 1 stands for the state when the stochastic process S is above



the barrier [1; 4 corresponds to the state below the barrier ls; 2 and 3 represent
the state when S is in the corridor given that it comes in through [y and [,
respectively.

For Z; the transition intensities \;;(u) satisfy

P(Zipe=31#71 27 =i,V =u) = \j(w)At + 0 (At), (14)

P(Zin =112 =i,V =u)=1-> X\j(u)At+o(At).  (15)
i#£]
Define

"
P =exp d = [ SN0 b pigl) = s P,
0 iz
Notice that -
Pi(p) =1—Pi(p)
is the distribution function of the excursion time in state 7, which is a random
variable U; defined as

Ui:igE{ZSS;éi\ZOS:i,VOS:O}.

Note that because the process is time homogeneous this has the same distribu-
tion as

. s 7S 1S

;I;E{Z”S #i| ZP =i,V =0}

for any time t. We have therefore

. P(Uie(up+Dnp), 25 =7)
pig () = Al,lfgo Ap

Moreover, in the definition of Z°, we deliberately ignore the situation when
Sy =1;, 1 = 1,2. The reason is that we only consider the processes, which

t
/ 1¢g,—1,3du =0, i =1,2.
0

Also, when Iy and Iy are the regular points of the process (see [5] for defi-
nition), we have to deal with the degeneration of p;;. Let us take a Brownian
Motion as an example. Assume W/ = ut + W; with p > 0, where W; is a
standard Brownian Motion. Setting xg to be its starting point, we know its
density for the first hitting time of level [;, i = 1,2 is

_ il f (a0 — pt)?
P = s P 21

(see [4]). According to the definition of transition density, p12(t) = pa1(t) =
p1, (t) = 0 and p34(t) = pas(t) = pi,(t) = 0, for ¢ > 0.



The Original Brownian Motion
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Figure 1: A Sample Path of Wt(e)

In [9] in order to solve the similar problem, we introduced the perturbed

Brownian motion Xt(e) with respect to the barrier we are interested in. We apply

the same idea here, and construct a new process double perturbed Brownian
motion, Yt(e), e > 0, with respect to barriers 1 and lo. Assume W/' =1[; + e
Define a sequence of stopping times

do = 0,
on = inf{t >4, | W}'=1},
5n+1 = ll’lf{t > oy | Wt'u =1+ 6},

where n =0,1,--- (see Figure 1). Now define

X =wr if 6, <t<o,
XO=Wl—e if 0,<t<6p

Similarly, we then define another sequence of stopping times with respect to

) and barrier lo

CO = 07
T inf{t > ¢, | X9 =151,
Cnt1 = inf{t >n,] Xt(e) =l + €},

process X t(e

where n.=0,1,--- (see Figure 2). Then define



Process X_t

10

60
\

Xt

50
\

i

' LI T kA

40

Figure 2: A Sample Path of Xt(e)

V=X i Gu<t<m,

VO =x9 e if n,<t<Clop
The process Yt(e) is actually a process which starts from [; 4+ ¢ and has the same
behavior as the related Brownian Motion expect that each time when it hits the
barrier 1 or Iy, it will have a jump towards the opposite side of the barrier with
size € (see Figure 3).

From the definition, it is clear that [; and I3 become irregular points for Yt(ﬁ).

Also Yt(e) converges to W}" with W§' = [; almost surely for all t. Therefore as

we prove in [9], the Laplace transforms of the variables defined based on Yt(e)
converge to those based on W/*. As a result, we can obtain the results for the
Brownian Motion by carrying out the calculation for Yf) and take the limit as
e— 0.

For Yt(e), we can define Z¥, 7}, 7)" and 7Y as above (we suppress (¢) on the



Process Y_t
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Figure 3: A Sample Path of Y;(E)

superscript). For ZY, we have the transition densities (see [4])

B € (et ut)?
p12(t) = 515 exp { o (7
p*t
po1(t) = expq ue— 2}sst (lh—la—€l1 —1a),

{

pa(t) = exp {—M (lh—la—€)— M;t} ssi (€11 — l2),
{
{

pt
p31(t) = expeu(ly —Ily—¢€)— (5t (e,11 — la),
p*t
p3a(t) = expq —pe— [ 55t (i =l — €11 = 12),
€ (€ — ut)?
) = S
pa) = o { -

where

oo

sse(z,y) = Z Wexp{_ww} _

V2mt3

k=—o0

Also we know that

P23(t) = p32(t) = p1a(t) = pai(t) = 0.

(22)




Clearly, all the arguments above apply to the standard Brownian motion, which
is a special case of W/" when u = 0.

3 Results for the semi-Markov model

In §2 we have introduced the Markov process (Zts Ve ) Now we apply the
same definition to the doubly perturbed Brownian motion Y;(E); therefore we
have (ZY,V;Y), where ZY is the current state of Y, taking value from state

space {1,2,3,4} and V}¥ is the time ;') has spent in current state. V;¥ is also
a stochastic process. Now we consider a function of the form

f(‘/tyvztyvt) :erY (Vvtyat)7

where f;, i = 1,2, 3,4 are functions from R? to R. The generator </ is defined
as an operator such that

A28 /df VY. 2. 5)ds

is a martingale (see [11], chapter 2). Therefore solving

Af=0

subject to certain conditions will provide us with martingales of the form f (VtY, zy, t)

to which we can apply the optional stopping theorem to obtain the Laplace
transform we are interested in. More precisely, we will have

Assume f; has the form

fi(u,t) = efﬁtgi(u).

Sty = 2D ORD L w)(1(0.0) A )
Aot = PP OID | ) (2(0,0) ~ falus ) + Aaaw) (720, -
S faunt) = LD O (0.0~ o 0) + dsa(w)(F2(0,) -
Aty = D OO |y )(12(0,0) ~ falu,)

fa(u,1))

f3(u,t))



dfi = 0 gi(d1) = o
By solving the equation &7 f = 0, i.e. ﬁﬁz i (0) subject to zzgzg i Zz
Jfo4 = 0 g4 (dg) = Q4
we can get
d;
gi(u) = a;exp{ — / 8+ Z Aij(v) | dv (23)
“ J#i
+Zg] / ij )eXp / /8+Z)\zk ds.
J#i k#i

In our case, we are only interested in the excursion inside the corridor. Hence,
we set d; and d4 to be co. Also limg, 00 g1 (d1) = limg, o0 g4 (ds) = 0 gives
a1 = ayg = 0. Therefore, we have

92(0) = ase P2 Py(da) + g2(0) Pra(B) Pa1(B) + g (0)1343(5)1524(5)7 (24)
93(0) = aze 5 Py(ds) + g2(0)Pr2(B) Pa

Solving (24) and (25) gives

0) = e P4 Py(dy) (1 — Py3(B) 34(5)) + aze ™0 Py(dy) Pys (8) Paa(B) (26)
I T T T Pia(8) Pt (8) — Pis(8) Poa(B) + Pra(B) Por (8) Pas (B) Pt (B) — Pra(B) Pt (8) Pis (8) Poa ()
) ase™ % Py(ds) (1 - Pra(8)Par(8)) + aze ™ Po(da) Pra(8) P () ”
9s(0) = 1 — P12(B)Po1(B) — Pus(8) Psa(B) + Pra(8) Po1 (B) Paz(B) P3a(B) — Pi2(B)Ps1(B) Pis(8) Poa(B) &7)
where
Py(8) = /O e~y (s)ds, (28)
d;
Py(8) = /0 e i (5)ds. (29)

As a result, we have obtained the martingale
My =f (VY t)=e gy (V)), i=1,234. (30)

We now can apply the optional stopping theorem to M; with the stopping
time 7¥ A t, where 7Y is the stopping time defined by (6):

B (M, p) = B (My). (31)
The right hand side of (31) is

E(Myyp)=FE (M.,.Y 1{Ty<t}) + E (Mtl{.,_y>t}) .



Furthermore,

E (MTY 1{7—Y<t})
= B(Mo oyl ag) B (Mo Ly oy <)
—_37Y _grY
= E<€ g (dz)l{fg«g}l{gq}) +E(€ 7" gs (d3) Loy sy iy <t})
7ﬁTY 7ﬁ‘l’y
= ong (6 1{72"<7—§’}1{7—§/<t}> +063E (6 1{7_2y>7_§/}1{7_§/<t}) .
We also have

E (Mt]-{-rY>t}) =e¢'E (gzg’ (Vty) 1{TY>t}> )

where Z} can take values 1,2,3 or 4.

When Z} = 2 or 3, since 7¥ > t, we have 0 < V;¥ < dy A d3. According to
the definition of g;(u) in (23), we have g» (V;¥') and g3 (V;¥") are bounded.

When Z} = 1 or 4, since limg, o0 g1 (d1) = limg, o0 g4 (d4) = 0 and looking
at (23) with dy and d4 replaced by oo we have that g; (Vty) and g4 (Vty) are
bounded.

Therefore

tlil’ngE (Mtl{ry>t}) =0.

The left hand side of (31) gives

(e) _
lim E (My) = E (M) = 92(0), YO(E) =1 +e¢
e 93(0)7 Yo =l —¢

By taking as = a3 =1 and ds = d3 = d, we will have when YO(G) =1 +e¢

E ()

e P1Py(d) (1 — Pi3(B)Ps )) + e PPy (d) Py (8) Poa ()

(32)

when YO(E) =1l —¢

E ()

4(B
1— P1o(8)Po1(8) — Paz(B) Psa(B) + Pi2(B)Po1(8) Pas(8) Psa(B) — Pi2(B) P31 (8) Pz (8) Paa(B)

i

(33)

B e~ PPy (d) Py2(B) Pa1(B) + e P4 P3(d) (1 — P2(8) P (B )
- P12(B)Por(8) — Puz(B)Psa(B) + Pia(B)Po1(8) Pis(8) Psa(B) — Pra(B8)Pa

4 Main Results

In §2 we have stated that the main difficulty with the Brownian Motion is that
its origin point is regular, i.e. the probability that W} will return to the origin
at arbitrarily small time is 1. We have therefore introduced the new processes

Y;(E) and (ZY,V,Y') with transition densities for Z} defined in (16) to (22).

10

(8)Pas(B) Pas(B)



Theorem 1 For a Brownian Motion W}, 7" defined as in (6) with S; = W},
we have following Laplace transforms:

when W' =14,
B = B0 E) PR rE)
& (6+5)-c3(s+1%)
when WY = la,
E (e‘mw) = G (6 +2> - F2(M)Gl2(ﬁ . %> ; (35)
Gi(9+15) ¢t (3+ %)
where

=1 —lo; (36)

Fiz) = \/Zéwe-“*{exp{ 3 (2 - lava )} 37)
=) g {_; (D Wg)z}} |
o e (550 10) o (3 0)
R = 5y g { { (%W&)Q} (39)
_ewlwexp{_Q <l(2’“\;1)—| V) }}
i § o (22 o (30
Gra) = %+2@k§we‘”m’“/(%—m) (39)
Colz) = ifxlﬁ - zmkie—lmmﬂw o)

\/>Z o~ IVEE(2hH1) o { (1(2%—1) @)2}.(40)

11



Proof: We apply the transition densities in (16) to (22) to the results in (32)
and (33) and taking the limit ¢ — 0. According to the definition of Y9, we
know that

V) L5 Wk for all t.

As we saw in [9] when Yt(e) 25 W, for all t, by taking the limit e — 0, the

quantities defined based on Y;(E) converge to those based on Brownian motion
with drift. Therefore we will get the results shown by (34) and (35). O

Corollary 1.1 For a standard Brownian Motion (1 = 0), we have for both
cases (i.e. when Wy =1y and when Wy = ls)

E(e_ﬁTW) = e_ﬁdz((g)); (41)

where

_ 2N avem ) e ) L (W2RED) ’
h(B) = @k_z_jm : ’“{ : ep{ 2( 7 \/md)}
1 [ 2lk 2 223
exP{z(ﬁm> }}M

+2,/28 i o2k {JV <3§ - «/2ﬁd> Wy <l(2’;§1)

We are also interested in the cases when a Brownian Motion starts from the
point other than [; and l5. The results are shown in the following corollary.

k=—o0

Corollary 1.2 For a Brownian Motion W}, 7W" defined as in (6) with Sy =
W}, we have the following Laplace transforms:
when W§' = xq, xo > 11,

E (e’ﬁTW“) = exp {f (u + V206 + /LQ) (xo — 1) — ﬁd} (43)

e My (1) Gy (ﬁ + M;) — PG (ﬁ " #;) :
Gi(o+%)—cz(o+%) |

when W§' = xq, xo < la,

E (e*ﬁ*W“) = exp { (/L V28 ¥ ;ﬂ) (o — o) — ﬂd} (44)

)



when W§' = xg, loa <z <y,

= . 2kl —1
E(e—ﬁTW“) — hllza—z0)—pd E: {e—lxt(Zlirxo—lz)W (_H|\/g+ +f£ 2) (45)
k=—o00
2kl + 29 — 1
_olnl@kitao—1a) g ( N7 0 2)}
e
. Vd
+erlli—w0)—pd ZOO {e—u(2kl—x0+l1)/ <—|M|\/g+ 2kl — xg +l1)
e Vd
=—00
2kl — xo +1
(ka0 th) g (_ Vi 0 1>}+ g
e [&
. Vd

e~ lnll—pd {eu(lzfﬂﬂo) (elul(llfﬁo) — e*\u\(h*%)) + eplli—=0) (elul(IO*lz) — e*lMl(IO*lz))}
1 — e2lull

e~ V2812l gu(la—o) (e\/wwz(zrmo) _ eﬂ/zﬁwz(zlfzo))
1— 6—2\/26+;12l

+

Cr) 35 _ 2kl + 2o — Iy
_'_6#(12 o) {6 26+ p?(2kl+z0 l2),/V <_ 23 + 2)d — )
> (28 + p?) Vi

k=—o0

e~ V2B +u2 2klwo—l2) 4 (_ 26+ p2)d + 2kl +\/x£ - l2> H

e M Fy ()G (ﬂ + “72) — Fi(p)Ga (5 + %)
@ (s+4)-c3(5+4)
e~V 2B+p2lopu(li—=0) (e\/m(wo—h) _ e—\/m(xo—b))

1 — e—2V2B+p2l

+elt(11—l'0) Z {e\/2ﬁ+u?(2kl—xg+l1)w <_ /(26+M2)d_ zkl_l‘()‘i‘ll)

+

k=—o00 \/a
V2B (2kl—z0+11) g ( 26+ 12)d + 2kl —jg + l1> H

e Fy (1) Gy (ﬁ - %) — F> ()G (ﬂ + %)
G (s+%)-c3(s+4%) |

Proof: We will prove the case when zo > [; at first. Defined T’ = inf {t | W}' =11},
i.e. the first time W/ hits [;. By definition, we have 7" = T + 7" where

W* here stands for a Brownian motion with drift started from l1. By the strong
Markov property of the Brownian motion, we therefore have

E (e‘ﬂTW“) =F (e_BT) E (e‘ﬁTVW) .

13



E (e—ﬂTWM) has been calculate in Theorem 1 (34). According to [4], we have

E(ePT) = exp{— (,u+ \/W) (o — ll)}.

For the case when zy <[5, we can apply the same argument.

When Iy < 2o < [, by definition, we have 7" = d, if T > d; 7" =
T+7"" if T <d, and Wi =l where W* here stands for a Brownian motion
with drift started from l;; 7" = T + %" if T < d, and W} = Iy where W*
here stands for a Brownian motion with drift started from l>. As a result

E(e™")
- - —pr" -
= b (6 1{Tzd}) +E (e Lreaylwp=ny) + B e Lr<ayLwi=io)
= eMP(T>d)+E (eiﬁTl{T<d}1{W’;:l1}> E (efﬁTW )

wWHh
+E (e_ﬂTl{T<d}1{W#:l2}) E (e_ﬁT )

E (e ") and E (e=™") have been calculated in Theorem 1 (see (34) and

(35)). The density for T is given in [4] as

w2t u2t
Do (t) = etllz=z0) =55 g (lh — zo, 1) + etlli=z0) =45 gq, (2o —l2,1).

We can therefore calculate
P(T >d)

. e~ lnll {6#(12*10) (e\#\(llfﬂm) — e*l#l(h*%)) 4 enlli—0) (elﬂl(%*b) _ e*\#\(%*lz))}

1 — e—2lull

tetll2—0) Z {e—lul(ZkH-xo—lz)e/V (—ulx/g—i—%l—i_xo_b)
J— Vd
2kl + g — 1
_elul@kitzo—l2) 4 ( Vd — 02)}
e
|l NG

Cvo) =Sl ok 2kl — xo + Iy
L en—z0) {e 2R =z0+h) g (_ Vi + )
> 1z 7

k=—o00

2kl — l
_lnl@ki—zoth) g (_M\f 3 fgo + 1) } .

14



E <€_BT1{T<d}1{W;:zl})
o= V2684121 ou(la—0) (6\/2/3+;L2(l1—3¢0) _ e—\/zﬁﬂﬁal—xo))

1 — e—2V2B+p2l

Fertmzo) 3 {e\/W@kPrwolz)(/V (_ Ere W

k=—o00
e~ V2B+12(2kl4ao—12) 4 <_ 26+ 12)d + 2kl +f§ — 12)}

E (B_ﬁTl{kd}l{w;:zz})
o= V/2B+ 121 (L —o) (e\/QB-HLz(Io—lz) _ e—\/25+#2(10—lz))

1 — e—2V2B+p3l

L enlli=w0) Z {e\/mﬂﬁ(zkz—xﬁzl)j (_ 2B+ 12)d - 2k‘l—\;v£+ll

k=—o00
V2B (2kl—z0+11) g <_ 28+ 22)d + 2kl —jg + l1) } .

We therefore get the result in (45). O

Notice that for a Brownian motion with drift, it is possible that 7" will
never be achieved. Take the case when p > 0 and zy > [; as an example. We
obtain the following result by taking § = 0 in (43).

Corollary 1.3 For a Brownian motion with positive drift, W with > 0 and
xg > 11 we have that,

2

e () - i (4)

() (9

Remark 1: As a result, for a Brownian motion with positive drift and
xg > 1y, with probability

P (TWH < oo) =exp{—2u(xo—11)} . (46)

| exp {—2p (0 ll)}e—#le(,u)GQ g”g) - Fi(p)Gy (%)

that it will never achieved a excursion in the corridor (l2,l;) with length equal
or greater than d.

Remark 2: For a Brownian motion with negative drift and zy > [y, taking
0 =0 in (43) gives that with probability

e M (1) Ga (“72) — A6 (%2>
G (%) - (%)

15
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that it will never achieved a excursion in the corridor (l3,1;) with length equal

or greater than d.

Remark 3: For a standard Brownian motion, we can carry out a similar

calculation to (41), from which we can easily that the result that

P(TW<oo):1.

We will now extent Corollary 1.2 to obtain the joint distribution of W; and
W at an exponential time. This is an application of (43), (44) and Girsanov’s

theorem.

Theorem 2 For a standard Brownian Motion W, with Wy = xo and ™V defined

as in (6) with Sy = Wy, we have the following result:
For the case xg > 11 and x > [,

P(Wy € da, 7V <T)

(47)

vexp{ -2y (w0 — ) } Ga(y) (un (x — 1) — “2%—1@;;

for the case xg > 11 and ly <z <y,
P (WT~ € dr, 7V < T)
Ga(7) (uz (z — l) —ua(x — l2))

Gi(y) (u1 (x — o) —uz(x — 11))

b

WGXP{—\/ﬂ(xo - ll)}

for the case xg > 1y and x <3,

G1(7)?

P (WT~ ede, ™V < T)

(49)

Ga(7y) (uz (. — lh) —ua(x — l2))
G1(7)?

VGXP{*@(IO - ll)}

for the case x < ly and x > 1y,
P(Wy e da, 7V < T)

Gi1(y) (uz (z — lo) —ua(x — 11))
Ga(7)?

)

7 exp {—\/ﬂ (I — xo)} G2(7) (ua (z —1a) — Uz(mG—l(l;))g

for the case © <ly and ly < x <,
P (WT~ cda, ™V < T)
Ga(7) (u1 (z —I2) —ua(x — 1))

(51)

Vexp{—\/ﬂ(h —Io)}

G1(7)?

16
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for the case x < ly and x < s,

P (WT~ €de, 7V < T) (52)

— exp {—\/ﬂ(lg B xo)} Ga(v) (us (x — l2) — U4(17G—(l;)); gl(V)Q(US (z—h) —ua(x — 1))

)

where T is a random variable with an exponential distribution of parameter ~y
that is independent of W; and

(@) = eV (—/27), (53)
uy(z) = e VP %ay (—@) , (54)
us(z) = 2 Z |:exp{ ((2k+1)l+a¢)}/ (“ (2k +\/12)zl_ md) (55)
+exp {\/ﬂ(@k + 1)+ x)} N (x + (2k +\/%l * \/ﬂd>} — VT, (m) )
ug(z) = 2 Z [exp{ V27 (2Kl + x)} N (W) (56)
+ exp {\/ﬂ@kl + x)} N (W)] — V2T, <\/Z) ,
_2k_z;ooexp{x 2k+1)l}</1/((2k+\/)g+xd> ¢ A/d\/i Z; { %—’2_;)212},(57)
B exp {92 2kl + xd e 7l ox 2k212 .
22_:00 p {2 kl}JV( 7 ) \/> Z p{ } (58)

Proof: see appendix. O

5 Pricing Parisian Corridor Options
We want to price a Parisian corridor in-call option with the current price of its
underlying asset to be z, x > L, the owner of which will obtain the right to

exercise it when the length of the excursion inside the corridor formed by the
barriers Ly and Lo (Ly > Lo) reaches d before T'. Its price formula is given by

PCinfcall = e_TTEQ ((ST - K)Jr 1{7‘5<T}) s

17



where S is the underlying stock price, @ denotes the risk neutral measure, 7° is
defined with the respect to L; and L,. We assume S is a geometric Brownian
motion:

dSt = TStdt + O'Stth, SO =,

where x > L1, r is the risk free rate, W; with Wy = 0 is a standard Brownian
motion under ). Set

1 1 1 K
mz(r—UQ), bzln(), By = mt + Wy,
2 o
1 L 1 L
llln(1>, lgln(2>.
o T o T

1
St = xexp { (7“ — 202) t—l—aWt} = zexp {o(mt + W;)} = we”Br.

We have

By applying Girsanov’s Theorem, we have
PCincan =~ T3 5 {(SﬂeoBT - K)+ e T A

where P is a new measure, under which B; is a standard Brownian motion with
By =0, and 75 is the stopping time defined with respect to barrier I1, l. And
we define

1,2
PC_can = e(rtam )TPCin—call-

m

We are going to show that we can obtain the Laplace transform of PC} __ ..
w.r.t T, denoted by Zr.

Firstly, assuming T is a random variable with an exponential distribution of
parameter 7y that is independent of Wy, we have

Bp [(wePr — ) P11y g
— /b (e — K)e™ P (BT~ edy, P < T)
= / fye*VT/ (ze”Y — K)e™P (Br € dy, 7% < T)dT
0 b

= ’y/ ei’YTEp |:(1‘€UBT - K)+ emBTl{TB<T}:| dT
0

= v<Zr
Hence we have
1 * o m B T
Sr==| (zeV —K)e yP(BTEdy,T <T).
Y Jb

By using the results in Theorem 3, this Laplace transform can be calculated
explicitly.

18



When b > [, i.e. K > Ly, we have
K
Lr = LR (0 +m)— = Fi(m), (59)
Y Y
when lo < b<ly,ie Ly < K < Ly, we have
K
S = %Fz(U +m) = —Fa(m), (60)

when b < Iy, i.e. K < Lo, we have

Lo =2 Falo+m) = = Fa(m), (61)
where
Fite) Wexél{wﬁé%f W (G (0) (a1 (0.0 1) = a2 0. 1)
-G (’7) {ql (.23, b’ l2) — Q2 (Z‘, b7 ll)}] ) (62)
F(a) = WX&{(;)@C(?ZO(;);I)} [Go() {au (2,11, 1) — g2 (2,0, 12) + g3 (2,11, 1) — g3 (2,b,11)}
—Gi(V) {1 (%,0,12) — g2 (x,11,11) — qa (@, 11,11) + qa (x,b,11)}],
F3(r) = vexp{=v2 (w0 — )} (Ga(M{aqr (z, 11, 10) — q2 (2,12, 12) + g3 (2,11, 11) — g3 (2,b,11)

G1(7)? — Ga(7)?

+qu (2,0,12) — qa (x,12,12)} — G1(v) {q1 (,12,12) — q2 (2,11, 11) + g3 (2,12, 12)

—q3(2,b,02) —qa(x,l1,00) + qa (z,b,11)}],

(2= VIR y+ VT2

(I1($ay,2) = Wfll (—\/%) ) (65)
oz )V
q@(r,y,2) = Wﬂb (—\/ﬂ) ) (66)
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a3(w,y,2) =

2 exp{—v2y((2k + 1)l —2)} (o) y—z+ (2k+ 1)l — /27d
2 2 o= o ( Vi )

exp{(z\/%) (z(2k+1)l+\/ﬂd)+(x_\/?y)2d}

/(y—z+(2k+1)l—xd>} 2

k=—o0

Vd
o~ exp{V2U(Ck+ DI =2)} [ oy vmm)y o (V= 2+ QCk+1Dl+27d
D M G )

exp{<x+m) (z(2k+1)z\/%d)+(x+\é27)2d}

— . c(VEvta)y—v2yz
W(y +(2\l;£—1)l dﬂ_ i w (V). (67)

w(eyz) = 2 i exp {—v/27(2kl — 2)} [e(wm)y/ (y—z+2kz—\/ﬂd>

= eV 7
_exp{(x_m) (Z_le+md>+<x—¢2%>2d}w<y_z+j;z_xd>]
+2kim eXp{ﬁ(j/%— 2)} [e@w?)w (y—z+(2k\j—31)l+\/ﬂd>

exp{(Hm) (HM@d>+<x+¢2ﬂ)“‘d}ﬂ<y_z+f;z_md>]

v (V) g

Remark: The price can be calculated by numerical inversion of the Laplace
transform.

So far, we have shown how to obtain the Laplace transform of

.PC’Tk (T+%m2)TPinfcall~

in—call — €

For
PCoutfcall = eirTEQ ((ST - K)+1{7-S>T}) ,

we can get the result from the relationship that

PCout—call - eirTEQ {(ST - K)Jr} - Pcin—call'

20



6 Appendix: Proof of Theorem 2

Let T be the final time. According to the definition of ¥(x), we have

2

U(x) =2\/maN (ﬂx) —Var+e @ = \/rz — /arErfc (x)+e ™.

It is not difficult to show that

E (e*BTW“) —E ( / " gepTq {TWH<T}dT> .
0

By Girsanov’s theorem, this is equal to
o 1,2
/ Be~ Fran)T=nto p (erWr1  w ) dT.
0
Setting v = 3+ 1 u? gives

u 0 1
F (efﬁTW ) = / (v— §u2)677T7‘””°E (e“WTl{Tw<T}) dTr
0

1,2
o 7_511/ _ W
= B (i ary)

where T is a random variable with an exponential distribution of parameter
that is independent of W;. Therefore we have

~ »yeltfﬂo o Wk
E (e“WTl W ) =—F (e Br )
{rW<T} v — %Mz

In order to inverse the above moment generating function, we just need to
inverse the following expressions:

[e%e} 0
B _ / el VT gy / e“xemmdx,
v 5 0 —00

et > 1 L 1
— pa —V2v(z—li)q pa V2y(z=li)gq
y- & /z Vo x+/_ooe V5 o

2 l; 2
g gty (L) = / po 1 _dnl =)
e ez N (\/& ,u\/g) n e 5 exp 5d .

Therefor the inversion of Nz is as follow:

for x > 1,

l; 2
i 1 (y+nl—1) T (a—y)
— _ VaE—ydy = d—/2v(nl —1; +

21

nl — +/2vd
Vd

)

)



for

x <l

S| 1—1;)?
/ ———exp _(y+nl—l) e V2E=Y) gy

—oo V2md 2d
l; 2
Fl WAnl=L)" | voa—y
— —€X ——————— ¢ € r d
+ V2md P 2d Y

= exp{yd\/ﬂ(nllier)}L/V(ernlli\/ﬂd)

Vd

—exp{Vd-f—\/ﬂ(nl—li+x)}{ﬂ<nl+\gﬂd) —W(x+nl_li+md

Vd Vd

Consequently, we can get Theorem 2.
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