
Stochastic Systems

2013, Vol. 3, No. 2, 442–499
DOI: 10.1214/11-SSY041
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CONTROLS∗
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We consider an inventory system in which inventory level fluc-
tuates as a Brownian motion in the absence of control. The inven-
tory continuously accumulates cost at a rate that is a general convex
function of the inventory level, which can be negative when there is a
backlog. At any time, the inventory level can be adjusted by a posi-
tive or negative amount, which incurs a fixed cost and a proportional
cost. The challenge is to find an adjustment policy that balances the
holding cost and adjustment cost to minimize the long-run average
cost. When both upward and downward fixed costs are positive, our
problem is an impulse control problem. When both fixed costs are
zero, our problem is a singular or instantaneous control problem. For
the impulse control problem, we prove that a four-parameter control
band policy is optimal among all feasible policies. For the singular
control problem, we prove that a two-parameter control band policy
is optimal.

We use a lower-bound approach, widely known as the “verification
theorem”, to prove the optimality of a control band policy for both
the impulse and singular control problems. Our major contribution
is to prove the existence of a “smooth” solution to the free boundary
problem under some mild assumptions on the holding cost function.
The existence proof leads naturally to a numerical algorithm to com-
pute the optimal control band parameters. We demonstrate that the
lower-bound approach also works for a Brownian inventory model
which prohibits an inventory backlog. A companion paper (“Brow-
nian inventory models with convex holding cost, part 2: discount-
optimal controls”, Stochastic Systems, Vol. 3, No. 2, pp. 500–573)
explains how to adapt the lower-bound approach to study a Brown-
ian inventory model under a discounted cost criterion.
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1. Introduction. This paper concerns the optimal control of Brownian
inventory models under a long-run average cost criterion. It serves two pur-
poses. First, it provides a tutorial on the powerful lower-bound approach,
known as the “the verification theorem”, for proving the optimality of a
control band policy among all feasible policies. The tutorial is rigorous and
self-contained with the exception of the standard Itô’s formula. Second, it
contributes to the literature by proving the existence of a “smooth” solution
to the free boundary problem with a general convex holding cost function.
The existence proof leads naturally to a numerical algorithm to compute the
optimal control band parameters. The companion paper [33] studies the opti-
mal control of Brownian inventory models under a discounted cost criterion.

The model description. In this paper and the companion paper [33], we
assume that the inventory netflow process follows a Brownian motion with
drift µ and variance σ2. The netflow process captures the difference be-
tween regular supplies, possibly through a long term contract, and cus-
tomer demands. Controls are exercised on the netflow process to main-
tain the inventory at desired positions. The controlled process, denoted by
Z = {Z(t), t ≥ 0}, is called the inventory process in this paper. For each
time t ≥ 0, Z(t) is interpreted as the inventory level at time t, although
Z(t) can be negative, in which case |Z(t)| represents the inventory backlog
at time t. We assume that the holding cost function h : R → R+ is a gen-
eral convex function. Thus,

∫ t

0 h(Z(s))ds is the cumulative inventory cost
by time t.

We also assume an adjustable, i.e. upward or downward, inventory posi-
tion. All adjustments are realized immediately without any leadtime delay.
Each upward adjustment with amount ξ > 0 incurs a cost K + kξ, where
K ≥ 0 and k > 0 are the fixed cost and the variable cost rate, respec-
tively, for each upward adjustment. Similarly, each downward adjustment
with amount ξ incurs a cost of L + ℓξ with fixed cost L ≥ 0 and variable
cost rate ℓ > 0. The objective is to find some control policy that balances
the inventory cost and the adjustment cost so that the long-run average cost
is minimized.

We use the inventory terminology from supply chain management to de-
scribe the Brownian control problems, although we also can describe them by
using the terminology of cash flow management. In this case, Z(t) represents
the cash amount at time t ≥ 0. A large number of papers in the economics lit-
erature have studied the Brownian control problems (e.g. Dixit [36]). Readers
are referred to Stokey [74] and her references for economic applications of
Brownian control problems. While the discounted cost criterion is appropri-
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ate for cash flow management, the long-run average cost criterion is natural
for many production/inventory problems.

When both fixed costs K and L are positive, it is clear that non-trivial
feasible control policies should limit the number of adjustments to be fi-
nite within any finite time interval. Under such a control policy, inventory
is adjusted at a sequence of discrete times and the resulting control prob-
lem is termed the impulse control of a Brownian motion. When both fixed
costs K = 0 and L = 0, it can be advantageous for the system to make an
“infinitesimal” amount of adjustments at any moment. Indeed, as shown in
Section 6, an optimal policy will make an uncountable number of adjust-
ments within a finite time interval. The resulting control problem is termed
the singular or instantaneous control of a Brownian motion. In this paper,
we treat impulse and singular control of a Brownian motion in a single frame-
work. Conceptually, we can view the singular control problem as a limit of a
sequence of impulse control problems as fixed costs K ↓ 0 and L ↓ 0. Such a
connection between impulse and singular control problems allows us to solve
a mixed impulse-singular control problem (for example, K > 0 and L = 0)
with less effort.

Non-linear holding cost. When holding cost function h is given by

(1.1) h(x) =

{
−px if x < 0,

cx if x ≥ 0

for some constants p > 0 and c > 0, we call h in (1.1) a linear holding
cost function, even though h(x) in (1.1) is piecewise linear in inventory
level x. With this holding cost function, both the inventory backlog cost
and the inventory excess cost are linear, but h(x) is not differentiable at
x = 0. Although many papers focus on the linear holding cost function
(e.g. [43]), there are many applications that motivate the non-linear hold-
ing cost function. For example, [24] and [69] studied optimal index tracking
of a benchmark index when there are transaction costs. An impulse con-
trol problem with quadratic holding cost arises naturally in their studies.
Quadratic holding cost and general convex holding cost also arise, for ex-
ample, in [22, 68, 78].

Optimal policy structure. For an impulse Brownian control problem un-
der the long-run average cost criterion, we prove in Section 5 that control
band policy ϕ = {d,D,U, u} with d ≤ D ≤ U ≤ u is optimal among all
feasible policies. Under the control band policy ϕ, an adjustment is placed
to bring the inventory up to level D when the inventory level drops to level d
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and to bring the inventory down to level U when the inventory level rises to
level u. For a singular Brownian control problem, we show in Section 6 that
the optimal policy is a degenerate control band policy with two free param-
eters D = d and U = u. When the inventory level is restricted to be always
nonnegative, we show in Section 7 that the optimal policy for an impulse
Brownian control problem is again a control band policy. Depending on hold-
ing cost function h, this control band policy sometimes, but not always, has
only three free parameters D, U and u that need to be characterized with the
lowest boundary d = 0. Although this paper does not explicitly study mixed
impulse-singular Brownian control problems, it is clear from our proofs that
a degenerate control band policy with three parameters is optimal.

The lower-bound approach and the free boundary problem. This paper
promotes a three-step, lower bound approach to solving Brownian control
problems under the long-run average cost criterion. In the first step, we
prove Theorem 4.1 to show that if there exist a constant γ and a “smooth”
test function f that is defined on the entire real line (or the positive half
line when inventory is not allowed to be backlogged) such that f and γ
jointly satisfy some differential inequalities, then the long-run average cost
under any feasible policy is at least γ. We formulate and prove this theorem
for all impulse, singular and mixed impulse-singular control problems. In
the second step, we show in Theorems 5.1 and 6.1 that for a given control
band policy, its long-run average cost can be computed as a solution to
a Poisson equation. This equation is a second order ordinary differential
equation (ODE) with given boundary conditions at the boundary points of
the band. As a part of the solution to the Poisson equation, we also obtain the
relative value function. The relative value function can be extended naturally
to the entire real line, but the extended function may not be continuously
differentiable at the boundary points of the control band. In the third step,
we search for a control band policy such that the corresponding relative
value function can indeed be extended smoothly as a function f on the
entire real line. Furthermore, this smooth function f , together with the
long-run average cost under the control band policy, satisfies the differential
inequalities in step 1 within the entire real line. Clearly, if the control band
policy in step 3 can be found, it must be an optimal policy by Theorem
4.1. The lower-bound theorem, Theorem 4.1, is known as the “verification
theorem” in the literature.

Step 3 is the most critical step in our three-step approach. In order to
make the relative value function smoothly extendible to the entire real line,
the parameters of the control band, which serve as the boundary points of
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the ODE, must be carefully selected. The smoothness requirements impose
conditions of the ODE solution at these yet to be determined boundary
points. Thus, we call the ODE in step 3 the free boundary ODE problem.
Solving the free boundary problem to find the optimal parameters is also
known as the “smooth pasting” method [22]. Solving a free boundary prob-
lem can be difficult technically, since the number of free parameters of an
optimal control band policy dictates the level of difficulty in solving the
problem. Many papers have left it unsolved (e.g. [36, 71]), assuming there is
a solution to the free boundary problem with a certain smoothness property.

Contributions. The Brownian inventory control problem is now a classi-
cal problem, starting with Bather [13] in 1966. We briefly survey the research
area below. In addition to providing a self-contained tutorial on the lower-
bound approach to studying optimal control problems, our paper contributes
significantly in the following areas. (a) Under a general convex holding cost
function with some minor assumptions, we rigorously prove the existence of a
control band policy that is optimal for both the impulse and singular control
problems under the long-run average cost criterion. (b) Under the general
convex holding cost function, we prove the existence of a solution to the
four-parameter free-boundary problem. Our existence proof leads naturally
to algorithms for computing optimal control band parameters, which reduce
to root findings for continuous, monotone functions. Thus, the convergence
of these algorithms are guaranteed. A survey of the literature did not reveal
the existence of a solution to the four-parameter free boundary problem un-
der the long-run average cost criterion. In the discounted setting, [31] solved
the four-parameter free boundary problem when h is linear, and [10] solved
the problem when h is quadratic. Recently, Feng and Muthuraman [39] de-
veloped an algorithm to numerically solve the four-parameter free boundary
problem for the discounted Brownian control problem. They illustrated the
convergence of their algorithm through some numerical examples. (c) Under
the long-run average cost criterion, our lower-bound approach provides a
unified treatment for both the impulse and singular control problems, with
and without inventory backlog. In particular, we do not need to employ the
vanishing discount approach [38, 46, 73] to study the long-run average cost
problems. In [74], Stokey summarized both the impulse and instantaneous
controls of Brownian motion with a general convex holding cost function,
focusing on the discounted cost problems and employing the vanishing dis-
count approach to deal with the long-run average cost problems. It is ap-
pealing that our current paper studies the long-run average cost problem
directly, and characterizes the optimal parameters directly without going
through the vanishing discount procedure.
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Literature review. We first give a sample of major application areas of
singular and impulse Browian controls. We then survey the main method-
ologies for studying these control problems including the latest research
development when the driving process is a diffusion process or Levy pro-
cess. As stated, one purpose of this paper and the companion paper [33] is
to serve as a tutorial; we do not attempt to conduct a comprehensive sur-
vey. Unless stated otherwise, we restrict our discussions to one-dimensional
control problems.

Singular Brownian control has been used to study storage systems [44,
45, 76], multiclass make-to-stock production systems [79, 81] with additional
features such as subcontracting [23] or by-products and random yield [66]
or parallel server systems with outsourcing and order cancellation, make-
to-order production systems [7, 9], queues with input control and customer
abandonment [72, 80], product launching and advertising [57], and stochastic
processing networks under a complete resource pooling condition [8, 15, 16,
32, 41, 42, 59]. Singular control with discretionary stopping has been studied
in [35, 61]. In addition to the economic papers cited in this introduction, im-
pulse Brownian control has been used to study manufacturing systems [53],
paper plants for paper making and cutting [54], natural resource economics
such as forest harvesting problems [2, 3, 4, 5], inventory control problems
[12, 18, 21, 28, 65, 75], and financial problems such as dividend problems
[6, 27, 49, 67], inflation and pricing problems [78], portfolio optimization
problems with transaction costs [24, 47, 51, 63, 77], and exchange rate prob-
lems [26, 48, 62]. See [52] for a survey on using impulse control to solve these
financial problems.

The lower-bound approach has been used in [65, 76] under a long-run
average cost criterion and in [43, 44] under a discounted cost criterion. The
approach is essentially the same as the quasi-variational inequality (QVI)
approach pioneered by Bensoussan and Lions [19]. The QVI approach was
systematically developed in a French book, which was later translated into
English (see [20]). An appealing feature of the QVI approach is that it is
sufficient to solve a QVI problem in order to obtain an optimal policy for
an inventory control problem, and this sufficiency is established in [20]. The
QVI problem is a pure analytical problem that relates closely to the free
boundary problem. Many authors start with the QVI problems, relying on
the verification theorem developed in [20]; see for example, [17, 18, 21, 75].
The potential drawback of this approach is that a slight difference in the
formulation of a Brownian or diffusion control problem from the setting in
[20] may require developing a new verification theorem, presumably mim-
icking the development in reference. In contrast, our lower-bound approach
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provides a self-contained, rigorous proof simultaneously for impulse, singu-
lar and mixed control problems. It also allows us to observe first-hand how
the smoothness requirement of a solution to the free-boundary problem is
used. We also believe the lower-bound approach is easier to generalize to
high dimensional Brownian control problems.

The impulse control problem with both upward and downward adjust-
ments was studied as early as 1976 and 1978 by Constantinides [30] and
Constantinides et al. [31]. The first paper studied the long-run average cost
objective and the second paper studied the discounted cost objective. Both
papers assume the holding cost function is linear as given in (1.1). Under this
holding cost function, the optimal control band parameters can be explic-
itly characterized. Baccarin [10] studied the discounted impulse Brownian
control problem with a quadratic inventory cost function. When the inven-
tory is restricted to be nonnegative, but still under the linear holding cost
assumption (1.1), Harrison et al. [43] studied the discounted cost, impulse
Brownian control problem whereas Ormeci et al. [65] studied the long-run
average cost problem. Under the linear holding cost function assumption,
the optimal policy is a degenerate control band policy {0,D,U, u}, where
three optimal parameters D,U, u can be determined explicitly. However, un-
der our general convex holding cost assumption, the optimal policy for the
impulse control problem without inventory backlog is again a control band
policy {d,D,U, u}, with d sometimes being strictly positive. Harrison and
Taksar [44] and Taksar [76] studied the singular Brownian control problem
under a general convex inventory cost function assumption. The former pa-
per studied the discounted cost problem and the latter studied the long-run
average cost problem. Taksar [76] characterized the optimal control band
parameters through the optimal stopping time to a stochastic game with-
out solving the two-parameter free boundary problem. As in [76], Stokey [74]
characterized the optimal parameters through a stopping time problem with-
out solving the four-parameter free boundary problem. These stopping time
characterizations do not easily lead to any numerical algorithm to compute
optimal parameters. Kumar and Muthuraman [55] developed a numerical
algorithm to solve high-dimensional singular control problems.

In his pioneering paper, Bather [13] studied the impulse Brownian motion
control problem without downward adjustment under the long-run average
cost criterion. For most inventory problems, without downward adjustment
is a natural setting. Under a general holding cost function, the author sug-
gested that an (s, S) policy is optimal and derived equations that char-
acterize the optimal parameters s and S. Many authors have generalized
Bather’s work to discounted cost problems with linear holding cost in [75],



PART 1: AVERAGE-OPTIMAL CONTROLS 449

to discounted cost problems with and without inventory backlog in [28],
to discounted cost problems under the general convex holding cost func-
tion assumption in [17], to discounted cost problems with positive constant
leadtime in [12], and to compound Poisson and diffusion demand processes
in [18, 21]. Because there is no downward adjustment in these problems,
the optimal policy has two parameters and the resulting two-parameter free
boundary problem can be solved more easily than the four-parameter one.

As mentioned, most literature assumes that the driving process (the un-
controlled state process) is a Brownian motion. Therefore, this paper and
the companion paper [33] adopt the same framework to keep the tutorial
accessible. All of these papers prove that a control band policy is optimal.
Motivated by various applications, other driving processes have been used to
study these control problems. A control band policy continues to be optimal
when the driving process is a geometric Brownian motion [29, 47, 58, 60, 63]
or a mean-reverting diffusion process [25, 27]. In [1, 14, 57], the authors stud-
ied singular control problems when the driving process is a general diffusion
process, and in [6, 37, 50, 67], the authors studied impulse control problems
when the driving processes are general diffusion processes. The latter group
of papers assume that the state is restricted to be nonnegative and only
downward adjustment is allowed. For example, under their Assumption 2.1,
Alvarez and Lempa [6] proved the existence of a unique pair of parameters
U∗ < u∗ such that the control band policy associated with the pair is op-
timal among all feasible policies. Their approach is closely related to, but
different from, the smooth-pasting one outlined earlier in this introduction,
i.e., (a) for each pair of parameters (U, u), derive an expression for the value
function of the two-parameter control band policy associated with (U, u);
(b) solve a non-linear optimization problem in two variables U and u; prove
that under Assumption 2.1 there is a unique pair (U∗, u∗) that optimizes
the value function; and (c) prove that the value function associated with
(U∗, u∗) satisfies all the conditions of a verification theorem. Their Assump-
tion 2.1 proves to be strong; it rules out, for example, the quadratic holding
cost function when the driving process is a Brownian motion, a geometric
Brownian motion, or a mean-riveting process. Egami [37] adopted another
approach. It is known that an impulse control problem is equivalent to a
sequence of optimal stopping problems; see, for example, Davis [34] and
Oksendal and Sulem [64]. Each optimal stopping problem is of the form

(1.2) Π(x) = sup
τ≥0

Ex[e
−ατπ(Xτ )],

where τ is a stopping time, α ≥ 0 is a discount factor and π is a terminal
cost function. Such an optimal problem has been solved by Dayanika and
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Karatzas (2003). In particular, the optimal stopping time is given by

(1.3) τ∗ = inf{t ≥ 0 : Xt ∈ S}, where S = {x : Π(x) = π(x)}.

Egami [37] proved that the value function V (x) of the (discounted) impulse
control problem is related to the value function of an optimal stopping prob-
lem in (1.2) whose terminal cost π is equal to a function of the unknown
value function V (x). Under a certain assumption on problem data, the au-
thor was able to prove beautifully that the corresponding set S in (1.3) is
a singleton, without explicitly solving the unknown value function V . Thus,
the structure of an optimal policy is again a control band policy, without
invoking a verification theorem. Egami [37] claimed without proof that an
impulse problem with both upward and downward adjustment can also be
solved. (It is interesting to see if this impulse control problem can indeed
be solved as the four-parameter non-linear optimization problem will be sig-
nificantly more difficult to solve.) It remains to be seen whether [37] can
be extended to average cost problems. In [11] and [56], the authors stud-
ied impulse control problems when the driving process is a Levy process.
Lakner and Reed [56] proved a verification theorem, but did not solve the
free boundary problems. Benkherouf and Bensoussan [18] and Bensoussan
et al. [21] studied the problem without downward adjustment when the Levy
process is a sum of a Brownian motion and a compound Poisson process. In
[21], a control band policy (d,D) was proven optimal when the jump size
is exponentially distributed and in [18] when the jump size has a general
distribution.

Paper organization. The remainder of this paper is organized as follows.
In Section 2, we define our Brownian control problem in a unified setting
that includes impulse, singular and mixed impulse-singular controls. In Sec-
tion 3, we present a version of the Itô’s formula that does not require the
test function f be C2 function. A lower bound for all feasible policies is
established in Section 4. Section 5 discusses impulse control problems that
allow inventory backlog under the long-run average cost criterion. Section
5.1 shows that under a control band policy, a Poisson equation can produce
a solution that gives both the long-run average cost and the corresponding
relative value function. Under the assumption that a free-boundary prob-
lem has a unique solution that has desired regularity properties, Section
5.2 proves that there is a control band policy whose long-run average cost
achieves the lower bound. Thus, the control band policy is optimal among
all feasible policies. Section 5.3 details the proof of the solution to the free-
boundary problem and characterizes the parameters for the optimal control
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band policy. Section 5.3 constitutes the main technical contribution of this
paper. Section 6, essentially a special case of Section 5 when both K = 0 and
L = 0, solves the singular control problem. Section 7 describes impulse con-
trol problems when inventory backlog is prohibited. Section 8 summarizes
this paper and suggests an extension.

2. Brownian control models. Let X = {X(t), t ≥ 0} be a Brownian
motion with drift µ and variance σ2, starting from x. Then, X has the
following representation

X(t) = x+ µt+ σW (t), t ≥ 0,

where W = {W (t), t ≥ 0} is a standard Brownian motion that has drift
0, variance 1, starting from 0. We assume W is defined on some filtered
probability space (Ω, {Ft},F ,P) and W is an {Ft}-martingale. Thus, W is
also known as an {Ft}-standard Brownian motion. We use X to model the
netflow process of an inventory system. For each t ≥ 0, X(t) represents the
inventory level at time t if no control has been exercised by time t. The
netflow process will be controlled and the actual inventory level at time t,
after controls have been exercised, is denoted by Z(t). The controlled process
is denoted by Z = {Z(t), t ≥ 0}. With a slight abuse of terminology, we call
Z(t) the inventory level at time t, although when Z(t) < 0, |Z(t)| is the
backorder level at time t.

Controls are dictated by a policy ϕ, which is a pair of stochastic processes
(Y1, Y2) satisfying the following three properties: (a) for each sample path
ω ∈ Ω, Yi(ω, ·) ∈ D, where D is the set of functions on R+ = [0,∞) that
are right continuous on [0,∞) and have left limits in (0,∞); (b) for each ω,
Yi(ω, ·) is a nondecreasing function; and (c) Yi is adapted to the filtration
{Ft}, namely, Yi(t) is Ft-measurable for each t ≥ 0, i = 1, 2. We call Y1(t)
and Y2(t) the cumulative upward and downward adjustment, respectively,
of the inventory in [0, t]. Under policy (Y1, Y2), the inventory level at time t
is given by

(2.1) Z(t) = X(t)+Y1(t)−Y2(t) = x+σW (t)+µt+Y1(t)−Y2(t), t ≥ 0.

Therefore, Z is a semimartingale, namely, a martingale σW plus a process
that is of bounded variation.

A point t ≥ 0 is said to be an increasing point of Y1 if Y1(s)−Y1(t−) > 0
for each s > t, where Y1(t−) is the left limit of Y1 at t with convention
that Y1(0−) = 0. When t is an increasing point of Y1, we call it an upward
adjustment time. Similarly, we define an increasing point of Y2 and call it a
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downward adjustment time. Let Ni(t) be the cardinality of the set

{s ∈ [0, t] : Yi increases at s}, i = 1, 2.

In general, we allow an upward or downward adjustment at time t = 0. By
convention, we set Z(0−) = x and call Z(0−) the initial inventory level. By
(2.1),

Z(0) = x+ Y1(0)− Y2(0),

which can be different from the initial inventory level Z(0−).
The two types of costs associated with a control are fixed costs and pro-

portional costs. We assume that each upward adjustment incurs a fixed cost
of K ≥ 0 and each downward adjustment incurs a fixed cost of L ≥ 0.
In addition, each unit of upward adjustment incurs a proportional cost of
k > 0 and each unit of downward adjustment incurs a proportional cost of
ℓ > 0. Thus, by time t, the system incurs the cumulative proportional cost
kY1(t) for upward adjustment and the cumulative proportional cost ℓY2(t)
for downward adjustment. When K > 0, we are only interested in policies
such that N1(t) < ∞ for each t > 0; otherwise, the total cost would be
infinite in the time interval [0, t]. Thus, when K > 0, we restrict upward
controls that have a finitely many upward adjustment in a finite interval.
This is equivalent to requiring Y1 to be a piecewise constant function on
each sample path. Under such an upward control, we can list the upward
adjustment times as a discrete sequence {T1(n) : n ≥ 0}, where the nth
upward adjustment time can be defined recursively via

T1(n) = inf{t > T1(n− 1) : ∆Y1(t) > 0},

where, by convention, T1(0) = 0 and ∆Y1(t) = Y1(t)− Y1(t−). The amount
of the nth upward adjustment is denoted by

ξ1(n) = Y1(T1(n))− Y1(T1(n)−) n = 0, 1, . . . .

It is clear that specifying such an upward adjustment policy Y1 = {Y1(t), t ≥
0} is equivalent to specifying a sequence of {(T1(n), ξ1(n)) : n ≥ 0}. In
particular, given the sequence, we have

(2.2) Y1(t) =

N1(t)∑

i=0

ξ1(i),

and N1(t) = max{n ≥ 0 : T1(n) ≤ t}. Thus, when K > 0, it is sufficient
to specify the sequence {(T1(n), ξ1(n)) : n ≥ 0} to describe an upward



PART 1: AVERAGE-OPTIMAL CONTROLS 453

adjustment policy. Similarly, when L > 0, it is sufficient to specify the
sequence {(T2(n), ξ2(n)) : n ≥ 0} to describe a downward adjustment policy
and

(2.3) Y2(t) = −

N2(t)∑

i=0

ξ2(i).

Merging these two sequences gives the sequence {(Tn, ξn), n ≥ 0}, where Tn

is the nth adjustment time of the inventory and ξn is the amount of adjust-
ment at time Tn. When ξn > 0, the nth adjustment is an upward adjustment
and when ξn < 0, the nth adjustment is a downward adjustment. The policy
(Y1, Y2) is adapted if Tn is an {Ft}-stopping time and each adjustment ξn is
FTn− measurable.

In addition to the adjustment cost, we assume the system incurs a holding
cost at rate h(x): when the inventory level is at Z(t) = x, the system incurs
a cost of h(x) per unit of time. Therefore, the cumulative holding cost in
[0, t] is ∫ t

0
h(Z(s))ds.

Under a feasible policy ϕ = {(Y1(t), Y2(t))} with initial inventory level
Z(0−) = x, the long-run average cost AC(x, ϕ) is

(2.4) lim sup
t→∞

1

t
Ex

[ ∫ t

0
h(Z(s))ds +KN1(t) + LN2(t) + kY1(t) + ℓY2(t)

]
,

where Ex is the expectation operator conditioning the initial inventory level
Z(0−) = x. As mentioned, when K > 0 and L > 0, it is sufficient to restrict
feasible policies to be the impulse type given in (2.2) and (2.3). A Brownian
control model with controls limited to impulse type is called the impulse
Brownian control model. When K = 0 and L = 0, under an optimal policy,
N1(t) = ∞ and N2(t) = ∞ with positive probability for each t > 0. We
call the corresponding control problem the instantaneous Brownian control
model or singular Brownian control model.

For holding cost h : R → R+, we make the following assumption.

Assumption 1. Assume that the continuous holding cost function h :
R → R

+ satisfies the following conditions: (a) it is convex; (b) there exists
an a such that h ∈ C2(R) except at a, and h(a) = 0; (c) h′(x) < 0 for x < a
and h′(x) > 0 for x > a; and (d) When λ = 2µ

σ2 6= 0, h′(x) has a smaller
order than e−λx, that is

∫ a

−∞
|h′(y)|eλ(y−a)dy < ∞ if λ =

2µ

σ2
> 0
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and ∫ ∞

a

|h′(y)|eλ(y−a)dy < ∞ if λ =
2µ

σ2
< 0.

Remark. (i) h(x) in (1.1) and h(x) = x2 all satisfy Assumption 1. (ii) Under
Assumption 1 (c), the convexity of h implies that lim|x|→∞ h(x) = ∞.

We only consider feasible policies that satisfy

Ex

[
Yi(t)

]
< ∞ i = 1, 2,

Ex[N1(t)] < ∞ when K > 0 and Ex[N2(t)] < ∞ when L > 0

for each t ≥ 0. Otherwise, AC(x, ϕ) = ∞. Note that some applications may
always require a nonnegative inventory level, namely,

Z(t) ≥ 0 for t ≥ 0.

3. The Itô’s formula. In this section, we first state a version of Itô’s
formula. We then provide a lower bound result for the long-run average cost
in (2.4). Recall that for a function g ∈ D, it is right continuous on [0,∞)
and has left limits in (0,∞). We use gc to denote the continuous part of g,
namely,

gc(t) = g(t)−
∑

0≤s≤t

∆g(s) for t ≥ 0.

Here, we assume g(0−) is well defined. Recall that under any feasible policy
ϕ = (Y1, Y2), the inventory process Z = {Z(t) : t ≥ 0} has the semimartin-
gale representation (2.1). Because Brownian motion has continuous sample
paths, we have

(3.1) Zc(t) = X(t) + Y c
1 (t)− Y c

2 (t) for t ≥ 0.

Lemma 3.1. Assume that f ∈ C1(R) and f ′ is absolutely continuous

such that f ′(b) − f ′(a) =
∫ b

a
f ′′(u)du for any a < b with f ′′ locally in L1.

Then

f(Z(t)) = f(Z(0)) +

∫ t

0
Γf(Z(s))ds(3.2)

+ σ

∫ t

0
f ′(Z(s))dW (s) +

∫ t

0
f ′(Z(s−))dY c

1 (s)

−

∫ t

0
f ′(Z(s−))dY c

2 (s) +
∑

0<s≤t

∆f(Z(s)),
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where

(3.3) Γf(x) =
1

2
σ2f ′′(x) + µf ′(x) for each x ∈ R such that f ′′(x) exists,

is the generator of the (µ, σ2)-Brownian motion X and
∫ t

0 f
′(Z(s))dW (s) is

interpreted as the Itô integral.

Remark. Although f ′′(u) is only defined on almost all u in R,
∫ t

0 f
′′(Z(s))ds

is uniquely defined almost surely. Indeed,

σ2

∫ t

0
f ′′(Z(s))ds =

1

2

∫

R

f ′′(a)La(t)da,

where La is the local time of Z at a.

Proof. For any semimartingale Z, from Theorem 71 of [70, pp. 221] and
the comment of [70, pp. 70], it follows that

f(Z(t)) = f(Z(0)) +

∫ t

0
f ′(Z(s−))dZc(s)(3.4)

+
1

2

∫ t

0
f ′′(Z(s−))d[Zc, Zc](s) +

∑

0<s≤t

∆f(Z(s)),

where [Zc, Zc] is the quadratic variation of Zc. Using semimartingale repre-
sentation (3.1), we have

(3.5) [Zc, Zc](t) = [X,X](t) = σ2t

and
∫ t

0
f ′(Z(s−))dZc(s) =

∫ t

0
f ′(Z(s−))µds+

∫ t

0
f ′(Z(s−))σdW (s)(3.6)

+

∫ t

0
f ′(Z(s−))dY c

1 (s)−

∫ t

0
f ′(Z(s−))dY c

2 (s)

for t ≥ 0. Because Y1 and Y2 have at most countably many jump points, Z
has at most countably many discontinuity points. Therefore,

∫ t

0
f ′(Z(s−))ds =

∫ t

0
f ′(Z(s))ds and(3.7)

∫ t

0
f ′(Z(s−))dW (s) =

∫ t

0
f ′(Z(s))dW (s)(3.8)

for all t ≥ 0 almost surely. Itô’s formula (3.2) then follows from (3.4)-(3.8).
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4. Lower bound. Next, we state and prove a theorem that estab-
lishes a lower bound for the optimal long-run average cost. This theorem
is closely related to the verification theorem in the literature. Its proof is
self-contained, using the Itô lemma in Section 3.

Theorem 4.1. Suppose that f ∈ C1(R) and f ′ is absolutely continuous
such that f ′′ is locally L1. Suppose there exists a constant M > 0 such that
|f ′(x)| ≤ M for all x ∈ R. Assume further

Γf(x) + h(x) ≥ γ for almost all x ∈ R,(4.1)

f(y)− f(x) ≤ K + k(x− y) for y < x,(4.2)

f(y)− f(x) ≤ L+ ℓ(y − x) for x < y,(4.3)

where Γ is the generator defined in (3.3). Then AC(x, ϕ) ≥ γ for each feasible
policy ϕ and each initial state x ∈ R.

Remark. (i) When K = 0, condition (4.2) is equivalent to f ′(x) ≥ −k
for each x ∈ R. When L = 0, condition (4.3) is equivalent to f ′(x) ≤ ℓ for
each x ∈ R. (ii) Under an arbitrary control policy, the inventory level Z can
potentially reach any level. Thus, we require function f to be defined on the
entire real line R. It is not enough to have f defined on a certain interval
[d, u].

Proof. Let ϕ = (Y1, Y2) be a feasible policy. We choose a version of
f ′′(x) such that (4.1) holds for every x ∈ R. By Itô’s formula (3.2),

(4.4)

f(Z(t)) = f(Z(0−)) +

∫ t

0
Γf(Z(s))ds+ σ

∫ t

0
f ′(Z(s))dW (s)

+

∫ t

0
f ′(Z(s−))dY c

1 (s)−

∫ t

0
f ′(Z(s−))dY c

2 (s)

+
∑

0≤s≤t

∆f(Z(s))

≥ f(Z(0−)) + γt−

∫ t

0
h(Z(s))ds + σ

∫ t

0
f ′(Z(s))dW (s)

+

∫ t

0
f ′(Z(s−))dY c

1 (s)−

∫ t

0
f ′(Z(s−))dY c

2 (s)

+
∑

0≤s≤t

∆f(Z(s))
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where the inequality is due to (4.1). In the remainder of the proof, we sep-
arate into different cases depending on the positivity of K and L. We also
provide a complete proof for the case when K > 0 and L > 0 as well as
sketches for proofs in other cases.

Case I: Assume that K > 0 and L > 0. In this case, it is sufficient to
restrict feasible policies to impulse control policies {(Tn, ξn) : n = 0, 1, . . .}.
In this case, Y c

1 = 0 and Y c
2 = 0. Conditions (4.2) and (4.3) imply that

∆f(Z(T (n))) ≥ −φ(ξn) for n = 0, 1, . . ., where

φ(ξ) =





K + kξ if ξ > 0,
0 if ξ = 0,
L− lξ if ξ < 0.

(4.5)

Therefore, (4.4) leads to

f(Z(t)) ≥ f(Z(0−)) + γt−

∫ t

0
h(Z(s))ds(4.6)

+ σ

∫ t

0
f ′(Z(s))dW (s)−

N(t)∑

n=0

φ(ξn)

for each t ≥ 0. Fix an x ∈ R. We assume that

Ex

(∫ t

0
h(Z(s))ds +

N(t)∑

n=0

φ(ξn)

)
< ∞

for each t > 0. Otherwise, AC(x, ϕ) = ∞ and thus AC(x, ϕ) ≥ γ is
trivially satisfied. Because |f ′(x)| ≤ M , Ex|

∫ t

0 f
′(Z(s))dW (t)| < ∞ and

Ex

∫ t

0 f
′(Z(s))dW (s) = 0. Meanwhile

f(Z(t)) ≤
(
f(Z(t))

)+

and Ex

[(
f(Z(t))

)+]
is well defined, although it can be∞, where, for a b ∈ R,

b+ = max(b, 0). Taking Ex on both sides of (4.6), we have

Ex

[(
f(Z(t))

)+]
≥ Ex

[
f(Z(0−))

]
+γt− Ex

(∫ t

0
h(Z(s))ds +

N(t)∑

n=0

φ(ξn)

)
.

Dividing both sides by t and taking the limit as t → ∞, we have

(4.7) lim inf
t→∞

1

t


Ex

(∫ t

0
h(Z(s))ds +

N(t)∑

n=0

φ(ξn)

)
+ Ex

[(
f(Z(t))

)+]

 ≥ γ.
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We consider two cases. In the first case when

lim inf
t→∞

1

t
Ex

[(
f(Z(t))

)+]
= 0,

it is clear that (4.7) implies the theorem. Now we consider the case when

lim inf
t→∞

1

t
Ex

[(
f(Z(t))

)+]
= b > 0.

It follows that for sufficiently large t,

Ex

[(
f(Z(t))

)+]
≥ (b/2)t.(4.8)

Because |f ′(y)| ≤ M , for all y ∈ R,

(f(y1))
+ − (f(y2))

+ ≤ |f(y1)− f(y2)| ≤ M |y1 − y2| ≤ M(|y1|+ |y2|).

Therefore,

|Z(t)| ≥
1

M

(
f(Z(t))+ − (f(Z(0)))+

)
− |Z(0)|,

which, together with (4.8), implies

Ex|Z(t)| ≥
1

M

(
Ex[(f(Z(t)))+]− Ex[(f(Z(0)))+]

)
− Ex|Z(0)|

≥
1

M

(
(b/2)t− Ex[(f(Z(0)))+]

)
− Ex|Z(0)|

for sufficiently large t. This implies

(4.9) lim inf
t→∞

1

t

∫ t

0
Ex|Z(s)|ds = ∞.

Now we prove that

(4.10) lim inf
t→∞

1

t

∫ t

0
Ex

[
h(Z(s))

]
ds = ∞,

which implies AC(x, ϕ) = ∞, thus proving the theorem.
For (4.10), by Assumption 1 (a) and (c), there exist constants h1 > 0 and

c > 0 such that

(4.11) h′(y) ≥ h1 for all y ≥ c and h′(y) ≤ −h1 for all y ≤ −c.
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Because of (4.9), one of the following two equations holds:

lim inf
t→∞

1

t
Ex

(∫ t

0
Z(s)1{Z(s)≥c}ds

)
= ∞,

(4.12) lim inf
t→∞

1

t
Ex

(∫ t

0
|Z(s)|1{Z(s)≤−c}ds

)
= ∞.

Assume that (4.12) holds. Condition (4.11) implies

h(−c) − h(y) ≤ (−h1)(−c− y) for y ≤ −c

or
h(y) ≥ h1|y|+ h(−c)− ch1 for y ≤ −c.

Therefore,
h(y)1{y≤−c} ≥ h1|y|1{y≤−c} − ch1.

Thus,

lim inf
t→∞

1

t
Ex

(∫ t

0
h(Z(s))ds

)

≥ lim inf
t→∞

1

t
Ex

(∫ t

0
h(Z(s))1{Z(s)≤−c}ds

)

≥ lim inf
t→∞

1

t

(
Ex

∫ t

0
h1|Z(s)|1{Z(s)≤−c}ds

)
− ch1

= ∞,

which proves (4.10). Hence the theorem is proved for K > 0 and L > 0.
Case II: Assume that K = 0 and L = 0. Condition (4.2) leads to

f ′(u) ≥ −k for all u ∈ R and condition (4.3) leads to f ′(u) ≤ ℓ for all u ∈ R.
Because f is continuous, ∆f(Z(s)) 6= 0 implies ∆Z(s) 6= 0. If ∆Z(s) > 0,
(4.2) implies

∆f(Z(s)) ≥ −k∆Z(s).

If ∆Z(s) < 0, (4.3) implies

∆f(Z(s)) ≥ ℓ∆Z(s).

Thus, the last three terms in (4.4) are at least

−kY c
1 (t)− ℓY c

2 (t) +
∑

0≤s≤t

∆f(Z(s))

≥ −kY c
1 (t)− ℓY c

2 (t)− k
∑

0≤s≤t
∆Z(s)>0

∆Z(s) + ℓ
∑

0≤s≤t
∆Z(s)<0

∆Z(s)
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= −kY c
1 (t)− ℓY c

2 (t)− k
∑

0≤s≤t

∆Y1(s)− ℓ
∑

0≤s≤t

∆Y2(s)

≥ −kY1(t)− ℓY2(t).

Therefore, (4.4) leads to

f(Z(t)) ≥ f(Z(0−)) + γt−

∫ t

0
h(Z(s))ds

+σ

∫ t

0
f ′(Z(s))dW (s)− kY1(t)− ℓY2(t)

for t ≥ 0. The remainder of the proof is identical to the case when K > 0
and L > 0.

Case III: Assume K > 0 and L = 0. Consider a feasible policy (Y1, Y2)
with a finite cost. The upward controls must be impulse controls and Y1(t) =∑N1(t)

n=0 ξ1(n). Condition (4.2) implies

∑

0≤s≤t

∆Z(s)>0

∆f(Z(s)) ≥ −

N1(t)∑

n=0

(K + kξ1(n)).

and condition (4.3) implies

−ℓY c
2 (t) +

∑

0≤s≤t

∆Z(s)<0

∆f(Z(s)) ≥ −ℓY2(t).

Therefore, (4.4) leads to

f(Z(t)) ≥ f(Z(0−)) + γt−

∫ t

0
h(Z(s))ds + σ

∫ t

0
f ′(Z(s))dW (s)

−

N1(t)∑

n=0

(K + kξ1(n))− ℓY2(t)

for t ≥ 0. The remainder of the proof is identical to the case when K > 0
and L > 0.

Case IV: Assume that K = 0 and L > 0. This case is analogous to
the case when K > 0 and L = 0. Thus, the proof is omitted.

5. Impulse controls. We assume that K > 0 and L > 0. Therefore,
we restrict our feasible policies to impulse controls as in (2.2) and (2.3).
An impulse control band policy is defined by four parameters d, D, U , u,
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where d < D < U < u. Under the policy, when the inventory falls to d,
the system instantaneously orders items to bring it up to level D; when the
inventory rises to u, the system adjusts its inventory to bring it down to
U . Given a control band policy ϕ, in Section 5.1 we provide a method for
performance evaluation. As a by-product, we also obtain the relative value
function associated with the control band policy. In Section 5.2, we first claim
in Theorem 5.2 the existence of a solution to the free boundary problem with
associated parameters (d∗,D∗, U∗, u∗). Assuming Theorem 5.2, we prove in
Theorem 5.3 that the control band policy associated with (d∗,D∗, U∗, u∗) is
indeed optimal among all feasible policies. Section 5.3 describes the proof of
Theorem 5.2.

5.1. Control band policies. Use {d,D,U, u} to denote the control band
policy ϕ associated with parameters d, D, U and u. Fix a control band policy
ϕ = {d,D,U, u} and an initial inventory level Z(0−) = x. The adjustment
amount ξn of the control band policy is given by

ξ0 =





D − x if x ≤ d,

0 if d < x < u,

U − x if x ≥ u,

and for n = 1, 2, . . .,

ξn =

{
D − d if Z(Tn−) = d,

U − u if Z(Tn−) = u,

where again Z(t−) denotes the left limit at time t, T0 = 0 and

Tn = inf
{
t > Tn−1 : Z(t) ∈ {d, u}

}

is the nth adjustment time. (By convention, we assume Z is right continuous
having left limits.) Our first task is to find its long-run average cost. We first
present the following theorem.

Theorem 5.1. Assume that a control band policy ϕ = {d,D,U, u} is
fixed and that there exists a constant γ and a twice continuously differentiable
function V : [d, u] → R that satisfies

(5.1) ΓV (x) + h(x) = γ, d ≤ x ≤ u,

with boundary conditions

V (d)− V (D) = K + k(D − d),(5.2)

V (u)− V (U) = L+ l(u− U),(5.3)
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where Γ is defined in (3.3). Then the average cost AC(x, ϕ) is independent
of the starting point x ∈ R and is given by γ in (5.1).

Remark. Equation (5.1) is known as the Poisson equation. The solution V
is known as a relative value function associated with the control band policy
ϕ. It is unique up to a constant. One can evaluate γ from (5.1) by taking x
to be any value in [d, u].

Proof. Consider control band policy ϕ = {d,D,U, u}. Let V be a twice
continuously differentiable function on [d, u] that satisfies (5.1)-(5.3). Be-
cause d ≤ Z(t) ≤ u, by Lemma 3.1, we have

Ex[V (Z(t))] = Ex[V (Z(0))] + Ex

[ ∫ t

0
ΓV (Z(s))ds

]
+ Ex

[N(t)∑

n=1

θn

]
,

where θn = V (Z(Tn)) − V (Z(Tn−)). Boundary conditions (5.2) and (5.3)
imply θn = V (Z(Tn)) − V (Z(Tn−)) = −φ(ξn) for n = 1, 2, . . ., where φ is
defined in (4.5). Therefore,

Ex[V (Z(t))] − Ex[V (Z(0))] = Ex

[ ∫ t

0
ΓV (Z(s))ds

]
+ Ex

[N(t)∑

n=1

θn

]

= γt− Ex

[ ∫ t

0
h(Z(s))ds

]
− Ex

[N(t)∑

n=1

φ(ξn)
]
.

Dividing both sides by t and letting t → ∞, we have AC(x, ϕ) = γ because

lim
t→∞

1

t
Ex[V (Z(t))] = 0 and Ex[V (Z(0))] = V (x+ ξ0).

We end this section by explicitly finding a solution (V, γ) to (5.1)-(5.3).
The solution V is unique up to a constant. In the following proposition, let

λ = 2µ/σ2.(5.4)

Proposition 1. Let ϕ = {d,D,U, u} be a control band policy with

d < D < U < u.

Let m ∈ R be any fixed number. Define

V (x) =

∫ x

m

g(y)dy for x ∈ R
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with

(5.5) g(x) = V ′(m)eλ(m−x) + γ
2

σ2

∫ x

m

eλ(y−x)dy −
2

σ2

∫ x

m

h(y)eλ(y−x)dy,

where

γ =
a1
(
c2 + L+ ℓ(u− U)

)
+ a2

(
c1 +K + k(D − d)

)

a2b1 + a1b2
,(5.6)

V ′(m) =
b1
(
c2 + L+ ℓ(u− U)

)
− b2

(
c1 +K + k(D − d)

)

a2b1 + a1b2
.(5.7)

Then (V, γ) is a solution to (5.1)-(5.3). In (5.6) and (5.7), set

a1 =

∫ D

d

eλ(m−x)dx, a2 =

∫ u

U

eλ(m−x)dx,(5.8)

b1 = −
2

σ2

∫ D

d

∫ x

m

eλ(y−x)dydx, b2 =
2

σ2

∫ u

U

∫ x

m

eλ(y−x)dydx,(5.9)

c1 = −
2

σ2

∫ D

d

∫ x

m

h(y)eλ(y−x)dydx,(5.10)

c2 =
2

σ2

∫ u

U

∫ x

m

h(y)eλ(y−x)dydx.(5.11)

Proof. Equation (5.1) is equivalent to

(eλxV ′(x))′ =
2

σ2
(γ − h(x))eλx.

Integrating over [m,x] on both sides, we have

eλxV ′(x) = eλmV ′(m) + γ
2

σ2

∫ x

m

eλydy −
2

σ2

∫ x

m

h(y)eλydy

or equivalently

V ′(x) = eλ(m−x)V ′(m) + γ
2

σ2

∫ x

m

eλ(y−x)dy −
2

σ2

∫ x

m

h(y)eλ(y−x)dy.

Boundary conditions (5.2) and (5.3) become

V ′(m)

∫ D

d

eλ(m−x)dx+ γ
2

σ2

∫ D

d

∫ x

m

eλ(y−x)dydx(5.12)

=
2

σ2

∫ D

d

∫ x

m

h(y)eλ(y−x)dydx−K − k(D − d),

V ′(m)

∫ u

U

eλ(m−x)dx+ γ
2

σ2

∫ u

U

∫ x

m

eλ(y−x)dydx(5.13)

=
2

σ2

∫ u

U

∫ x

m

h(y)eλ(y−x)dydx+ L+ ℓ(u− U).
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Using the coefficients defined in (5.8)-(5.11), we now convert boundary con-
ditions (5.12) and (5.13) into

a1V
′(m)− γb1 = −(c1 +K + k(D − d)),

a2V
′(m) + γb2 = c2 + L+ ℓ(u− U),

from which we have the unique solution for γ and V ′(m) given in (5.6) and
(5.7).

5.2. Optimal policy and optimal parameters. Theorem 4.1 suggests the
following strategy to obtain an optimal policy. We hope that a control band
policy is optimal. Therefore, the first task is to find an optimal policy among
all control band policies. We denote this optimal control band policy by
ϕ∗ = {d∗,D∗, U∗, u∗} with long-run average cost γ∗. We hope that γ∗ can
be used as the constant in (4.1) of Theorem 4.1. To find the corresponding
f that, together with the γ∗, satisfies all the conditions of Theorem 4.1, we
start with the relative value function V (x) associated with the policy ϕ∗.
This relative value function V is defined on the finite interval [d∗, u∗]. We
need to extend V so that it is defined on the entire real line R. Given that
V (x) is the relative value function, it is natural to extend it in the following
way

(5.14) f(x) =





K + k(D∗ − x) + V (D∗) for x < d∗,

V (x) for x ∈ [d∗, u∗],

L+ ℓ(x− U∗) + V (U∗) for x > u∗.

Boundary conditions (5.2) and (5.3) ensure the continuity of f at d∗ and
u∗. Therefore, f ∈ C1(R). However, we still need to determine the optimal
parameters (d∗,D∗, U∗, u∗). Now we provide an intuitive argument on the
conditions that should be imposed on the optimal parameters. Since we wish
f ∈ C1(R), we should have

(5.15) V ′(d∗) = −k, V ′(u∗) = ℓ.

Also, starting from d∗, the system should jump to a D∗ that minimizes

p(D) ≡ K + k(D − d∗) + V (D).

Therefore, p′(D∗) = 0, namely,

(5.16) V ′(D∗) = −k.
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A similar argument leads to

(5.17) V ′(U∗) = ℓ.

Now, we first need to prove in Theorem 5.2 the existence of parameters
d∗, D∗, U∗ and u∗ such that the relative value function V corresponding to
the control band policy ϕ = {d∗,D∗, U∗, u∗} satisfies (5.1)-(5.3), and (5.15)-
(5.17). As part of the solution, we need to find the boundary points d∗,
D∗, U∗ and u∗ from (5.1)-(5.3) and (5.15)-(5.17). These equations define a
free boundary problem. We note that finding the solution to a free boundary
problem is more difficult than finding the one to a boundary value problem.
We then prove in Theorem 5.3 that the extension f in (5.14) and γ∗ =
AC(ϕ∗, x) jointly satisfy all the conditions in Theorem 4.1; therefore, the
control band policy ϕ∗ is optimal among all feasible policies.

To facilitate discussion, we assume that µ > 0. The statement and analysis
for the cases µ < 0 and µ = 0 are analogous and are omitted.

To facilitate the presentation of Theorem 5.2, we first find a general solu-
tion V to (5.1) without worrying about boundary conditions (5.2) and (5.3).
Proposition 1 shows that such V is given in the form

(5.18) V (x) =

∫ x

m

g(y)dy for x ∈ [d∗, u∗],

where g is given by (5.5) andm is some constant. Since the optimal boundary
points d∗,D∗, U∗, u∗ are yet to be determined, the constant γ on the right
side of (5.1) is also yet to be determined. Differentiating both sides of (5.1)
with respect to x, we have already shown that V ′(x) = g(x) is a solution to

(5.19) Γg(x) + h′(x) = 0 for all x ∈ R \ {a}.

In (5.5), we fix m = a and set A = 2γ/(λσ2) and B = A − V ′(m). Noting
that λ/µ = 2

σ2 , we have g(x) = gA,B(x), where

gA,B(x) = A−Be−λ(x−a) − (λ/µ)

∫ x

a

h(y)e−λ(x−y)dy(5.20)

= A−Be−λ(x−a) −
λ

µ

∫ x

a

h(x− y + a)e−λ(y−a)dy.

To summarize, we have the following lemma.

Lemma 5.1. For each A,B ∈ R, function g(x) = gA,B(x) is a solution
to equation (5.19).
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Fig 1. (a) There exist x∗
1 < x∗

2 such that function g decreases in (−∞, x∗
1), increases in

(x∗
1, x

∗
2), and deceases again in (x∗

2,∞). Parameters d∗, D∗, U∗ and u∗ are determined by
g(d∗) = g(D∗) = −k, g(U∗) = g(u∗) = ℓ, the shaded area between U∗ and u∗ is L, and
the shaded area between d∗ and D∗ is K. In the interval [d∗, u∗], g is the derivative of the
relative value function V associated with control band policy ϕ∗ = {d∗, D∗, U∗, u∗}.
(b) ḡ(x) = −k for x < d∗, ḡ(x) = g(x) for d∗ ≤ x ≤ u∗ and ḡ(x) = ℓ for x > u∗.

The following theorem characterizes optimal parameters (d∗,D∗, U∗, u∗)
via solution g = gA,B . Figure 1 depicts function g as used in the theorem.

Theorem 5.2. Assume that holding cost function h satisfies Assump-
tion 1. There exist unique A∗, B∗, x∗1, x

∗
2, d

∗, D∗, U∗ and u∗ with

d∗ < x∗1 < D∗ < U∗ < x∗2 < u∗

such that the corresponding g(x) = gA∗,B∗(x) satisfies

∫ D∗

d∗
[g(x) + k]dx = −K,(5.21)

∫ u∗

U∗

[g(x)− ℓ]dx = L,(5.22)

g(d∗) = g(D∗) = −k,(5.23)

g(U∗) = g(u∗) = ℓ.(5.24)
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Furthermore, g has a local minimum at x∗1 < a and a local maximum at
x∗2 > a. This function is decreasing on (−∞, x∗1), increasing on (x∗1, x

∗
2) and

decreasing again on (x∗2,∞).

If g satisfies all conditions (5.19), (5.21)-(5.24) in Theorem 5.2, V (x) in
(5.18) clearly satisfies all conditions (5.1)-(5.3) and (5.15)-(5.17). The proof
of Theorem 5.2 is long. Section 5.3 explains the proof.

Theorem 5.3. Assume that holding cost function h satisfies Assumption
1. Let d∗ < D∗ < U∗ < u∗, along with constants A∗ and B∗, be the unique
solution in Theorem 5.2. Then control band policy ϕ∗ = {d∗,D∗, U∗, u∗} is
optimal among all feasible policies.

Proof. Let g(x) be the function in (5.20) with A = A∗ and B = B∗. Let

ḡ(x) =





−k for x < d∗,

g(x) for d∗ ≤ x ≤ u∗,

ℓ for x > u∗;

see Figure 1. Conditions (5.23) and (5.24) ensure that ḡ is C(R). Define

V (x) =

∫ x

d∗
ḡ(y)dy.

Let γ∗ be the long-run average cost under policy ϕ∗. We now show that
V and γ∗ satisfy all of the conditions in Theorem 4.1. Thus, Theorem 4.1
shows that the long-run average cost under any feasible policy is at least
γ∗. Since γ∗ is the long-run average cost under the control band policy ϕ∗,
γ∗ is the optimal cost and the control band policy ϕ∗ is optimal among all
feasible policies.

First, V (x) is in C2((d∗, u∗)). Condition (5.21) implies

V (d∗)− V (D∗) = K + k(D∗ − d∗)

and (5.22) implies

V (u∗)− V (U∗) = L+ ℓ(u∗ − U∗).

Equation (5.19) implies that V satisfies

ΓV (x) + h(x) = constant for x ∈ (d∗, u∗).

According to Theorem 5.1, the constant must be the long-run average cost
γ∗ under control band policy ϕ∗.
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Now we show that V (x) satisfies the remaining conditions in Theorem 4.1.
Conditions (5.23) and (5.24) imply that truncated function ḡ is continuous
in R. Therefore, V ∈ C1(R). Clearly, V ′′(x) = 0 for x 6∈ [d∗, u∗], and V ′′(x) =
g′(x) for x ∈ (d∗, u∗). Let

M = sup
x∈[d∗,u∗]

|g(x)|.

We have |V ′(x)| ≤ M for all x ∈ R. Because

ΓV (x) + h(x) = γ∗ for x ∈ (d∗, u∗),

(4.1) is satisfied for x ∈ (d∗, u∗). In particular

1

2
σ2g′(d∗) + µg(d∗) + h(d∗) = γ∗

and
1

2
σ2g′(u∗) + µg(u∗) + h(u∗) = γ∗.

From Theorem 5.2, it follows that d∗ < x∗1 < a < x∗2 < u∗, g′(d∗) ≤ 0
and g′(u∗) ≤ 0 (see Figure 1). Thus, we have µg(d∗) + h(d∗) ≥ γ∗ and
µg(u∗) + h(u∗) ≥ γ∗. Now, for x < d∗, ΓV (x) + h(x) = µ(−k) + h(x) ≥
µg(d∗) + h(d∗) ≥ γ∗. Similarly, for x > u∗, ΓV (x) + h(x) = µ(ℓ) + h(x) ≥
µg(u∗) + h(u∗) ≥ γ∗.

Now we verify that V satisfies (4.2). Let x, y ∈ R with y < x. Then,

V (x)− V (y) + k(x− y) =

∫ x

y

[ḡ(z) + k]dz

≥

∫ (x∧D∗)∨d∗

(y∨d∗)∧D∗

[ḡ(z) + k]dz

≥

∫ D∗

d∗
[ḡ(z) + k]dz

= −K,

where the first inequality follows from the fact that ḡ(z) = g(z) = −k for
z ≤ d∗ and ḡ(z) = g(z) ≥ −k for D∗ < z < u∗ and ḡ(z) = ℓ ≥ −k for z ≥ u∗,
and the second inequality follows from the fact that ḡ(z) = g(z) ≤ −k for
z ∈ [d∗,D∗]; see Figure 1. Thus (4.2) is proved.

It remains to verify that V satisfies (4.3). For x, y ∈ R with y > x.

V (y)− V (x)− ℓ(y − x) =

∫ y

x

[ḡ(z)− ℓ]dz
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≤

∫ (y∧u∗)∨U∗

(x∨U∗)∧u∗

[ḡ(z)− ℓ]dz

≤

∫ u∗

U∗

[ḡ(z)− ℓ]dz

= L,

proving (4.3).

5.3. Optimal control band parameters. This section explains the proof of
Theorem 5.2. Throughout this section, we assume that µ > 0 and that the
holding cost function h satisfies Assumption 1. Recall that the λ is defined in
(5.4) and that g(x) = gA,B(x), defined in (5.20), depends on two parameters
A and B. To prove the theorem, it suffices to prove that there exists (A∗, B∗)
so that g(x) = gA∗,B∗(x), together with some constants x∗1, x

∗
2, d

∗, D∗, U∗,
u∗, satisfies (5.21)-(5.24) and the desired monotonicity properties of g(x) as
stated in the theorem. Recall that Figure 1 illustrates the conditions and
properties that gA∗,B∗(x) must satisfy. To prove the existence of (A∗, B∗),
we start with a series of lemmas. Each lemma progressively narrows the
search range of (A,B) so that gA,B(x) satisfies a subset of the conditions in
Theorem 5.2.

Before stating and proving these lemmas, we describe them briefly. Let
B > 0 be the constant defined in (5.25) below. In Lemma 5.2, we show
that for each B ∈ (0, B), the function gA,B(x) has a unique local minimum
point x1(B) and a unique local maximum point x2(B). The function gA,B(x)
decreases in (−∞, x1(B)), increases in (x1(B), x2(B)), and decreases again
in (x2(B),∞); see Figure 1. In Lemma 5.3, we show that xi(B) is monotone
and continuous in B, i = 1, 2.

In Lemma 5.4, we first show that the distance between the local max-
imum and the local minimum of gA,B, denoted as g̃(B) = gA,B(x2(B)) −
gA,B(x1(B)), is continuous and strictly increasing in B, and there exists
a unique B1 ∈ (0, B) such that g̃(B1) = k + ℓ. Furthermore, for each
fixed B ∈ (B1, B), we identify an interval of A, (A(B), A(B)], in which
gA,B(x1(B)) ≤ −k and gA,B(x2(B)) > ℓ. As a consequence, in Lemma 5.5,
we show that for B ∈ (B1, B) and A ∈ (A(B), A(B)], curve y = gA,B(x)
has exactly two intersections, denoted by U(A,B) and u(A,B), with curve
y = ℓ, and therefore condition (5.24) is always satisfied for U(A,B) and
u(A,B); see Figure 1.

In Lemmas 5.6-5.8, we identify a value B2 ∈ (B1, B) and then prove that
for B ∈ (B2, B) there exists a unique A∗(B) ∈ (A(B), A(B)] such that the
shaded area in Figure 1, bounded by curve gA∗(B),B(x) and line y = ℓ, is
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equal to L. Thus, gA,B(x) satisfies condition (5.22). Finally, in Lemma 5.9,
we show that there exists a unique B∗ ∈ (B2, B) such that the shaded area
below line y = −k is equal to −K. Curve y = gA∗(B∗),B∗(x) has exactly two
intersections, denoted by d∗ and D∗, with curve y = −k. Thus, conditions
(5.21) and (5.23) are satisfied.

These lemmas show that by choosing x∗1 = x1(B
∗), x∗2 = x2(B

∗), A∗ =
A∗(B∗), U∗ = U(A∗, B∗) and u∗ = u(A∗, B∗), function gA∗,B∗(x), together
with x∗1, x

∗
2, d

∗, D∗, U∗ and u∗, satisfies conditions (5.21)-(5.24) and associ-
ated monotonicity properties. Therefore, Theorem 5.2 is proved.

Define

B = −
1

µ

∫ a

−∞
h′(y)eλ(y−a)dy.(5.25)

Because h′(x) < 0 for x < a, B > 0. For A,B ∈ R, recall the function gA,B

defined in (5.20). We sometimes use the fact that

(5.26) gA,B(x) = A+ g0,B(x) for x ∈ R.

When the context is clear, we simply use g to denote gA,B . For the following
lemma, see Figure 1.

Lemma 5.2. (a) For any A ∈ R and for each fixed B ∈ (0, B), gA,B

attains a unique minimum in (−∞, a) at x1 = x1(B) ∈ (−∞, a). Function
gA,B attains a unique maximum in (a,∞) at x2 = x2(B) ∈ (a,∞). Both
x1(B) and x2(B) are independent of A.

(b) For each fixed B ∈ (0, B), the local minimizer x1 = x1(B) is the
unique solution in (−∞, a) to

(5.27) B −
1

µ

∫ x

a

h′(y)eλ(y−a)dy = 0.

The local maximizer x2 = x2(B) is the unique solution in (a,∞) to (5.27).
(c) For each B ∈ (0, B), g′A,B(x) < 0 for x ∈ (−∞, x1(B)), g′A,B(x) > 0

for x ∈ (x1(B), x2(B)), and g′A,B(x) < 0 for x ∈ (x2(B),∞).

Proof. Differentiating g(x) = gA,B(x) in (5.20) and noting h(a) = 0, we
have

g′(x) = λBe−λ(x−a) −
λ

µ

∫ x

a

h′(x− y + a)e−λ(y−a)dy

= λ
(
B −

1

µ

∫ x

a

h′(y)eλ(y−a)dy
)
e−λ(x−a)

= λF1(B,x)e−λ(x−a),
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where, for x ∈ R,

(5.28) F1(B,x) = B −
1

µ

∫ x

a

h′(y)eλ(y−a)dy.

Clearly g′(x) = 0 if and only if F1(B,x) = 0. Because

∂

∂x
F1(B,x) = −

1

µ
h′(x)eλ(x−a)(5.29)

and h′(x) < 0 for x < a and h′(x) > 0 for x > a, F1(B,x) increases in x < a
and decreases in x > a. For B > 0,

F1(B, a) = B > 0.

For any B ∈ (0, B),

lim
x↓−∞

F1(B,x) = B −B < 0.

Therefore, there exists a unique x1 = x1(B) ∈ (−∞, a) such that F1(B,x1) =
0 or equivalently g′(x1) = 0. Also, for any fixed B,

lim
x↑+∞

F1(B,x) = −∞.

Therefore, for any B > 0, there exists a unique x2 = x2(B) ∈ (a,∞) such
that F1(B,x2) = 0 or equivalently g′(x2) = 0. For B ∈ (0, B), it is clear that

g′(x) < 0 for x ∈ (−∞, x1), g′(x) > 0 for x ∈ (x1, x2) and

g′(x) < 0 for x ∈ (x2,∞).

Thus the lemma is proved.

Remark. The local maximizer x2(B) is well defined for all B ∈ (0,∞),
whereas the local minimizer x1(B) is defined only for B ∈ (0, B).

Lemma 5.3. (a) The local minimizer x1(B) is continuous and strictly
decreasing in B ∈ (0, B). The local maximizer x2(B) is continuous and
strictly increasing in B ∈ (0,∞). Furthermore,

(5.30) lim
B↓0

xi(B) = a i = 1, 2

and

(5.31) lim
B↑B

x1(B) = −∞, lim
B↑B

x2(B) = x2(B) ∈ (a,∞).
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(b) For each B ∈ (0, B),

(5.32) gA,B(xi(B)) = A−
1

µ
h(xi(B)) for i = 1, 2.

Proof. (a) Recall the function F1 defined in (5.28). Obviously, F1,
∂F1
∂B

,
∂F1
∂x

are continuous, and ∂F1
∂x

is given in (5.29). Therefore,

∂F1

∂x
> 0 for x ∈ (−∞, a),

where we use the fact that h′(x) < 0 for x ∈ (−∞, a). Using the Implicit
Function Theorem, x1(B) is continuously differentiable in B ∈ (0, B), and

dx1(B)

dB
=

µ

h′(x1(B))eλ(x1(B)−a)
< 0.(5.33)

Thus, x1(B) is strictly decreasing in B ∈ (0, B). Similarly,

dx2(B)

dB
=

µ

h′(x2(B))eλ(x2(B)−a)
> 0(5.34)

proves that x2(B) is continuously differentiable and strictly increasing in
B ∈ (0,∞). The limits in (5.30) and (5.31) can be proved easily following
the definition of x1(B) and x2(B).

(b) From (5.20) and (5.27), for i = 1, 2, we have

gA,B(xi(B))

= A−Be−λ(xi(B)−a) −
λ

µ

∫ xi(B)

a

h(xi(B)− y + a)e−λ(y−a)dy

= A−
1

µ

∫ xi(B)

a

h′(xi(B)− y + a)e−λ(y−a)dy

−
λ

µ

∫ xi(B)

a

h(xi(B)− y + a)e−λ(y−a)dy

= A−
λ

µ

∫ xi(B)

a

h(xi(B)− y + a)e−λ(y−a)dy

+
1

µ

[
h(xi(B)− y + a)e−λ(y−a) |xi(B)

a

+ λ

∫ xi(B)

a

h(xi(B)− y + a)e−λ(y−a)dy
]

= A−
1

µ
h(xi(B)),

thus proving (5.32).
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In the following lemma, for each B ∈ (0,∞), we set

(5.35) A(B) = ℓ− g0,B(x2(B)).

For any B ∈ (0,∞), following (5.26) and (5.32), we have

gA,B(x2(B)) ≥ ℓ

for any A ≥ A(B). Similarly, for any B ∈ (0, B), we define

(5.36) A(B) = −k − g0,B(x1(B)).

Following (5.26) and (5.32), we have

gA,B(x1(B)) ≤ −k

for any A ≤ A(B). Our next lemma determines when A(B) < A(B).

Lemma 5.4. For each B ∈ (0, B), let

(5.37) g̃(B) = gA,B(x2(B))− gA,B(x1(B))

be the distance between the local maximum and the local minimum. Then
g̃(B) is independent of A. Function g̃(B) is continuous and strictly increas-
ing in B ∈ (0, B) with

lim
B↓0

g̃(B) = 0 and lim
B↑B

g̃(B) = +∞.(5.38)

Thus, there exists a unique B1 ∈ (0, B) such that

(5.39) g̃(B1) = k + ℓ.

For each B ∈ (B1, B),

(5.40) A(B) < A(B).

Proof. By (5.26), g̃(B) = g0,B(x2(B)) − g0,B(x1(B)). Thus, g̃(B) is in-
dependent of A. From (5.33) and (5.34), it follows that for B ∈ (0, B),

dg̃(B)

dB
= −

1

µ

[
h′(x2(B))

dx2(B)

dB
− h′(x1(B))

dx1(B)

dB

]
(5.41)

= −e−λ(x2(B)−a) + e−λ(x1(B)−a)

> 0.

Thus g̃(B) is strictly increasing. The limit (5.38) follows from (5.30) and
(5.31). The existence of unique B1 satisfying (5.39) follows from (5.38),
the continuity and monotonicity of g̃. Inequality (5.40) follows from the
definition of B1 and the fact that A(B)−A(B) = g̃(B)− (ℓ+ k).
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Lemma 5.5. (a) For each B ∈ (B1, B) and each A ∈
(
A(B), A(B)],

there exist unique U(A,B) and u(A,B) with

(5.42) x1(B) < U(A,B) < x2(B) < u(A,B)

such that

gA,B(U(A,B)) = gA,B(u(A,B)) = ℓ,(5.43)

g′A,B(U(A,B)) > 0, g′A,B(u(A,B)) < 0,(5.44)

gA,B(x1(B)) ≤ −k.(5.45)

(b) For each fixed B ∈ (B1, B), U(A,B) and u(A,B) are continuously dif-
ferentiable function in A ∈

(
A(B), A(B)

)
. Function U(A,B) is decreasing

in A and function u(A,B) is increasing in A.

Proof. (a) For each B ∈ (B1, B) and each A ∈
(
A(B), A(B)], we have

gA,B(x2(B)) > ℓ and gA,B(x1(B)) ≤ −k. Thus, there are unique U(A,B)
and u(A,B) that satisfy (5.43)-(5.44). When A ∈

(
A(B), A(B)], inequality

(5.45) holds. This inequality implies U(A,B) > x1(B), which in turn implies
that inequality (5.42) holds.

(b) Using the Implicit Function Theorem, we have

∂

∂A
U(A,B) = −

1

g′A,B(U(A,B))
< 0,

∂

∂A
u(A,B) = −

1

g′A,B(u(A,B))
> 0.

This proves part (b) of the lemma.

Fix a B ∈ (B1, B). For A ∈
(
A(B), A(B)

]
let

Λ2(A,B) =

∫ U(A,B)

u(A,B)

[
gA,B(x)− ℓ

]
dx.

We would like to show that there exists a unique A∗(B) ∈ (A(B), A(B)]
such that

Λ2(A
∗(B), B) = L.

Lemma 5.6. Fix a B ∈ (B1, B). Function Λ2(A,B) is continuous and
strictly increasing in A ∈

(
A(B), A(B)

]
. Furthermore

(5.46) lim
A↓A(B)

Λ2(A,B) = 0.
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Proof. By the Implicit Function Theorem, we have

∂Λ2(A,B)

∂A
=

∂u(A,B)

∂A

[
gA,B(u(A,B)− l)

]

−
∂U(A,B)

∂A

[
gA,B(U(A,B)− l)

]
+

∫ u(A,B)

U(A,B)
1dx

= u(A,B)− U(A,B)

> 0.

Therefore Λ2(A,B) is strictly increasing in A ∈ (A(B), A(B)].
We observe

lim
A↓A(B)

gA,B(x2(B)) = lim
A↓A(B)

[
A−

1

µ
h(x2(B))

]
= l.

By the definitions of U(A,B) and u(A,B), we have

lim
A↓A(B)

U(A,B) = lim
A↓A(B)

u(A,B) = x2(B),

which proves (5.46).

Lemma 5.7. Function Λ2(A(B), B) is continuous and strictly increasing
in B ∈ (B1, B). Furthermore,

lim
B↓B1

Λ2(A(B), B) = 0 and lim
B↑B

Λ2(A(B), B) = ∞.

Therefore, there exists a unique B2 ∈ (B1, B) such that

(5.47) Λ2(A(B2), B2) = L and Λ2(A(B), B) > L for B ∈ (B2, B).

Proof. We first check that Λ2(A(B), B) is strictly increasing in B ∈
(B1, B). From (5.33) and the definition of A(B) in (5.36), it follows that

dA(B)

dB
=

1

µ
h′(x1(B))

dx1(B)

dB
= e−λ(x1(B)−a),

which implies

dΛ2(A(B), B)

dB
=

∂u(A(B), B)

∂B
[gA(B),B(u(A,B) − l)](5.48)

+
∂u(A(B), B)

∂A

dA(B)

dB
[gA(B),B(u(A,B)− l)]
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−
∂U(A(B), B)

∂B
[gA(B),B(U(A,B)− l)]

−
∂U(A(B), B)

∂A

dA(B)

dB
[gA(B),B(U(A,B)− l)]

+

∫ u(A,B)

U(A,B)
[−e−λ(x−a) +

dA(B)

dB
]dx

=

∫ u(A,B)

U(A,B)
[−e−λ(x−a) + e−λ(x1(B)−a)]dx

> 0,

where the last inequality is due to x1(B) < U(A,B) < u(A,B) for B ∈
(B1, B). Thus, we have proved that Λ2(A(B), B) is strictly increasing in
B ∈ (B1, B).

Because g̃(B1) = k + ℓ,

A(B1) = gA(B1),B1
(x2(B1))− ℓ = gA(B1),B1

(x1(B1)) + k = A(B1).

Thus,
lim
B↓B1

U(A(B), B) = lim
B↓B1

u(A(B), B) = x2(B1).

It follows that

(5.49) lim
B↓B1

Λ2(A(B), B) = 0.

We now show that

(5.50) lim
B↑B

Λ2(A(B), B) = ∞.

It is clear that (5.49), (5.50) and the monotonicity imply the existence of a
unique B2 ∈ (B1, B) that satisfies (5.47).

To prove (5.50), we check that

dU(A(B), B)

dB
=

e−λ(U(A(B),B)−a) − e−λ(x1(B))−a)

g′
A(B),B

(U(A(B), B))
< 0,(5.51)

du(A(B), B)

dB
=

e−λ(u(A(B),B)−a) − e−λ(x1(B))−a)

g′
A(B),B

(u(A(B)))
> 0.(5.52)

Therefore, U(A(B), B) decreases in B and u(A(B), B) increases in B. Thus,

U(A(B), B) ≤ U(A(B1), B1) and u(A(B), B) ≥ u(A(B1), B1)
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as B ↑ B. Therefore, noting that gA(B),B(x) − l ≥ 0 for x ∈ (U(A(B), B),

u(A(B), B)), we have

lim
B↑B

Λ2(A(B), B) = lim
B↑B

∫ u(A(B),B)

U(A(B),B)

[
gA(B),B(x)− l

]
dx

≥ lim
B↑B

∫ u(A(B1),B1)

U(A(B1),B1)

[
gA(B),B(x)− l

]
dx

= lim
B↑B

∫ u(A(B1),B1)

U(A(B1),B1)

[
A(B) + g0,B(x)− l

]
dx

=
(
U(A(B1), B1)− u(A(B1), B1)

)
lim
B↑B

A(B)

+

∫ u(A(B1),B1)

U(A(B1),B1)

[
g0,B(x)− l

]
dx

= ∞,

where we have used the fact that

lim
B↑B

A(B) = lim
B↑B

h1(x1(B))/µ − k = ∞.

Lemma 5.6 and the inequality in (5.47) immediately imply the following
lemma.

Lemma 5.8. For each B ∈ [B2, B), there exists a unique A∗(B) ∈
(A(B), A(B)] such that

(5.53) Λ2(A
∗(B), B) = L.

Finally, we prove the following lemma, which in turn proves Theorem 5.2.

Lemma 5.9. There exist unique B∗ ∈ (B2, B), d∗ and D∗ that satisfy

d∗ < x1(B
∗) < D∗ < U(A∗(B∗), B∗),

gA∗(B∗),B∗(d∗) = gA∗(B∗),B∗(D∗) = −k,

g′A∗(B∗),B∗(d∗) < 0, g′A∗(B∗),B∗(D∗) > 0,
∫ D∗

d∗
[gA∗(B∗),B∗(x) + k]dx = −K.
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Proof. By Lemma 5.8 and the inequality in (5.47), for B ∈ (B2, B), we
have A∗(B) ∈ (A(B), A(B)). From (5.36), it follows that

gA∗(B),B(x1(B)) = A∗(B)− h(x1(B))/µ < −k.(5.54)

Therefore, there exist unique d(B) and D(B) such that

d(B) < x1(B) < D(B) < U(A∗(B), B),

gA∗(B),B(d(B)) = gA∗(B),B(D(B)) = −k,

g′A∗(B),B(d(B)) < 0, g′A∗(B),B(D(B)) > 0.

Let

(5.55) Λ1(A
∗(B), B) =

∫ D(B)

d(B)
[gA∗(B),B(x) + k]dx.

We now prove that Λ1(A
∗(B), B) is continuous and strictly decreasing in

B ∈ (B2, B) and

lim
B↓B2

Λ1(A
∗(B), B) = 0 and lim

B↑B
Λ1(A

∗(B), B) = −∞.

Therefore, there exists a unique B∗ ∈ (B2, B) such that

Λ1(A
∗(B∗), B∗) = −K,

from which we prove the lemma.
To prove that Λ1(A

∗(B), B) is continuous and strictly decreasing in B ∈
(B2, B), we apply the Implicit Function Theorem to (5.53). We have

dA∗(B)

dB
=

∫ u(A∗(B),B)
U(A∗(B),B) e

−λ(x−a)dx

u(A∗(B), B)− U(A∗(B), B)
> 0.(5.56)

Equation (5.56) yields that, for x ∈ [d(B),D(B)]

∂gA∗(B),B(x)

∂B
=

dA∗(B)

dB
− e−λ(x−a)

=

∫ u(A∗(B),B)
U(A∗(B),B)

[
e−λ(y−a) − e−λ(x−a)

]
dy

u(A∗(B), B)− U(A∗(B), B)

< 0.

This in turn implies

(5.57)
∂Λ1(A

∗(B), B)

∂B
=

∫ D(B)

d(B)

∂gA∗(B),B(x)

∂B
dx < 0.

Therefore, Λ1(A
∗(B), B) is strictly decreasing in B ∈ (B2, B).
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From (5.47) and Lemma 5.8, it follows that

A∗(B2) = A(B2).

This, together with the definition of A(B) in (5.36), shows

gA∗(B2),B2
(x1(B2)) = gA(B2),B2

(x1(B2)) = A(B2)−
1

µ
h(x1(B2)) = −k.

Therefore,
lim
B↓B2

D(B) = lim
B↓B2

d(B) = x1(B2).

It follows that

(5.58) lim
B↓B2

Λ1(A
∗(B), B) = 0.

It remains to prove

(5.59) lim
B↑B

Λ1(A
∗(B), B) = −∞.

For B ∈ (B2, B),

∂gA∗(B),B(x1(B))

∂B
=

dA∗(B)

dB
(5.60)

− e−λ(x1(B)−a) + g′A∗(B),B(x1(B))
dx1(B)

dB

=

∫ u(A∗(B),B)
U(A∗(B),B)

[
e−λ(y−a) − e−λ(x1(B)−a)

]
dy

u(A∗(B), B)− U(A∗(B), B)

< 0.

Fix a B3 ∈ (B2, B) and let

M1 =
(
−k − gA∗(B3),B3

(x1(B3))
)
/2.

From (5.54), it follows that M1 > 0. Then (5.60) implies that for each
B ∈ (B3, B),

gA∗(B),B(x1(B)) < gA∗(B3),B3
(x1(B3)) = −k − 2M1 < −k −M1.

Therefore, for each B ∈ (B3, B) there exist unique d1(B) and D1(B) such
that

d1(B) < x1(B) < D1(B),

gA∗(B),B(d1(B)) = gA∗(B),B(D1(B)) = −k −M1,(5.61)

g′A∗(B),B(d1(B)) < 0, g′A∗(B),B(D1(B)) > 0.
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The properties of g in Lemma 5.2 (see also Figure 1) imply that for each
B ∈ (B3, B)

d(B) < d1(B) < x1(B) < D1(B) < D(B).

This, together with (5.31), implies

lim
B↑B

d1(B) = −∞.(5.62)

Note that for x ∈ (d(B),D(B)), gA∗(B),B(x) < −k. Therefore, for B ∈

(B3, B),

Λ1(A
∗(B), B) =

∫ D(B)

d(B)
[gA∗(B),B(x) + k]dx

≤

∫ D1(B)

d1(B)
[gA∗(B),B(x) + k]dx

≤

∫ D1(B)

d1(B)
[−M1]dx

= −M1(D1(B)− d1(B)).

From (5.61) and (5.56), it follows that for each B ∈ (B3, B),

dD1(B)

dB
=

∫ u(A∗(B),B)
U(A∗(B),B)

[
e−λ(D1(B)−a) − e−λ(x−a)

]
dx

(u(A∗(B), B)− U(A∗(B), B))g′(D1(B))
> 0.

Thus, for any B ∈ (B3, B),

D1(B) ≥ D1(B3).

Thus, for any B ∈ (B3, B),

(5.63) Λ1(A
∗(B), B) ≤ M1d1(B)−M1D1(B3).

Now (5.59) readily follows from (5.63) and (5.62).

6. Singular controls. Assume that K = 0 and L = 0. Our feasible
policies (Y1, Y2) in (2.1) are all adaptive, nondecreasing processes that in-
clude singular controls, also known as instantaneous controls. Under a singu-
lar control, (Y1, Y2) has infinitely many increases in each finite interval [0, t].
An example of a singular control policy is a two-parameter control band
policy, which is defined by two parameters d, u with d < u. No control is
exercised until the inventory level Z(t) reaches the lower boundary d or the
upper boundary u. When Z(t) reaches a boundary, there is no advantage in
using impulse control because there is no fixed cost.
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6.1. Control band policies. Let us fix a two-parameter control band pol-
icy ϕ = {d, u}. To mathematically describe the control process (Y1, Y2), we
need to use a two-sided regulator: for each x ∈ D with x(0) ∈ [d, u], find a
triple (y1, y2, z) ∈ D

3 such that

z(t) = x(t) + y1(t)− y2(t), t ≥ 0,(6.1)

z(t) ∈ [d, u], t ≥ 0,(6.2)

y1(0) = y2(0) = 0, y1 and y2 are nondecreasing,(6.3)

y1 and y2 increases only when z = d and z = u, respectively.(6.4)

The precise mathematical meaning of (6.4) is

(6.5)

∫ ∞

0
(z(t) − d) dy1(t) = 0 and

∫ ∞

0
(u− z(t)) dy2(t) = 0.

We can verify that (6.5) is equivalent to the following: whenever z(t) > d
for t ∈ [t1, t2], y1(t2) − y1(t1) = 0 and whenever z(t) < u for t ∈ [t1, t2],
y2(t2)− y2(t1) = 0. Lemma 6.1 below follows from Proposition 6 in Section
2.4 of [40]. That proposition is stated for each continuous path x ∈ D; we
can verify that the proposition continues to hold when the continuity of x
is dropped.

Lemma 6.1. For each x ∈ D with x(0) ∈ [d, u], there exists a unique
triple (y1, y2, z) ∈ D

3 that satisfies (6.1)-(6.5).

The lemma asserts that the map Ψ : x ∈ D0 → (y1, y2, z) ∈ D
3 is well

defined, where D0 = {x ∈ D : x(0) ∈ [d, u]}. In the following, we use notation

y1 = Ψ1(x), y2 = Ψ2(x), and z = Ψ3(x).

The nondecreasing functions (y1, y2) are said to be the two-sided regulator
of x, and z is the regulated path of x. When either u = ∞ or d = −∞, the
corresponding one-sided regular is defined in Section 2.2 of [40].

Under control band policy {d, u} with initial inventory level x ∈ [d, u],
controls (Y1, Y2) are given by Y1 = Ψ1(X), Y2 = Ψ2(X), and inventory
process Z = Ψ3(X).

To find the long-run average cost under the policy ϕ = {d, u}, we use the
following theorem.

Theorem 6.1. Fix a control band policy ϕ = {d, u}. If there exists a
constant γ and a twice continuously differentiable function V : [d, u] → R

that satisfies

(6.6) ΓV (x) + h(x) = γ, d ≤ x ≤ u,
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with boundary conditions

V ′(d) = −k,(6.7)

V ′(u) = ℓ,(6.8)

then the average cost AC(x, ϕ) is independent of the initial inventory level
x ∈ R and is given by γ in (6.6).

Proof. First, we assume x ∈ [d, u]. In this case, Z(0) = x. By Itô’s
formula,

V (Z(t)) = V (Z(0)) +

∫ t

0
ΓV (Z(s))ds+ σ

∫ t

0
V ′(Z(s))dW (s)

+

∫ t

0
V ′(Z(s))dY1(s)−

∫ t

0
V ′(Z(s))dY2(s)

= V (Z(0)) +

∫ t

0
ΓV (Z(s))ds+ σ

∫ t

0
V ′(Z(s))dW (s)

+ V ′(d)Y1(t)− V ′(u)Y2(t)

= V (Z(0)) + γt−

∫ t

0
h(Z(s))ds + σ

∫ t

0
V ′(Z(s))dW (s)

− kY1(t)− ℓY2(t).

Therefore

Ex[V (Z(t))] = Ex[V (Z(0))] + γt− Ex

(∫ t

0
h(Z(s))ds + kY1(t) + ℓY2(t)

)
.

Dividing both sides by t and taking the limit as t → ∞, we have AC(x, ϕ)= γ.
When x 6∈ [d, u], we assume Z immediately jumps to the closest point

in [d, u] at time 0. Therefore, Z(0) = d if x < d and Z(0) = u if x > u.
Since Z(0) ∈ [d, u], the remainder of the proof is identical to the case when
x ∈ [d, u].

Proposition 2. Let ϕ = {d, u} be a control band policy with

d < u.

Let m ∈ R be any fixed number. Define

V (x) =

∫ x

m

g(y)dy
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with

g(x) = V ′(m)eλ(m−x) + γ
2

σ2

∫ x

m

eλ(y−x)dy −
2

σ2

∫ x

m

h(y)eλ(y−x)dy,

where

γ =
d1(f2 + ℓ) + d2(f1 + k)

d1e2 + d2e1
,(6.9)

V ′(m) =
e1(f2 + ℓ) + e2(f1 + k)

d1e2 + d2e1
.(6.10)

Then (V, γ) is a solution to (6.6)-(6.8). In (6.9) and (6.10), set

d1 = eλ(m−d), d2 = eλ(m−u),(6.11)

e1 = −
2

σ2

∫ d

m

eλ(y−d)dy, e2 =
2

σ2

∫ u

m

eλ(y−u)dy,(6.12)

f1 = −
2

σ2

∫ d

m

h(y)eλ(y−d)dy, f2 =
2

σ2

∫ u

m

h(y)eλ(y−u)dy.(6.13)

Proof. Similar to the proof of Proposition 1, equation (6.6) implies

V ′(x) = eλ(m−x)V ′(m) + γ
2

σ2

∫ x

m

eλ(y−x)dy −
2

σ2

∫ x

m

h(y)eλ(y−x)dy.

Boundary conditions (6.7) and (6.8) become

eλ(m−d)V ′(m) + γ
2

σ2

∫ d

m

eλ(y−d)dy(6.14)

−
2

σ2

∫ d

m

h(y)eλ(y−d)dy = −k,

eλ(m−u)V ′(m) + γ
2

σ2

∫ u

m

eλ(y−u)dy(6.15)

−
2

σ2

∫ u

m

h(y)eλ(y−u)dy = ℓ.

Using the coefficients defined in (6.11)-(6.13), we see the boundary condi-
tions (6.14) and (6.15) become

d1V
′(m)− γe1 = −(k + f1),

d2V
′(m) + γe2 = ℓ+ f2,

from which we have the unique solution for γ and V ′(m) given in (6.9) and
(6.10).
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6.2. Optimal policy and optimal parameters. Theorem 4.1 suggests the
following strategy to obtain an optimal policy. We hope the optimal policy is
a control band policy. Therefore, the first task is to find an optimal control
band policy among all control band policies. Denote this optimal control
band policy by ϕ∗ = {d∗, u∗}, d∗ < u∗, with long-run average cost γ∗. We
hope that γ∗ can be used as the constant in (4.1) of Theorem 4.1. To find the
corresponding f that satisfies all of the conditions of Theorem 4.1, we start
with the relative value function V (x) associated with the policy ϕ∗ that is
defined on the interval [d∗, u∗]. We need to extend V (x) so that it can be
defined on R. Given that V (x) is the relative value function, it is natural to
define

f(x) =





V (d∗) + k(d∗ − x) for x < d∗,

V (x) for d∗ ≤ x ≤ u∗,

V (u∗) + ℓ(x− u∗) for x > u∗.

(6.16)

Since we wish f ∈ C1(R), we should have

(6.17) V ′(d∗) = −k, V ′(u∗) = ℓ.

Since we also wish f ∈ C2(R), we should also have the following conditions,

V ′′(d∗+) = 0, V ′′(u∗−) = 0.(6.18)

To explain why condition V ′′(d∗+) = 0 is needed, we follow Harrison and
Taksar [44, p. 451]. Because K = 0, condition (4.2) is equivalent to f ′(x) ≥
−k for all x ∈ R. If V ′′(d∗+) < 0, (6.17) implies that there exists an ǫ > 0
such that V ′(d∗ + ǫ) < −k, which violates lower bound condition f ′(d∗ +
ǫ) = V ′(d∗ + ǫ) ≥ −k. On the other hand, suppose V ′′(d∗+) > 0. Since
ΓV (d∗+)+h(d∗+) = γ, f ′ and h are continuous in R, f ′′(d∗−) = 0, we have
Γf(d∗−) + h(d∗−) < γ, which violates lower bound condition (4.1) for each
x < d∗. Thus, it must be true that V ′′(d∗+) = 0. Condition V ′′(u∗−) = 0
can be explained similarly.

In this section, we first prove the existence of parameters d∗ and u∗ such
that the relative value function V corresponding to control band policy
ϕ = {d∗, u∗} satisfies (6.6)-(6.8), and (6.17)-(6.18). Since part of the solution
is to find the boundary points d∗ and u∗, (6.6)-(6.8) and (6.17)-(6.18) define
a free boundary problem. We then prove that the extension f in (6.16) and
γ∗ = AC(ϕ∗, x) jointly satisfy all of the conditions in Theorem 4.1.

In the remainder of this section, we assume that µ > 0. The statement
and analysis for the cases µ < 0 and µ = 0 are analogous and are omitted.
Recall the function g(x) = gA,B(x) defined in (5.20).
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x
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Fig 2. There exist unique d∗ = x1(B1) and u∗ = x2(B1).

Theorem 6.2. Assume that h satisfies Assumption 1. There exist unique
A∗, B∗, d∗ and u∗ such that g(x) = gA∗,B∗(x), d∗ and u∗ satisfy

g(d∗) = −k,(6.19)

g(u∗) = ℓ,(6.20)

g′(d∗) = 0,(6.21)

g′(u∗) = 0.(6.22)

Furthermore, g(x) decreases in (−∞, d∗), increases in (d∗, u∗), and decreases
again in (u∗,∞).

Proof. Recall the definition of B in (5.25). For each B ∈ (0, B), by
Lemma 5.2, there is a unique local minimizer x1(B) < a and a unique local
maximizer x2(B) > a for function gA,B(x). By Lemma 5.4, there exists a
unique B1 ∈ (0, B) that satisfies (5.39). Let

A∗ = h(x1(B1))/µ − k = h(x2(B1))/µ + ℓ

and B∗ = B1. Then g(x) = gA∗,B1
(x), d∗ = x1(B1) and u∗ = x2(B1) satisfy

(6.19)-(6.22); see Figure 2.

Now we show that control band policy ϕ∗ = {d∗, u∗} is the optimal policy
among all feasible policies.
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Theorem 6.3. Assume that h satisfies Assumption 1. Let d∗ and u∗,
along with constants A∗ and B∗, be the unique solution in Theorem 6.2.
Then control band policy ϕ∗ = {d∗, u∗} is optimal among all feasible policies.

Proof. Let g(x), x ∈ R, be the function in (5.20) with A = A∗ and
B = B∗. Let

ḡ(x) =





−k for x < d∗,

g(x) for d∗ ≤ x ≤ u∗,

ℓ for x > u∗.

Define

V (x) =

∫ x

d∗
ḡ(y)dy.(6.23)

Let γ∗ be the long-run average cost under policy ϕ∗. We now show that V
and γ∗ satisfy all of the conditions in Theorem 4.1. Thus, Theorem 4.1 shows
that the long-run average cost under any policy is at least γ∗. Therefore, γ∗

is the optimal cost and control band policy ϕ∗ is an optimal policy. Now we
check that V (x) is in C2(R) and satisfies (4.1)-(4.3).

First, V (x) is in C2([d∗, u∗]). Theorem 6.2 and the definition of V in (6.23)
imply

lim
x↑d∗

V ′′(x) = 0 = lim
x↓d∗

V ′′(x), and lim
x↑u∗

V ′′(x) = 0 = lim
x↓u∗

V ′′(x).

Then, V ′′(x) is continuous at d∗ and u∗. Note that V ′′(x) = 0 in (−∞, d∗)
and (u∗,+∞). Therefore, V (x) is in C2(R). Let

M = sup
x∈[d∗,u∗]

|g(x)|,

we have |V ′(x)| ≤ M for all x ∈ R.
To check (4.1), we first find that ΓV (x) + h(x) = γ∗ for d∗ ≤ x ≤ u∗. For

x < d∗,

ΓV (x) + h(x) =
σ2

2
V ′′(x) + µV ′(x) + h(x)

=
σ2

2
V ′′(d∗) + µV ′(d∗) + h(x)

≥
σ2

2
V ′′(d∗) + µV ′(d∗) + h(d∗)

= γ∗,
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where the second equality is due to V ′′(x) = 0 = V ′′(d∗) and V ′(x) = −k =
V ′(d∗) for x < d∗, the inequality is due to x < d∗ = x1 < a, where a again
is the minimum point of h. Similarly, for x > u∗, ΓV (x) + h(x) ≥ γ∗.

Finally, (4.2) and (4.3) hold because g(x) is strictly increasing in x, x ∈
[d∗, u∗], and g(d∗) = g(d∗) = −k, g(u∗) = g(u∗) = ℓ; see Figure 2. Thus, the
optimality of control band policy ϕ∗ is implied by Theorem 4.1.

7. No inventory backlog. In this section, the inventory backlog is
not allowed and thus we add the constraint Z(t) ≥ 0 for all t ≥ 0. Holding
cost function h(·) is defined on [0,∞), and a ∈ [0,∞) is its minimum point.
We focus on the impulse control case when K > 0 and L > 0. The results
and proofs in this section are analogous to those discussed in Section 5.
Here, we highlight the differences. Other cases when K = 0 and L = 0,
or when K > 0 and L = 0, or when K = 0 and L > 0 can be studied
analogously. For example, the optimal policy for the case when K = 0 and
L = 0 with constraint Z(t) ≥ 0 can be obtained by extending Section 6 to
the non-backlog setting.

For control band policy {d,D,U, u} with 0 ≤ d < D < U < u, we continue
to use Theorem 5.1 to evaluate its performance and to obtain its relative
value function. However, we need to modify Theorem 4.1, the lower bound
theorem, slightly as follows.

Theorem 7.1. Suppose that f ∈ C1([0,+∞)) and f ′ is absolutely con-
tinuous such that f ′′ is locally L1. Suppose there exists a constant M > 0
such that |f ′(x)| ≤ M for all x ∈ [0,+∞). Assume further

Γf(x) + h(x) ≥ γ for x ∈ [0,+∞),

f(y)− f(x) ≤ K + k(x− y) for 0 ≤ y < x,

f(y)− f(x) ≤ L+ ℓ(y − x) for 0 ≤ x < y.

Then AC(x, ϕ) ≥ γ for each feasible policy ϕ and each initial state x ∈
[0,+∞).

7.1. Optimal policy parameters. Recall that for control band policy {d,D,
U, u} with 0 ≤ d < D < U < u, the corresponding relative value function
satisfies (5.1)-(5.3). To search for the optimal parameters (d∗,D∗, U∗, u∗),
we impose the following conditions on {d,D,U, u} and V :

V ′(U) = l,

V ′(u) = l,

V ′(D) = −k,
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V ′(d) = −k − α,

0 ≤ d < D < U < u,

αd = 0, and

α ≥ 0.

In some cases, it is optimal to have d∗ = 0. Then, we need only to solve for
three parameters D∗, U∗ and u∗. This section is analogous to Section 5.2.
Here, we highlight the differences, omitting some details to avoid repetition.

Recall that a is the minimum point of holding cost function h(x) on
[0,∞). It is possible a = 0 or a > 0. In the following, whenever we invoke
Assumption 1 for h, we ignore any condition on h(x) with x < 0. Similar to
Lemma 5.1, we have the following lemma.

Lemma 7.1. For each A,B ∈ R, function g(x) = gA,B(x) in (5.20) is a
solution to equation

Γg(x) + h′(x) = 0 for all x ∈ [0,∞) \ {a}.

The following theorem solves the free boundary problem when inventory
backlog is not allowed.

Theorem 7.2. Assume that holding cost function h satisfies conditions
(a)-(d) of Assumption 1. There exist unique A∗, B∗, d∗, D∗, U∗, u∗, x∗1, x

∗
2

and α∗ with

0 ≤ d∗ ≤ x∗1 < D∗ and U∗ < x∗2 < u∗(7.1)

such that the corresponding g(x) = gA∗,B∗(x) satisfies
∫ D∗

d∗
[g(x) + k]dx = −K,(7.2)

∫ d∗

U∗

[g(x) − ℓ]dx = L,(7.3)

g(d∗) = −k − α∗, g(D∗) = −k,(7.4)

g(U∗) = g(u∗) = ℓ,(7.5)

α∗d∗ = 0, and(7.6)

α∗ ≥ 0.(7.7)

Furthermore, g has a local minimum in [0, a] at x∗1 ∈ [0, a] and g has the
maximum at x∗2 ∈ (a,∞). Function g is decreasing in (0, x∗1), increasing in
(x∗1, x

∗
2) and decreasing again in (x∗2,∞).

We discuss the proof of Theorem 7.2 at the end of this section.
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Theorem 7.3. Assume that holding cost function h satisfies conditions
(a)-(d) of Assumption 1. Let 0 ≤ d∗ < D∗ < U∗ < u∗, along with constants
A∗ and B∗, be the unique solution in Theorem 7.2. Then control band policy
ϕ∗ = {d∗,D∗, U∗, u∗} is optimal among all feasible policies to minimize the
long-run average cost when inventory backlog is not allowed.

Proof. The proof is identical to that of Theorem 5.3.

Now, we discuss the proof for Theorem 7.2. This proof is similar to the
proof of Theorem 5.2. We provide an outline of the proof for Theorem 7.2,
highlighting the differences between the two proofs. We only consider the
case when µ > 0. Other cases are analogous and are omitted. Define

B1 = −
1

µ

∫ a

0
h′(y)eλ(y−a)dy

Because h′(x) < 0 for x ∈ (0, a), B1 > 0.
The following lemma is analogous to Lemma 5.2. The only difference is

that the expression for x1 = x1(B) has two forms in Lemma 7.2; see Figure 3.

Lemma 7.2. (a) For any A ∈ R and for each fixed B ∈ (0,∞), gA,B

attains a unique minimum in [0, a] at x1 = x1(B) ∈ [0, a]. Function gA,B

attains a unique maximum in (a,∞) at x2 = x2(B) ∈ (a,∞). Both x1(B)
and x2(B) are independent of A.

(b) For each fixed B ∈ (0,∞), the local maximizer x2 = x2(B) is the
unique solution in (a,∞) to (5.27). For B ∈ (0, B1), the local minimizer
x1 = x1(B) is the unique solution in (0, a) to (5.27). For B ∈ [B1,∞),
x1 = x1(B) = 0.

(c) For each B ∈ (0,∞), g′A,B(x) < 0 for x ∈ (0, x1(B)), g′A,B(x) > 0 for
x ∈ (x1(B), x2(B)), and g′A,B(x) < 0 for x ∈ (x2(B),∞).

The following lemma is analogous to Lemma 5.3.

Lemma 7.3. (a) The local minimizer x1(B) is continuous and nonin-
creasing in B ∈ (0,∞). The local maximizer x2(B) is continuous and strictly
increasing in B ∈ (0,∞). Furthermore, (5.30) holds and

(7.8) lim
B↑∞

x1(B) = 0, lim
B↑∞

x2(B) = ∞.

(b) For each B ∈ (0,∞),

(7.9) gA,B(x2(B)) = A− h(x2(B))/µ.
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Fig 3. When inventory backlog is not allowed, the parameter d∗ in the optimal control
band policy has two possibilities: d∗ > 0 and d∗ = 0. When d∗ = 0, there are two cases:
g′(0) < 0 and g′(0) ≥ 0, corresponding to x∗

1 > 0 and x∗
1 = 0, respectively.

For each B ∈ (0, B1),

(7.10) gA,B(x1(B)) = A− h(x1(B))/µ.

For each B ∈ [B1,∞),

(7.11) gA,B(x1(B)) = gA,B(0) = A−Beλa +
λ

µ

∫ a

0
h(−y + a)e−λ(y−a)dy.

Proof. (a) Note that x1(B) = 0 for B ∈ [B1,∞). Thus, x1(B) is con-
tinuous for B ∈ (B1,∞). It follows the proof of Lemma 5.3 that x1(B) is
continuously differentiable in B ∈ (0, B1), and x2(B) is continuously dif-
ferentiable in B ∈ (0,∞). We can easily check that x1(B) is continuous at
B = B1 and that xi(B) has the desired monotonicity property for i = 1, 2.
The limits in (5.30) can be obtained similarly as in Lemma 5.3. The limit
in the left side of (7.8) follows from x1(B) = 0 for B ∈ (B1,∞). The limit
in the right side of (7.8) follows from (5.27) for the definition of x2(B).
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(b) Equations (7.9) and (7.10) follow from the proof for (5.32). For B ∈
[B1,∞), x1(B) = 0. Thus, (7.11) follows from (5.20).

Recall the definition g̃(B) in (5.37) of Lemma 5.4. This time g̃(B) is well
defined for B ∈ (0,∞). Recall also the definitions of A(B) in (5.35) and A(B)
in (5.36). We have the following lemma that is analogous to Lemma 5.4.

Lemma 7.4. Function g̃(B) is independent of A. It is continuous and
strictly increasing on B ∈ (0,∞). Furthermore,

lim
B↓0

g̃(B) = 0 and lim
B↑∞

g̃(B) = ∞.

Therefore there exists B1 ∈ (0,∞) such that (5.39) holds. Furthermore, for
B ∈ (B1,∞), (5.40) holds.

Proof. First, we prove g̃ is strictly increasing. For B ∈ (0, B1), the

expression for dg̃(B)
dB

is identical to the one in (5.41). For B ∈ (B1,∞),

dg̃(B)

dB
= −

1

µ
h′(x2(B))

dx2(B)

dB
+ eλa(7.12)

= −e−λ(x2(B)−a) + eλa

> 0.

Thus, g̃ is strictly increasing.
Next we prove limB↑∞ g̃(B) = ∞. We observe that (7.8) and (7.12) imply

limB↑−∞
dg̃(B)
dB

= eλa > 0, from which we have limB↑∞ g̃(B) = ∞.
The remaining proof of the lemma is identical to that of Lemma 5.4.

With Lemma 7.4 replacing Lemma 5.4, Lemmas 5.5 and 5.6 hold without
any modification.

Lemma 7.5. Function Λ2(A(B), B) is continuous and strictly increasing
in B ∈ (B1,∞). Furthermore,

lim
B↓B1

Λ2(A(B), B) = 0,

lim
B↑∞

Λ2(A(B), B) = ∞.(7.13)

Therefore, there exists a unique B2 ∈ (B1,∞) such that (5.47) holds.

Proof. The proof of this lemma is identical to the proof of Lemma 5.7
except that we need to prove (7.13).



492 J. G. DAI AND D. YAO

To prove (7.13), we follow the expression in (5.48) for ∂Λ2(A(B),B)
∂B

. By
(5.51) and (5.52), we know that U(A(B), B) decreases in B and u(A(B), B)
increases in B. Also we know that x1(B) = 0 for B ∈ (B1,∞). Following
the expression in (5.48) and these facts, we have

lim
B↑∞

∂Λ2(A(B), B)

∂B
> 0,

which implies (7.13).

Lemma 5.6 and Lemma 7.5 immediately give the following lemma.

Lemma 7.6. For each B ∈ [B2,∞), there exists a unique A∗(B) ∈
(A(B), A(B)] such that (5.53) holds.

Finally, the following lemma gives a proof of Theorem 7.2.

Lemma 7.7. There exist unique B∗ with B∗ ∈ (B2,∞), D∗, d∗, x∗1 and
α∗ with 0 ≤ d∗ ≤ x∗1 < D∗ such that

gA∗(B∗),B∗(D∗) = −k,

gA∗(B∗),B∗(d∗) = −k − α∗,
∫ D∗

d∗

[
gA∗(B∗),B∗(x) + k

]
dx = −K,

α∗d∗ = 0, and

α∗ ≥ 0.

Proof. For any B ∈ (B2,∞), A∗(B) < A(B). Therefore, (5.36) implies
gA∗(B),B(x1(B)) < −k. Thus, there exists a unique D(B) such that

(7.14) D(B) > 0, gA∗(B),B(D(B)) = −k, g′A∗(B),B(D(B)) > 0.

If gA∗(B),B(0) > −k, then there exists a unique d(B) such that

d(B) ≥ 0, gA∗(B),B(d(B)) = −k, g′A∗(B),B(d(B)) < 0.

For B ∈ (B2,∞), (5.56) implies

∂gA∗(B),B(0)

∂B
=

∫ u(B)
U(B)

[
e−λ(x−a) − eλa

]
dx

u(B)− U(B)
< 0.

Therefore, gA∗(B),B(0) is strictly decreasing in B ∈ (B2,∞). Let (B2, B4)
be the interval over which gA∗(B),B(0) > −k. If there is no B that satisfies
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gA∗(B),B(0) > −k, then set B4 = B2. Thus, for B ∈ (B2, B1∧B4), d(B) > 0.

Otherwise, for B ∈ [B1 ∧B4,∞), set d(B) = 0. The remainder of the proof
mimics the proof of Lemma 5.9.

Define Λ1(A
∗(B), B) as in (5.55). We will now prove that Λ1(A

∗(B), B)
is continuous and strictly decreasing in B ∈ [B2,∞) and

lim
B↓B2

Λ1(A
∗(B), B) = 0 and lim

B↑∞
Λ1(A

∗(B), B) = −∞.

Therefore, there exists a unique B∗ ∈ (B2,∞), such that

Λ1(A
∗(B∗), B∗) = −K,

from which we prove the lemma by choosing A∗ = A∗(B∗), D∗ = D(B∗),
d∗ = d(B∗), x∗1 = x∗1(B

∗) and α∗ = (k + gA∗(B∗),B∗(0))−.
We first show that Λ1(A

∗(B), B) is continuous and strictly decreasing
in B ∈ [B2,∞). Observe that (5.56) continues to hold, from which (5.57)
continues to hold. We now claim that (5.57) continues to hold for B ∈
(B2,∞) except possibly at B1 ∧ B4. Indeed, for B ∈ (B2, B1 ∧ B4) (5.57)
holds as before. For B ∈ (B1 ∧B4,∞), d(B) = 0 and (5.57) holds as well in
this case. These all prove that Λ1(A

∗(B), B) is continuous and decreasing
in B.

Next, it is easy to see that the limit (5.58) continues to hold as well. It
remains to prove

(7.15) lim
B↑∞

Λ1(A
∗(B), B) = −∞.

We will prove next that

(7.16) lim
B↑∞

dΛ1(A
∗(B), B)

dB
< 0,

from which (7.15) immediately follows.
For (7.16), using (7.14), we have

dD(B)

dB
=

e−λ(D(B)−a) −

∫ u(A∗(B),B)
U(A∗(B),B)

e−λ(x−a)dx

u(A∗(B),B)−U(A∗(B),B)

g′
A∗(B),B(D(B))

(7.17)

=

∫ u(A∗(B),B)
U(A∗(B),B)

[
e−λ(D(B)−a) − e−λ(x−a)

]
dx

(u(A∗(B), B)− U(A∗(B), B)g′
A∗(B),B(D(B))

> 0.
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To study the limit in (7.16), we need only consider Λ1(A
∗(B), B) for B ∈

(B1∧B4,∞). When B ∈ (B1∧B4,∞), d(B) = 0 and hence Λ1(A
∗(B), B) =∫ D(B)

0

[
gA∗(B),B(x) + k

]
dx. Therefore, for B ∈ (B1 ∧B4,∞),

dΛ1(A
∗(B), B)

dB

=

∫ D(B)

0

[dA∗(B)

dB
− e−λ(x−a)

]
dx+

dD(B)

dB

[
gA∗(B),B(D(B)) + k

]

=

∫ D(B)

0

[dA∗(B)

dB
− e−λ(x−a)

]
dx,

where the last equality is due to gA∗(B),B(D(B)) = −k. From (5.56), it
follows that

dΛ1(A
∗(B), B)

dB
=

∫ D(B)

0

[∫ u(B)
U(B) e

−λ(y−a)dy

u(B)− U(B)
− e−λ(x−a)

]
dx

≤

∫ D(B)

0

[∫ u(B)
U(B) e

−λ(D(B)−a)dy

u(B)− U(B)
− e−λ(x−a)

]
dx

=

∫ D(B)

0
[e−λ(D(B)−a) − e−λ(x−a)]dx,

where the inequality follows from D(B) < U(B). Inequality (7.17) implies

d
( ∫ D(B)

0 [e−λ(D(B)−a) − e−λ(x−a)]dx
)

dB
= −λe−λ(D(B)−a)D(B)

dD(B)

dB
< 0.

For any B0 ∈ (B1 ∧B4,∞), we have
∫ D(B0)
0 [e−λ(x−a) − e−λ(D(B0)−a)]dx < 0.

Therefore,

lim
B↑∞

dΛ1(A
∗(B), B)

dB
≤ lim

B↑∞

∫ D(B)

0
[e−λ(x−a) − e−λ(D(B)−a)dy]dx

≤

∫ D(B0)

0
[e−λ(x−a) − e−λ(D(B0)−a)]dx

< 0,

proving (7.16).

Proof of Theorem 7.2. We have defined B∗, d∗, D∗, x∗1 and α∗ in
Lemma 7.7. As mentioned earlier, Lemma 5.5 continues to hold without any
modification in this section. Recall that U(A,B) and u(A,B) are defined
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in Lemma 5.5, x2(B) is defined in Lemma 7.2, and A∗(B) is defined in
Lemma 7.6. We set A∗ = A∗(B∗), U∗ = U(A∗, B∗), u∗ = u(A∗, B∗) and
x∗2 = x2(B

∗). To prove the theorem, it suffices to check that the function
gA∗,B∗(x), together with A∗, B∗, d∗,D∗, U∗, u∗, x∗1, x

∗
2, and α∗, satisfies (7.1)-

(7.7) and the monotonicity properties of gA∗,B∗(x) as stated in Theorem 7.2.
First, Lemma 5.5 implies the second part of (7.1) and (7.5). Second, Lemma
7.6 implies (7.3). Third, Lemma 7.7 implies the first part of (7.1), (7.2), (7.4)
and (7.6)-(7.7). Finally, Lemma 7.2 implies the monotonicity properties of
gA∗,B∗(x).

8. Concluding remarks. In this paper, we have given a tutorial of
the lower-bound approach for studying the optimal control of Brownian
inventory models with a general convex holding cost function. The control
can be either impulse or singular, and the inventory can be either backlogged
or without backlog. For future research, it would be interesting to study
multi-stage inventory systems with Brownian motion demand. Yao [82] has
done a preliminary study for these systems.
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