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A recent paper by Harrison and Van Mieghem explained in general
mathematical terms how one forms an “equivalent workload formulation”
of a Brownian network model. Denoting by Z�t� the state vector of the
original Brownian network, one has a lower dimensional state descrip-
tor W�t� = MZ�t� in the equivalent workload formulation, where M can
be chosen as any basis matrix for a particular linear space. This paper
considers Brownian models for a very general class of open processing net-
works, and in that context develops a more extensive interpretation of the
equivalent workload formulation, thus extending earlier work by Laws on
alternate routing problems. A linear program called the static planning
problem is introduced to articulate the notion of “heavy traffic” for a gen-
eral open network, and the dual of that linear program is used to define a
canonical choice of the basis matrix M. To be specific, rows of the canoni-
cal M are alternative basic optimal solutions of the dual linear program.
If the network data satisfy a natural monotonicity condition, the canoni-
cal matrix M is shown to be nonnegative, and another natural condition
is identified which insures that M admits a factorization related to the
notion of resource pooling.
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1. Introduction. Brownian networks are a class of stochastic system
models introduced in [6] and later used to approximate queueing networks
of various kinds under conditions of heavy traffic [11, 12, 13, 14, 15, 16, 17,
18, 19]. To be more specific, Brownian networks arise as heavy traffic approx-
imations of multiclass queueing networks in which system managers have a
dynamic control capability. It has also been observed repeatedly that Brownian
networks are potentially applicable as approximate models of more complex
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systems where, for example, processing activities involve simultaneous usage
of several resources (servers) or require several different materials as inputs.
Hereafter such physical systems will be referred to generically as “processing
networks,” or “stochastic processing networks.”

Section 2 of this paper will describe in broad outline an extremely general
family of stochastic processing networks, one which includes not only mod-
els with simultaneous resource requirements and multiple inputs to a single
processing activity, but also alternative means of accomplishing a given task,
and probabilistic work flow that may depend on which of those alternative
means is chosen. Consider, for example, a manufacturing system where either
a new machine or an old machine can be used to perform a certain operation,
and suppose that there is a 50% chance that an additional “rework” operation
will be required if the old machine is used, but no chance of that additional
requirement if the new machine is used; further suppose that there is a choice
as to which resources will be used to perform the rework operation if it is re-
quired. Readers will see that by properly defining “processing activities” and
“job classes” (these are both primitive concepts in our general description of a
processing network) it is relatively straightforward to represent such systems
within the proposed modeling framework. The focus of this paper is on formu-
lation and “soft analysis” of Brownian models for processing networks in that
general family.

A recent paper [10] put forth a general explanation of the “state space col-
lapse” that is a key to the tractability of Brownian networks. That is, the
authors explained in general mathematical terms how a stochastic control
problem associated with a Brownian network reduces to an “equivalent work-
load formulation” of lower dimension. The theory developed in [10] served
to unify various ad hoc analyses of specially structured Brownian networks
that had appeared over a span of years, and the authors also provided a gen-
eral interpretation of the lower-dimensional workload formulation in terms of
what they called “reversible displacements.” That interpretation did not in-
volve processing network language, invoking instead the physical image of a
particle moving in high-dimensional space subject to both random Brownian
displacements and purposeful control displacements.

This paper connects that general theory with the special structure one sees
in Brownian models of processing networks, thereby extending the seminal
work of Laws [14, 15] on Brownian models of alternate routing problems. To
make that connection requires a modest amount of additional mathematics,
and several questions left open in [10] will be answered along the way. To
explain more precisely the character and contributions of this paper, it will be
efficient to make a small diversion at this point, explaining what is meant by
a Brownian network and summarizing the main result proved in [10].

Let X = �X�t�� t ≥ 0� be an m-dimensional Brownian motion with respect
to a given filtration on a fixed probability space. (A process that is adapted
to the given filtration is nonanticipating with respect to X.) We denote by
θ and � the drift vector and covariance matrix respectively of X, assuming
throughout the X�0� = 0 almost surely. Also given are an m×n input–output
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matrix R� a p × n capacity consumption matrix K and an initial inventory
vector q ∈ �m

+ . In [10] the drift vector ofX and the initial inventory vector were
denoted by µ and z, respectively; with those exceptions, the notation in this
paper agrees with that used in [10]. An admissible control is an n-dimensional
process Y = �Y�t�� t ≥ 0� such that

Y is adapted to the given filtration,(1.1)

U�·� is nondecreasing with U�0� ≥ 0 and(1.2)

Z�t� ≥ 0 for all t ≥ 0, where(1.3)

Z�t� = q+X�t� +RY�t� for all t ≥ 0 and(1.4)

U�t� = KY�t� for all t ≥ 0�(1.5)

The crucial element in the equivalent workload formulation developed in [10]
is a matrixM defined as follows. First, the space of “reversible displacements”
referred to above is � = �δ ∈ �m� δ = Ry� Ky = 0�. Now let � be the
orthogonal complement of � , denote by d the dimension of the linear space
� , and let M be any d×m matrix whose rows are a basis for � . That is, one
can choose M to be any d×m matrix with the following property:

δ ∈ � if and only if Mδ = 0�(1.6)

An equivalent characterization proved in [10] is the following: one can choose
M as any d×m matrix of full row dimension such that, for some d×p matrix
G,

MR = GK�(1.7)

The m-dimensional process Z defined by (1.4) is generically called an in-
ventory process, and it is Z�t� that summarizes the state of the system at
time t in our original Brownian network model (1.1)–(1.5). The matrix M is
used to derive from Z an associated “workload process” W via

W�t� = MZ�t�� t ≥ 0�(1.8)

and it is W�t� that summarizes the state of the system at time t in our equiv-
alent workload formulation, or reduced Brownian network. That is, two state
vectors z and z′ are equivalent in the Brownian system model if their asso-
ciated workload vectors w = Mz and w′ = Mz′ are identical. For purposes
of this paper it is not even necessary to write out the equivalent workload
formulation, but one point is crucial. The workload dimension d always satis-
fies d ≤ m, and d is typically much smaller than m in realistic applications,
so adoption of the reduced state description (1.8) typically represents a sub-
stantial simplification of the original Brownian network. Moreover, as shown
by Laws [14, 15] in his analysis of alternate routing problems, a careful ex-
amination of the “state space collapse” embodied in (1.8) may yield valuable
qualitative information about essential system structure.
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Once the Brownian network model (1.1)–(1.5) and its equivalent workload
formulation have been described, certain questions naturally suggest them-
selves. To begin at the very beginning, how are the data of a Brownian network,
especially the matrices R and K from whichM is computed, derived from the
data of a processing network whose behavior we wish to approximate? That
question was answered for certain classes of queueing networks, or at least
a general recipe was proposed for those classes of queueing networks, in [6].
Extensions to more complex queueing networks that involve dynamic rout-
ing decisions have been suggested in a series of more recent papers surveyed
by Kelly and Laws [13]. Here the question will be addressed in broad terms
for the case of open processing networks, in which items or materials to be
processed are generated exogenously, the network’s resources or servers can
undertake various activities to accomplish that processing and all materials
eventually leave the system when their processing is complete. This paper’s
treatment of Brownian model formulation for open processing networks, which
culminates in Section 5, is novel in two regards. First, it embraces the gen-
eral model class referred to in the opening paragraph of this introduction,
without reference to the special features that distinguish queueing network
models. Second, there is explicit discussion of the need to distinguish between
what are here called basic and nonbasic activities. In particular, when some of
the available activities are nonbasic, in a precise sense explained in Section 2,
the appropriate definition ofK for an approximating Brownian model involves
augmentation of the original problem data. (In the notation used here, the orig-
inal capacity consumption matrix for an open processing network is denoted
by A, and rows are added to it to form K. The original matrix A is nonnega-
tive, but the rows that are added to it contain negative elements.) The existing
literature on Brownian network approximations contains no mention of non-
basic activities, although the subject is potentially important and somewhat
subtle.

A second basic modeling question, inextricably intertwined with the first,
is how to articulate the “heavy traffic” condition required to justify a Brown-
ian approximation. We address that matter in Section 2 by means of linear
programming, extending in an obvious way the analysis of alternate routing
problems by Laws [14, 15]. The linear program (LP) used to define heavy
traffic uses only first-order data (average arrival rates, average service rates
and so forth), and it is called the static planning problem in this paper. Its
dual, whose basic feasible solutions define what Laws calls “generalized cut
constraints,” is here called the the workload definition problem.

Perhaps the most obvious question left unanswered in [10] is the following:
Is there a canonical choice of the basis matrixM, used to define the workload
process W in (1.8), that is natural in a processing network context? For Brow-
nian models of open processing networks, a qualified affirmative answer is
provided by the development in Sections 2–5, which extends the analysis by
Laws [14, 15] of a more restrictive model class. We define a “canonical choice”
of the matrixM such that each row corresponds to a generalized cut constraint
which is binding at the optimal soluton of the static planning problem. (This
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choice of M is not necessarily unique, so it produces a canonical representa-
tion of workload rather than the canonical representation.) As a by-product of
this argument we obtain an interpretation of � in terms of a fluid model of
the original processing network. As explained in Section 5, the deterministic
fluid model provides a useful complement to the Brownian model that is our
central focus.

In the context of open processing networks, two other natural questions
about the matrix M concern its nonnegativity and factorability. With regard
to the former, a monotonicity condition on the original problem data is pre-
sented in Section 6, and it is shown to imply that our canonical choice of M
is nonnegative. In general, however, there need not exist a nonnegative basis
matrix for the space � . Another natural condition is presented in Section 6
which insures that our canonical choice of M admits a factorization related to
the notion of resource pooling. Broadly speaking, resource pooling occurs when
a system manager has alternative means available for processing a given set
of inputs, and as Kelly and Laws [13] have rightly emphasized, factorizations
of the sort discussed in Section 6 yield insights that are important in every
application domain.

Careful study of examples and special model structures is crucial for un-
derstanding the general phenomenon of state space collapse in Brownian net-
works. Several examples are discussed in Sections 6 and 7 to illustrate specific
points, but to develop a full appreciation for the specially structured model
classes that motivate our general theory, readers who are new to the sub-
ject should review earlier work. The historical progression begins in [6] with
analysis of open multiclass networks where the only mode of dynamic control
involves sequencing decisions. The original dimension of the Brownian model
for such a network equals the number of customer classes, but the equivalent
workload formulation has dimension equal to the number of servers. Brown-
ian models of closed multiclass queueing networks are also discussed in [6]
and in [4], but the most comprehensive treatment of those models and their
equivalent workload formulations is contained in Section 6 of [10]. The most
surprising and important results regarding state space collapse arise in the
context of multiclass queueing networks with alternate routing decisions, in
addition to dynamic sequencing decisions: the Brownian models of such net-
works typically have equivalent workload formulations with dimension strictly
less than the number of servers. The survey paper by Kelly and Laws [13] de-
scribes a series of illuminating examples, one of which will be reviewed in
Section 7 of this paper. Section 3 of [10] analyzes another example of similar
character.

All of the examples considered in Section 6 of this paper involve processing
activities with multiple inputs, so they are not queueing network models as
that phrase is normally interpreted, and most have been chosen to illustrate
some phenomenon that cannot occur in a conventional queueing network con-
text. For one of our examples there exists no choice of the basis matrixM that
has all elements nonnegative. Another example has an equivalent workload
formulation whose dimension d is strictly larger than the number of servers,
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and that same example illustrates the role of nonbasic activities in a Brownian
network model. The examples described in Section 6 also show how a given set
of processing capabilities may yield very different Brownian network models
depending on the nature of the input streams to be processed.

The queueing network model considered in Section 7 of this paper, which
originated in the Ph.D. dissertation of Laws [14], provides an example where
our “canonical choice” of the basis matrix M in nonunique. (In general, how-
ever, the approach developed here does narrow the canonical choice to finitely
many candidates.) Section 7 not only describes that specific example but also
explains how the theory developed in this paper relates to the earlier work of
Kelly and Laws [13, 14, 15].

In concluding this introduction, it is appropriate to emphasize two prob-
lems or issues not addressed in the paper. First, open processing networks
are described only in broad terms, without any attempt at precise mathemat-
ical formulation of the general model class. To develop such a formulation is
a major undertaking in itself, and here we provide only enough detail as to
make plausible the proposed Brownian approximation, fully acknowledging
that rigorous justification of the Brownian model as a heavy traffic approxi-
mation may depend on modeling choices that lie below the level of resolution
in our treatment. The other problem or issue referred to above is how to trans-
late an optimal control policy for the approximating Brownian model, assum-
ing one can be found, into a nearly optimal policy for the original processing
network. That general problem, which is known to be difficult and subtle,
is a focus of current research [8, 9] but simply will not be broached in this
paper.

2. The static planning problem for an open network. Consider an
open processing network with r servers (or processing resources), m materi-
als (or stocks, or job classes) and n processing activities. It will be convenient
to imagine that each material is stored in a dedicated buffer, and the terms
“buffer” and “inventory” will occasionally be used as synonyms for “material.”
Each activity requires certain materials as inputs, and it may either destroy
those inputs or produce other materials as outputs. Let us denote by Rij the
average amount of material i consumed per unit activity j, with a negative
value interpreted to mean that activity j is a net producer of material i. It is
also the case that activities consume the capacities of associated resources. As-
suming as a matter of convention that each resource has available one unit of
capacity per unit of time, let Akj be the average amount of resource k capacity
consumed per unit of activity j. In general, material consumption, material
production and capacity consumption could all be stochastic, depending on
how units of activity are defined, but we shall deal only with average rates for
time being. Similarly, let λi be the average rate at which material i is exoge-
nously generated, assuming λi > 0 for at least one i. The m×n input–output
matrix R, the r×n nonnegative capacity consumption matrix A, and the non-
negative m-dimensional column vector λ provide the first-order for our open
processing network.
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The static planning problem referred to in Section 1 is the following: choose
a scalar ρ and an n-dimensional column vector x so as to

minimize ρ(2.1)

subject to Rx = λ� Ax ≤ eρ and x ≥ 0�(2.2)

where e is the r-vector of ones. One interprets xj as the average rate at which
activity j is undertaken, expressed in units of activity per unit of time, and ρ
as an upper bound on the utilization rates for our various resources under the
processing plan x. In the static planning problem (2.1) and (2.2), one seeks to
minimize the maximal utilization rate ρ subject to the requirement that av-
erage activity rates be nonnegative and that exogenously generated inputs be
processed to completion without other inventories being generated (Rx = λ).

A natural first question to ask is whether there exists an (x� ρ) satisfying
(2.2) with ρ ≤ 1, and in that regard it is useful to consider the dual linear
program: choose an m-dimensional row vector µ and an r-dimensional row
vector π so as to

maximize µλ(2.3)

subject to µR ≤ πA� πe = 1 and π ≥ 0�(2.4)

Actually, the constraint πe = 1 in (2.4) is first expressed with a less than
or equal to inequality, but that can obviously be converted to an equality as
shown, because the capacity consumption matrix A in nonnegative. One can
interpret µi as the “total work content” attributed to a unit of material i, and
πk as the relative capacity of server k. The constraint πe = 1 sets total system
capacity to one as a matter of convention, which justifies our description of
πk as a “relative” capacity. The constraint µR ≤ πA in (2.4) demands that
workload contributions µi be attributed to the various materials i = 1� � � � �m
and relative processing capacities πk be attributed to the various resources
k = 1� � � � � r in such a way that no activity accomplishes more “work” than the
total capacity it consumes. Subject to that crucial constraint, one strives to
maximize µλ, which is the total amount of work attributed to the materials
that are exogenously generated per unit of time. These interpretations, which
are discussed further in Section 4, justify the description of (2.3) and (2.4) as
a “workload definition problem.”

Let us denote by � (mnemonic for dual) the set of all (µ�π) pairs satis-
fying (2.4), and let � = ��µl� πl�� l = 1� � � � �L� be the extreme points of the
polytope � . In other words, � consists of the L distinct basic feasible solu-
tions for our workload definition problem (2.3) and (2.4). The fundamental
theorem of linear programming tells us that the minimal objective value ρ∗

for the primal problem (2.1) and (2.2) equals the maximal value of µλ over
all (µ�π� ∈ � , or equivalently, equals the maximum of µlλ over all extreme
points l = 1� � � � �L. Thus we have the following.

Proposition 1. ρ∗ ≤ 1 if and only if

µlλ ≤ 1 for all l = 1� � � � �L�(2.5)
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Inequality (2.5) correspond to what Kelly and Laws [13, 14, 15] called “gen-
eralized cut constraints,” that language reflecting their interest in multicom-
modity network flows. The “heavy traffic condition” for our open processing
network is now articulated as follows.

Assumption 1. The static planning problem (2.1) and (2.2) has a unique
optimal solution (ρ∗� x∗). Moreover, that solution has ρ∗ = 1 and Ax∗ = e.

This assumption will remain in force throughout the paper, and several of
its aspects require comment. First, given the vector λ of external arrival rates,
Assumption 1 says that every server must be fully utilized (Ax∗ = e) if we
are to avoid inventory build-ups over time. This situation where all servers
are “critically loaded” may seem rather special, but the assumption really
means that servers which need not be fully utilized to handle the given load
have simply been deleted from our model. That is, the model under discussion
provides explicit representation of just the “bottleneck subnetwork” composed
of r critically loaded servers. (Of course, one would like to see a formal proof
that the influence of noncritical resources is negligible in some sense, but that
matter will not be dealt with here.) Also, it might seem unlikely that more
than one resource would be critically loaded, but multiple bottlenecks are
commonplace in manufacturing systems because of capacity balancing, and
Laws [15] has shown how alternate routing capabilities lead to “resource pools”
whose constituent servers all approach the critical loading regime together.
Next, readers might object that “critical loading” is equated with the case ρ∗ =
1 in this discussion, rather than the more generous interpretation to mean
ρ∗ near 1. In that regard Assumption 1 should not be taken quite literally:
as is standard in the theory of diffusion approximations, one can consider
a sequence of systems whose first-order data (R, A and λ) approach limits,
requiring only that the limiting data satisfy Assumption 1.

Finally, it may seem needlessly restrictive to require that the static plan-
ning problem have a unique solution, but multiple optima (with all servers
fully utilized in every optimal solution) lead to Brownian approximations of a
more complex form than considered in this paper, and all examples that have
been analyzed in the literature to date satisfy our assumption. For open queue-
ing networks with alternate routing, the uniqueness assumption amounts to
the following: there is just one way of splitting arrivals in each external in-
put stream among available alternate routes so that the no server is loaded
beyond its capacity by the resultant flows.

Hereafter, the vector x∗ of average activity levels will be said to constitute a
nominal processing plan. Because of stochastic variability in exogenous inputs
and endogenous processing, actual average activity rates over moderate time
spans may differ from these nominal rates, but the differences must be small
over long time spans if excessive inventories are to be avoided.

Given that ρ∗ = 1 by Assumption 1, it follows from Proposition 1 and the
remarks immediately preceding it that µlλ = 1 for at least one l. That is,
at least one of the generalized cut constraints (2.5) must be binding, and
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hereafter we denote by L∗ the number of such binding constraints. Next let d
be the dimension of the linear space spanned by �µl� 1 ≤ l ≤ L∗�. (Eventually,
it will be shown that this number d equals the “effective system dimension”
for an appropriate Brownian approximation of the open processing network, so
there is no conflict with the notation of Section 1.) Without loss of generality,
we assume that the extreme points of � are numbered so that

µlλ = 1 for 1 ≤ l ≤ L∗� but µlλ < 1� for L∗ < l ≤ L�(2.6)

and so that µ1� � � � � µd are also linearly independent. Finally, for future pur-
poses we define a d×m matrix M and a d× r matrix ( via

M =



µ1

���
µd


 and ( =


 π1

���
πd


 �(2.7)

This matrixM is the canonical basis matrix referred to in Section 1; its use in
that role will be justified in the following sections. (Obviously, our “canonical
choice” of M is unique if and only if d = L∗.)

Let us denote by b the number of activities j such that x∗
j > 0, calling

these basic activities, and let activities be numbered so that the basic ones are
1� � � � � b. Activities b+1� � � � � n will be called nonbasic, and it will be convenient
for later purposes to partition R and A in the following way:

R = �H J� and A = �B N��(2.8)

where H and B both have b columns. Thus H and B are the submatrices of
R and A, respectively, that correspond to basic activities. Because the optimal
solution (ρ∗� x∗) of our static planning problem (2.1) and (2.2) may be degener-
ate, an optimal basis for that linear program may include one or more of the
variables xb+1� � � � � xn but that need not concern us here. What is important
for our purposes is that each of the pairs �µ1� π1�� � � � � �µd�πd� is an optimal
solution for the dual linear program (2.3) and (2.4), and thus �µlH = πlB for
l = 1� � � � � d by complementary slackness. (That is, if any component of µlH
were strictly smaller than the corresponding component of πlB, one would
have µlλ < ρ∗ = 1, which is a contradiction.) Given the definitions (2.7), one
can write this in matrix form as

MH = (B�(2.9)

3. A balanced fluid model of dynamic flowmanagement. In this sec-
tion we consider a deterministic fluid model of the open processing network
described in Section 2, again using only the first-order data R, A and λ. One
may paraphrase Assumption 1 by saying that there is a perfect balance be-
tween the vector λ of external input rates and the processing capacities of the
system’s r servers, so we are examining a balanced fluid model of the sort
emphasized in [7], whereas fluid model analyses of stochastic control systems
that have been published to date [1, 2, 3, 5, 20] have been concerned pri-
marily with the case where available capacity strictly exceeds what is needed
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to process external inputs. Readers will eventually see that the two formal
propositions proved in this section could easily be framed without any men-
tion of a fluid model, but developing them in this way improves one’s intuitive
understanding of state space collapse in Brownian networks (see Section 5).

In the fluid model a policy for dynamic flow management takes the form
of a measurable function α� �0�∞� → �n

+, where αj�t� is interpreted as the
rate at which activity j is undertaken at time t (expressed in units of activity
per unit of time). Assuming initial inventory vector q ∈ �m

+ , the inventory
trajectory z�·� generated from α�·� is

z�t� = q+ λt−R
∫ t

0
α�s�ds� t ≥ 0�(3.1)

The policy α�·� is called feasible if it satisfies α�t� ≥ 0 for all t ≥ 0� z�t� ≥ 0 for
all t ≥ 0, and

Aα�t� ≤ e for all t ≥ 0�(3.2)

A state q′ ∈ �m
+ is said to be reachable from q if there exists a feasible policy

α�·� and a time t > 0 such that z�t� = q′, where z�·� is defined by (3.1). We
say that states q and q′ communicate if each is reachable from the other.

Proposition 2. Suppose q� q′ ∈ �m
+ and let δ = q′ − q. The following are

equivalent:

(i) q′ is reachable from q.
(ii) There exists x ≥ 0 such that Ax ≤ e and Rx = λ−�1/t�δ for some t > 0.
(iii) µlδ ≥ 0 for all l = 1� � � � �L∗.

Proof. It follows immediately from Proposition 1 that (ii) holds if and only
if, for each l = 1� � � � �L, one has µl�λ−�1/t�δ� ≤ 1 for some t > 0. By (2.6) the
latter condition holds if and only if µlδ ≥ 0 for all l = 1� � � � �L∗, which is (iii).
Thus we have proved that (ii) and (iii) are equivalent. Now suppose that (i)
holds, which means that

q′ = q+ λt−R
∫ t

0
α�s�ds(3.3)

for some feasible policy α�·� and some t > 0. Defining x = ∫ t
0 α�s�ds/t, the

feasibility of α�·� implies x ≥ 0 andAx ≤ e, so (ii) is satisfied by this particular
x and t. Conversely, if (ii) holds we can take α�s� ≡ x for 0 ≤ s ≤ t to satisfy (i).
Thus (i) and (ii) are equivalent, which completes the proof. ✷

Anticipating the treatment of Brownian models to follow in Section 5, it
will be useful to re-express fluid model dynamics in terms of a centered cumu-
lative time allocation β, as follows. Given any feasible policy α�·�, one defines
associated control β via

β�t� = x∗t−
∫ t

0
α�s�ds� t ≥ 0�(3.4)
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Thus components of β�t� represent cumulative activity levels over the time
interval [0, t], expressed as decrements from the vector x∗t of nominal activity
levels for that interval. Recalling that Rx∗ = λ, we can rewrite the basic
system equation (3.1) as

z�t� = q+Rβ�t�� t ≥ 0�(3.5)

A feasible control β must have z�·� ≥ 0, of course, and to express other policy
constraints in terms of β it will be convenient to set

p = r+ n− b(3.6)

and then define a p× n matrix K as follows:

K =
[
B N

0 −I
]
�(3.7)

Comparing (3.7) and (2.8), one sees that the first r rows of K are the capacity
consumption matrix A, and the negative identity matrix appearing in (3.7) is
of dimension n − b, which is the number of nonbasic activities in our static
planning problem.

Returning now to the reformulation of our fluid model in terms of β, let us
define

u�t� = Kβ�t�� t ≥ 0(3.8)

and consider the following policy constraint:

u�·� is nondecreasing with u�0� = 0�(3.9)

Recalling that Ax∗ = e by Assumption 1 (that is, all servers are loaded to
full capacity under the nominal processing plan x∗), one sees from (3.4), (3.7)
and (3.8) that the first r components of constraint (3.9) are equivalent to (3.2),
while the last p− r components reexpress the requirement that αj�·� ≥ 0 for
j = b + 1� � � � � n (these j correspond to nonbasic activities). The requirement
that αj�·� ≥ 0 for j = 1� � � � � b can be reexpressed as follows:

βj�t� − βj�s� ≤ �t− s�x∗
j for j = 1� � � � � b and 0 ≤ s ≤ t�(3.10)

To summarize, a control β� �0�∞� → �n is deemed feasible in our reformu-
lated fluid model it it is measurable and the following hold: the process z
defined by (3.5) satisfies z�t� ≥ 0 for all t ≥ 0; the process u defined by (3.8)
satisfies (3.9) and β further satisfies (3.10). Having introduced the matrixK in
conjunction with the reformulation, we can now state the main mathematical
result of this paper.
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Proposition 3. Suppose that q� q′ ∈ �m
+ and let δ = q′ − q. The following

are equivalent:

(i) q and q′ communicate.
(ii) There exists y ∈ �n such that Ry = δ and Ky = 0.
(iii) Mδ = 0 (i.e., Mq′ = Mq).

Proof. It follows from Proposition 2 that q and q′ communicate if and only
if µlδ = 0 for all l = 1� � � � �L∗. The rows of M have been chosen so that the
latter condition holds if and only if Mδ = 0. Thus (i) and (iii) are equivalent.

Now suppose that (ii) holds, and define x = x∗ − �1/t�y, where t is large
enough to insure xj ≥ 0 for all j = 1� � � � � b (recall that x∗

j > 0 for all such
j). Because Ky = 0, we have from the definition (3.7) of K that Ay = 0 and
yj = 0 for j = b + 1� � � � � n. Recalling that Ax∗ = e� Rx∗ = λ and x∗

j = 0 for
j = b+ 1� � � � � n, one then has that Ax = e� Rx = λ− �1/t�δ and x ≥ 0. Thus
q′ is reachable from q by Proposition 2. Now one can use that same argument
with −y in place of y to prove that q is reachable from q′, so (ii) implies (i).

Finally, suppose that (i) holds. Without loss of generality we can assume
the existence of a t > 0 such that q′ is reachable from q in exactly t time
units and q is also reachable from q′ in exactly t time units. [Having reached
a target state q∗ at some time τ, one can always maintain z�t� = q∗ for t ≥ τ
by simply taking α�t� = x∗ for t ≥ τ.] Arguing exactly as in the proof of
Proposition 2, we then have the following: there exist vectors x� x′ ≥ 0 such
that Ax ≤ e� Ax′ ≤ e� Rx = λ − �1/t�δ and Rx′ = λ + �1/t�δ. Defining
x′′ = 1

2�x + x′�, one then has Ax′′ ≤ e� Rx′′ = λ and x′′ ≥ 0. Thus one
obtains a feasible solution for the static planning problem (2.1) and (2.2) by
taking x = x′′ and ρ = 1. But Assumption 1 says that the unique optimal
solution �ρ∗� x∗� has ρ∗ = 1, so it must be that x′′ = x∗. Then it must be that
Ax = Ax′ = e and xj = x′

j = 0 for j = b + 1� � � � � n because Ax∗ = e and
x∗
j = 0 for j = b + 1� � � � � n. Thus we can satisfy (ii) by taking y = t�x∗ − x�.

This shows that (i) implies (ii), completing the proof. ✷

As the notation suggests, the matrix K defined by (3.7) will serve as the
capacity consumption matrix in our Brownian network model (see Section 4).
The last order of business in this section is to exhibit a d× p matrix G such
that R�G�K and the canonical basis matrix M in (2.7) jointly satisfy the
definitive relationship (1.7). The natural choice is

G = �( 5� where 5 = (N−MJ ≥ 0�(3.11)

The nonnegativity of 5 declared in (3.11) is established as follows: first, each
row of 5 corresponds to a pair (µ�π) that is a feasible solution of the dual
linear program (2.3) and (2.4); a constraint of that LP is µR ≤ πA, which
implies µJ ≤ πN by (2.8); thus πN−µJ ≥ 0, implying (N ≥ MJ as claimed.
Combining (3.11) with (2.8), (2.9) and the definition (3.7) of K, one has that

G ≥ 0 and MR = GK�(3.12)
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4. Further interpretation of the dual variables � and �. In Sec-
tion 2 it was suggested that the variable µi appearing in our dual linear
program (2.3) and (2.4) be interpreted as the workload contribution, or total
work content, per class i job, and that πk be interpreted as the relative capac-
ity of server k. To sharpen those interpretations, we now restate the primal
linear program (2.1) and (2.2) as follows: given an arbitrary m-vector q, find
a scalar τ and n-vector x so as to

minimize τ(4.1)

subject to Rx = q� Ax ≤ eτ and x ≥ 0�(4.2)

Adopting the deterministic fluid model of system dynamics that was described
in Section 3, we interpret τ as the length of a time interval during which ex-
ogenous inputs are to be turned off, while qi is interpreted as the amount
of material which must be removed from buffer i during that interval (if qi
is negative, this means that processing activities during the interval must
add material to buffer i). The decision variable xj is interpreted as the to-
tal amount of activity j to be undertaken during the interval [0, τ], and by
expressing capacity constraints in the form Ax ≤ eτ, we are effectively re-
stricting attention to controls α (see Section 3) in which each activityj is
undertaken at constant rate αj�t� = xj/τ �0 ≤ t ≤ τ�. Given that our objec-
tive (4.1) is to minimize the length τ of the processing interval, it is easy to
verify that the restriction to constant processing rates actually involves no
loss of generality.

The dual of the least-time control problem (4.1) and (4.2) is exactly as stated
earlier in (2.3) and (2.4), except that q is substituted for λ in the objective
(2.3). We call the optimal objective value τ∗ the minimum time to execute the
target vector q of buffer content changes, abbreviating this as MTTE. If all
components of q are nonnegative, as occurs when q = λ, then one can think of
MTTE as an acronym for minimum time to emptiness, starting with the buffer
contents vector q. When it is desirable to emphasize the dependence of τ∗ on
q we write τ∗�q�.

Returning to the case q = λ that was considered in Section 2, recall that
Assumption 1 includes the condition ρ∗ = τ∗�λ� = 1. From this it follows easily
that τ∗�tλ� = t for any t > 0. For purposes of interpretation, let us assume
initially that there exists a unique optimal dual solution (µ∗� π∗) when q = λ.
Then that same pair (µ∗� π∗) is uniquely optimal for the dual problem when
q = tλ, where t > 0 is arbitrary. Uniqueness of the optimal for the dual solu-
tion implies that τ∗�tλ + δ� = τ∗�tλ� + µ∗δ = t + µ∗δ for any m-vector δ and
all t sufficiently large. That is, the minimum time to emptiness when starting
with exactly t time units of exogenous input flow in each buffer is itself t,
and µ∗

i is the rate at which MTTE increases as the initial content of buffer
i increases. Thus, equating “system workload” with minimum time to empti-
ness, one can accurately say that µ∗

i represents the workload contribution per
incremental unit of material in buffer i, starting from a base case where the
vector of initial buffer contents is q = tλ with t large.
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Continuing to assume that the optimal solution (µ∗� π∗) of (2.3) and (2.4) is
unique, one can interpret the optimal dual variable π∗

k as the rate at which
MTTE would decrease from the initial value τ∗�tλ� = t if additional capacity
were available from server k. That is, if server k were available for ε time
units of “preprocessing” before the clock measuring time-to-emptiness began
to run, and if the system manager used that time optimally, then MTTE would
decrease by π∗

kε. Conversely, if server k were forced to remain idle during the
first ε time units while other servers were working, then MTTE would increase
by π∗

kε. With this interpretation, the constraint πe = 1 in (2.4) is entirely
natural, because making all servers available for ε time units of preprocessing
would obviously decrease MTTE by ε. Using the language of fluid models and
again equating “work in the system” with MTTE, one can describe π∗

k as the
rate at which server k alone “drains work from the system,” starting from a
vector of initial buffer contents (or more generally, a target vector q of buffer
content changes) which is sufficiently close to λt for some t > 0.

Suppose now that the dual linear program, (2.3) and (2.4) has two or more
basic optimal solutions ��µl� πl�� 1 ≤ l ≤ L∗�. Then one has

τ�tλ+ δ� = t+ max
1≤l≤L∗

µlδ(4.3)

for anym-vector δ and t sufficiently large. Consider a target vector q of buffer
content changes having the form q = tλ + δ, where t is large and δ is such
that the maximum in (4.3) is uniquely achieved by one particular l. Then the
basis associated with (ul� πl) will be uniquely optimal for our least-time control
problem (4.1) and (4.2), and the optimal dual variables uli and πl

k will have
exactly the interpretations given above. It is noteworthy that some servers k
may have πl

k = 0, which means that such servers are rendered noncritical by
a perturbation in direction δ: that is, MTTE is not decreased by additional
server k capacity if the target vector of buffer content changes is q = tλ + δ.
In the same way, one may have uli = 0 for some materials i, which means that
incremental units of material i have no effect on MTTE after a perturbation in
direction δ. (This may occur, e.g., if such incremental material can be processed
using only servers which have been rendered noncritical by the perturbation.)
For an illustration of these phenomena, see Section 7.

5. A Brownian model of dynamic flow management. Recall that in
Section 1, given a Brownian network with data R andK, we defined the space
of reversible displacements � = �δ ∈ �m� δ = Ry�Ky = 0�. A basis matrix
for the orthogonal space � is any M satisfying (1.6). Comparing (1.6) with
Proposition 3, and noting that any δ ∈ �m can be written as the difference of
two nonnegative vectors q and q′, we have the following.

Proposition 4. Suppose that the matricesR andK of a Brownian network
are derived from the first-order data (R,A and λ) of an open processing network
satisfying Assumption 1, as described in Sections 2 and 3. Then the matrix M
defined in Section 2 is indeed a basis matrix for the space � , and hence one
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feasible representation of the workload process W�t� discussed in Section 1 is
W�t� = MZ�t�.

The remainder of this section is devoted to the following questions. First,
why is it appropriate to define the data R and K of an approximating Brow-
nian network in the way described here? Second, how should one define the
drift vector θ and covariance matrix � for the Brownian approximation in
terms of processing network data? Finally, under what rescaling of time and
state space would one expect to obtain convergence to the proposed Brownian
approximation, and what rescaling would plausibly yield convergence to the
deterministic fluid model described in Section 3?

To address these questions one must provide some detail about the stochas-
tic microstructure of the open processing network, and one potential approach
is the following. Generalizing the treatment of multiclass queueing networks
in [6], one may take as primitive a collection of independent m-dimensional
stochastic processes Fj = �Fj�t�� t ≥ 0� indexed by j = 0�1� � � � � n. The ith
component of the vector process Fj�t� is denoted Fj

i �t�. We interpret F0
i �t� as

the cumulative exogenous input of material i up to time t. For i = 1� � � � �m
and j = 1� � � � � n we interpret Fj

i �t� as the cumulative amount of material i
consumed in the first t units of activity j undertaken, with a negative value
indicating net production of the material rather than net consumption. A dy-
namic flow management policy takes the form of an n-dimensional stochastic
process T = �T�t�� t ≥ 0� with components Tj�t�. We interpret Tj�t� as
the cumulative amount of activity j undertaken up to time t, and so the m-
dimensional material inventory process, or buffer contents process, is given
by

Q�t� = Q�0� +F0�t� −
n∑

j=1
Fj�Tj�t��� t ≥ 0�(5.1)

Of course, the chosen process T must satisfy a variety of constraints, and
those will be discussed shortly. Making connection with the first-order data
used in previous sections, we assume that E�F0�t�� ∼ λt as t → ∞, and that
E�Fj�t�� ∼ Rjt as t → ∞ for j = 1� � � � � n, where Rj is the jth column of R.
Setting R0 = λ to unify notation, the following sort of functional central limit
theorem (FCLT) must also be assumed to justify the Brownian system model:
for each j = 0�1� � � � � n there exists as m×m covariance matrix ;j such that
the normalized vector process

ε�Fj�t/ε2� −Rjt/ε2�� t ≥ 0�(5.2)

converges weakly as ε ↘ 0 to an m-dimensional Brownian motion with zero
drift and covariance matrix ;j.

Suppose that the processing network satisfies Assumption 1, and define the
nominal inventory process

ξ�t� = F0�t� −
n∑

j=1
Fj�x∗

jt�� t ≥ 0�(5.3)
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From the FCLTs assumed for the individual flow processes Fj one has the
following (recall that Rx∗ = λ): for small values of ε > 0, the scaled nominal
inventory process

εξ�t/ε2�� t ≥ 0�(5.4)

is well approximated by a Brownian motion X = �X�t�� t ≥ 0� with zero drift
and covariance matrix ∑ = ;0 + x∗

1;
1 + · · · + x∗

n;
n�(5.5)

One obvious constraint on the chosen policy T is that

Q�t� ≥ 0� t ≥ 0�(5.6)

which we interpret to mean that an activity cannot be undertaken unless
all of the required inputs are available. A proper articulation of the material
availability constraint may actually require further restrictions on T, beyond
(5.6), but such added restrictions are typically insignificant under the diffusion
scaling to be imposed shortly. The simplest possible form that our capacity
constraints can take is the following:

A�T�t� −T�s�� ≤ �t− s�e for 0 ≤ s ≤ t�(5.7)

Capacity constraints of this form are appropriate if capacity consumption is
deterministic and occurs at uniform rates for all activities and if processing re-
sources can be shared by various activities in arbitrary proportions. Typically
one expects the situation to be more complicated. For example, one resource
might be a human operator who sets up different machines in a manufactur-
ing facility so that they can run unattended after the operator has moved on
to other tasks. Defining units of activity as total machine hours devoted to a
given type of production, including both set-up time and run time, it is typi-
cally quite easy to determine the average number of operator hours required
per unit of activity. But the precise articulation of operator availability and
machine availability constraints is more complicated than (5.7) because all of
an operator’s time for a given activity is spent during just one part of a re-
peating production cycle, and an operator cannot split his or her time between
set-up tasks at different machines. That is, a precise articulation of resource
availability constraints may involve microcoordination concerns which are ig-
nored in (5.7), but for current purposes we shall simply assume that (5.7)
is an acceptable idealization under the rescaling that leads to a Brownian
approximation.

Following the pattern established in section 3 of [6], let us consider an
arbitrary policy T and define an associated n-dimensional centered process
V = �V�t�� t ≥ 0� via

V�t� = x∗t−T�t�� t ≥ 0�(5.8)

The jth component Vj�t� expresses the cumulative activity level for activity
j as a decrement from the nominal activity level x∗

jt, and under our heavy
traffic assumption, only small values of this deviation control (relative to t) are
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of interest over long time spans. Using the identityAx∗ = e, one can reexpress
the capacity constraints (5.7) as follows: defining I�t� = AV�t� for all t ≥ 0,
one must choose the deviation control V so that I�·� is nondecreasing with
I�0� = 0. One interprets Ik�t� as the cumulative amount of capacity for server
k that goes unused up to time t (in a queueing network context the letter I
is mnemonic for idleness). As in the fluid model development in Section 3, it
will compactify our mathematical theory to extend the r-dimensional “unused
capacity process” I as follows. Recalling the definition (3.7) of K, let

I�t� = KV�t�� t ≥ 0�(5.9)

and then require that V be chosen so that

I�·� is nondecreasing with I�0� = 0�(5.10)

The first r components of the process I�·� defined in (5.9) are the unused
capacity process AV�·� discussed immediately above, so the first r components
of (5.10) are equivalent to our capacity constraints (5.7). For j = b+ 1� � � � � n
we have x∗

j = 0 (that is, activity j is null in our nominal processing plan), and
so components r + 1� � � � � p of (5.10) simply express the fact that cumulative
activity levels for nonbasic activities must be nondecreasing. Of course, the
same is true for basic activities, and this can be expressed in terms of the
centered processes Vj�·� as follows:

Vj�t� −Vj�0� ≤ �t− s�x∗
j for j = 1� � � � � b and 0 ≤ s ≤ t�(5.11)

which is identical to constraint (3.10) of the fluid model.
To form a Brownian approximation for our perfectly balanced stochastic pro-

cessing network (Assumption 1 remains in force but will be relaxed shortly),
we consider a small parameter ε > 0 and an arbitrary policy T, assuming that
ε and the initial inventory vector Q�0� are such that

all components of the m-vector q = εQ�0� are moderate in value�(5.12)

then define the following scaled processes associated with T:

Y�t� = εV�t/ε2�� t ≥ 0�(5.13)

Z�t� = εQ�t/ε2�� t ≥ 0�(5.14)

U�t� = KY�t� = εI�t/ε2�� t ≥ 0�(5.15)

Relating ε to the scaling parameter n in [6] via ε = 1/
√
n, one sees that our

processes Y�Z and U are precisely analogous to the corresponding processes
in [6], with one notable exception: here the scaled “unused capacity process”
U has been augmented to include another n− b components representing cu-
mulative activity levels for nonbasic activitites; the treatment of multiclass
queueing networks in [6] was framed in such a way that all processing activ-
ities were basic (that is, all activities were conducted at positive levels in the
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nominal plan), and so the need for this crucial augmentation did not arise. Ar-
guing exactly as in Section 5 of [6], one arrives at an approximating Brownian
network whose key system equation is

Z�t� = q+X�t� +RY�t�� t ≥ 0�(5.16)

whereX is them-dimensional Brownian motion that approximates our scaled
nominal workload process (5.4); that is, X has zero drift and covariance ma-
trix � defined in terms of original model data via (5.5). Constraints (5.6) and
(5.10) of the stochastic network model are reexpressed in the Brownian ap-
proximation as

Z�t� ≥ 0 for all t ≥ 0(5.17)

and

U�·� is nondecreasing with U�0� ≥ 0�(5.18)

The one aspect of (5.17) and (5.18) that deserves comment is the allowance of
controls Y such that U�0� = KY�0� has one or more strictly positive compo-
nents. This is appropriate, as in the approximation of multiclass queueing net-
works [6], because our diffusion scaling in (5.13)–(5.15) allows arbitrarily rapid
increases in U�·� as ε becomes small. In like fashion, the constraints (5.11),
which express the requirement that basic activity levels be nonnegative, sim-
ply do not appear in the Brownian approximation, because those constraints
become inconsequentially weak as ε ↘ 0 under diffusion scaling; this too is an
observation made earlier in the treatment of queueing networks [6]. A final
and obviously important constraint of our Brownian network approximation
is that the chosen control Y be adapted to the Brownian motion X, which
expresses the requirement that activity levels up to time t depend only on
information available at t. This requirement, that flow management policies
be approximately nonanticipating, has not even been mentioned in the exposi-
tion thus far, and a rigorous justification of its representation in the Brownian
system model will not be attempted here.

Thus far attention has been restricted to a stochastic processing network
whose data satisfy Assumption 1 exactly (that is, a perfectly balanced network)
and after rescaling time and state space by means of a small parameter ε > 0,
we have arrived at an approximating Brownian network of the form (1.1)–
(1.5), with θ = 0� � defined by (5.5) and the matrices R and K determined
from data of the original model as in Sections 2 and 3. The situation where
Assumption 1 holds approximately can be formalized as follows. Let us suppose
that there exists a vector λ∗ such that Assumption 1 holds with λ∗ in place of
λ (again we denote by x∗ the optimal solution of the static planning problem,
so x∗ satisfies Rx∗ = λ∗ and Ax∗ = e) and λ is close to λ∗ in the following
sense: there exists a small scalar ε > 0 such that (5.12) holds and moreover

all components of the m-vector θ = �λ− λ∗�/ε are moderate in value�(5.19)

Again we call x∗ a vector of nominal activity levels, deviation controls are
defined in terms of x∗ via (5.8) and the parameter ε is used to rescale time
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and state space. As in Section 5 of [6], this leads to an approximating Brownian
network identical to the one obtained earlier except that the Brownian motion
X has the drift vector θ defined in (5.19).

It is noteworthy that nonbasic activities, indexed by j = b+ 1� � � � � n, have
no role in defining the covariance matrix � in (5.6), because x∗

j = 0 for all such
j. As noted earlier, a system manager must use those activities sparingly if
excessive inventory build-ups are to be avoided, but nonbasic activities remain
a relevant part of our approximating Brownian system model: their average
input–output characteristics are still represented in the Brownian model as
columns b+1� � � � � n of the matrix R in (5.18), and it will be shown by example
in Section 6 that nonbasic activities may play an important role in dynamic
control of the Brownian network.

As the final order of business in this section, let us consider the alterna-
tive scaling that gives a fluid limit or fluid approximation, as opposed to the
diffusion or Brownian approximations considered up to this point. To simplify
discussion, attention is restricted to a single system satisfying Assumption
1. Reasoning as in Sections 5 and 6 of [7] and in the papers cited there, one
concludes that the desired scaling, using a small parameter ε > 0 such that
(5.12) holds, is

β�t� = εV�t/ε�� t ≥ 0�(5.20)

z�t� = εQ�t/ε�� t ≥ 0�(5.21)

U�t� = Kβ�t� = εI�t/ε�� t ≥ 0�(5.22)

which leads to precisely the fluid model described in Section 3. The spatial
scaling factor in (5.20)–(5.22) is exactly the same as in (5.13)–(5.15), but to
achieve the fluid limit we use a weaker scaling of time in (5.20)–(5.22), so
that one unit of scaled time in the fluid model corresponds to a time span of
length ε in the Brownian model. This distinction illuminates two equivalent
characterizations of state space collapse obtained earlier: two states q and
q′ are equivalent in the Brownian model, meaning that either one can be
instantaneously exchanged for the other, if and only if they communicate in
the fluid model, meaning that either one can be eventually exchanged for the
other.

6. Examples and additional properties. The workload process W�t�
in our reduced Brownian network is defined as W�t� = MZ�t�, and given the
everyday meaning of the word “workload,” one naturally expects all elements
of M to be nonnegative. This need not be true, however, as the following
example shows. Consider a processing network with r = 1 and m = n = 2
(that is, one resource or server, two materials and two activities). The first-
order data are

λ =
(
3/2

1/2

)
� R =

[
2 1

2 −1

]
and A = �1 1��
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The key feature here is that activity 2 consumes one material and produces the
other, whereas activity 1 consumes both materials at a relatively high rate;
the two activities are equally expensive in terms of server capacity. These
problem data satisfy Assumption 1, and the optimal solution of our static
planning problem (2.1) and (2.2) is x∗ = � 12 � 1

2�. The dual problem (2.3) and
(2.4) has a unique optimal solution with µ∗ = � 34 �− 1

4 ) and π∗ = 1. Thus the
reduced Brownian network has dimension d = 1 and the (unique) canonical
basis matrix is M = µ∗. Any other basis matrix for the linear space � would
differ from this canonical choice by a scale factor, of course, and so the matrix
M that is used to define the workload process W�t� via (1.8) cannot be taken
nonnegative in this example.

Of course, the optimal dual variable µ∗
i tells us the rate at which ρ increases

due to an increase in the exogenous input rate λi. In this example, an increase
in λ2 actually decreases utilization ρ of the single server because it enables
greater use of activity 1. The following monotonicity assumption, which is
satisfied by conventional queueing network models and is natural in many
contexts, rules out such phenomena. It is a condition on the two matrices R
and A that characterize first-order processing capabilities.

Assumption 2. If λ ≥ λ′� x ≥ 0 and Rx = λ, then there exists x′ ≥ 0 such
that Rx′ = λ′ and Ax′ ≤ Ax.

To paraphrase, Assumption 2 says that if one input stream is uniformly
smaller than another in terms of average input rates, then it can be processed
with uniformly lower long-run utilization rates for all resources. It is easy to
show that no optimal solution �µ�π� of the dual problem (2.3) and (2.4) can
include a negative µi value in this case, and so we have the following.

Proposition 5. Suppose that the first-order data �R�A and λ� of an open
processing network satisfy Assumption 1, and that R and A further satisfy
Assumption 2. Then the canonical basis matrix M in (2.7) is nonnegative.

Recall that in (2.8) we established the notation R = �H�J�, where the
columns in H and J correspond to basic and nonbasic activities, respectively.
The following condition is satisfied by virtually all interesting models.

Assumption 3. H has full row dimensionm, and thus there exists a b×m
matrix H+ (a right inverse for H) satisfying HH+ = I.

Proposition 6. Suppose that the first-order data �R�A and λ� of an open
processing network satisfy Assumptions 1 and 3. Then the canonical basis ma-
trix M in (2.7) can be decomposed as M = (BH+, where the nonnegative
matrices ( and B are defined in (2.7) and (2.8), respectively.

Proof. From (2.9) we have MH = (B, and right-multiplying both sides
of this equation by H+ gives the desired representation. ✷
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To grasp the contents of Assumption 3, it is perhaps most illuminating to
examine a model for which it does not hold. Consider a system with r = 1�m =
2 and n = 3 (that is, one server, two materials and three activities). Let the
first-order data be

λ =
(
1

1

)
� R =

[
1 4/3 0

1 0 4/3

]
and A = �1 1 1��

These data satisfy Assumption 1, the unique optimal solution of (2.1) and (2.2)
being x∗ = �1�0�0�� The dual problem (2.3) and (2.4) has exactly two basic
feasible solutions, and thus there are two generalized cut constraints: one of
the basic feasible solutions is µ1 = � 34 � 1

4� and π1 = 1; the other is µ2 = � 14 � 3
4�

and π2 = 1. With the vector λ specified above, both of those basic feasible
solutions happen to be optimal, or equivalently, both of the generalized cut
constraints are binding for the given λ. Thus we have a “reduced Brownian
network” of dimension d = 2, which shows that the effective system dimension
d for a Brownian network may be strictly larger than the number r of servers or
resources. Also, in this example,H is a 2 × 1 matrix consisting of just the first
column of R, so Assumption 3 does not hold. The salient characteristic of this
example is a sort of degeneracy that allows two exogenous input materials to
be processed in exactly the required relative volumes using a single activity.

This example provides a good opportunity to examine the role of nonbasic
activities in a Brownian system model. For concreteness, assume that the sys-
tem manager wants to minimize total inventory, represented by Z1�t�+Z2�t�.
One ultimately finds that there exists a pathwise-optimal control policy for
the Brownian model, which means that the policy minimizes Z1�t�+Z2�t� for
all t ≥ 0 with probability 1. Because the equivalent workload formulation has
dimension d = m = 2, we can simply retain the two-vector Z�t� as our state
descriptor and consider deviation controls Y = �Y1�Y2�Y3� that might be em-
ployed. An increase inY1 corresponds to decreasing activity 1 from its nominal
rate of x∗

1 = 1 (which fully absorbs all server capacity), whereas decreases in
Y2 and Y3 correspond to insertion of activities 2 and 3, respectively, both of
which are null in the nominal plan. The policy constraints are that Y2 and
Y3 be nonincreasing and that U = AY = Y1 +Y2 +Y3 be nondecreasing. Of
course, Y must also be chosen so that the inventory vector Z remains non-
negative. Looking at the second column of R, we see that a decrease of δ in
Y2 (that is, inserting δ units of activity 2), decreases Z1 by 4δ/3 relative to
where it would have been under the nominal processing plan, but this must
be accompanied by an increase of δ in Y1 (that is, deleting δ units of activity
1 relative to the nominal plan) in order to keep U nondecreasing. The latter
action increases both Z1 and Z2 by δ relative to the values they would have
had under the nominal plan, and so the net effect is to displace Z = �Z1�Z2�
by �δ − 4δ/3� δ� and hence increase Z1 + Z2 by 2δ/3. To minimize Z1 + Z2
in the Brownian model, one then finds that the following policy is optimal:
exert no control (that is, leave the three-vector Y at its current value) when
both components of Z are strictly positive; increase Y1 and decrease Y2 by
equal amounts when the boundary Z2 = 0 is struck, using the minimal con-
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trol quantities required to keep Z2 ≥ 0; and apply the controls Y1 and Y3 in
like fashion at the boundary Z1 = 0 so as to keep Z1 ≥ 0. In terms of our
original processing network, this obviously means that the system manager
should use all server capacity on activity 1 when both of the required inputs
are available (that is, when neither buffer is empty), but substitute activity
2 for activity 1 when buffer 2 is empty, and substitute activity 3 for activity
1 when buffer 1 is empty. Under heavy traffic conditions this policy actually
uses very little server capacity in either activity 2 or activity 3, and yet the
availability of these substitute nonbasic activities (as alternatives to simply
idling the server) has a substantial effect on system behavior under diffusion
scaling.

Suppose that R and A are the same as in the last example but λ = � 14 � 5
4�.

Again Assumption 1 is satisfied, the unique solution of (2.1) and (2.2) being
x∗ = � 14 �0� 3

4�, and now the unique solution of the dual problem (2.3) and (2.4)
is �µ2� π2�. That is, only the second of our two generalized cut constraints is
binding with the alternative λ vector, and the effective system dimension is
d = 1. Now H is the 2×2 nonsingular matrix consisting of the first and third
columns of R, so the unique right inverse is

H+ = H−1 =
[

1 0

−3/4 3/4

]
�

Also, ( = �π2� = �1� and B = �1�1�, so Proposition 6 gives M = (BH+ =
� 14 � 3

4� = µ1.
For a general interpretation of the decomposition in Proposition 6, it is

useful to consider an inventory vector z ∈ �m
+ and define the corresponding

workload vector

w = Mz = (BH+z�(6.1)

Suppose that the right-inverse H+ is nonnegative. Noting that the vector
x = H+z satisfiesHx = z, we interpretH+z as a vector of basic activity levels
that can be used to process the inventories in z to completion, and BH+z as
a vector of capacities consumed by that program of activities, with one com-
ponent for each server or resource. That is, the r components of BH+z show
the total amounts of work required from the r different servers (expressed in
time units) to process an initial inventory of z. But the minimal description
w of system workload in (6.1) may actually be coarser than that because of
resource pooling: each row of the pooling matrix ( specifies a positive linear
combination of the r different server workloads; we interpret the correspond-
ing component of w as the workload for a resource pool whose members are
the servers having strictly positive coefficients. Laws [14, 15] emphasized the
resource pooling that occurs in queueing networks where alternate routing
capabilities exist, and one of his examples will be reviewed in Section 7 below;
another example of resource pooling due to alternate routing is discussed in
Section 5 of [10]. In a general open processing network there is no guarantee
that the right-inverse H+ can be chosen nonnegative, but one can still inter-
pret components of the vector H+z in (6.1) as changes in basic activity levels
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over a span of time, relative to the nominal processing plan, that are required
to decrease the system’s inventory vector by z.

In a general processing network, the term “alternate routing” may not be
applicable, but one can still say that resource pooling occurs when the set
of basic activities is rich enough to provide alternative means of processing
the exogenous input flows. The following example, which is closely related to
the one discussed immediately above, illustrates this phenomenon. Consider
a two-server system with two materials, three activities and first-order data

λ =
(

5/4

19/12

)
� R =

[
1 4/3 0

1 0 4/3

]
and A =

[
1 1 0

0 0 1

]
�

These satisfy Assumption 1, the unique solution of our static planning problem
(2.1) and (2.2) being x∗ = � 14 � 3

4 �1�. The dual problem (2.3) and (2.4) also has
a unique solution, which is µ∗ = � 9

16 �
3
16� and π∗ = � 34 � 1

4�. Because all three
activities are basic, we have H = R and B = A. One feasible choice of the
right-inverse H+ is

H+ =




0 0

3/4 0

0 3/4


 �

and in the end we have

M = (BH+ = π∗AH+ = �9/16�3/16� = µ∗�

The pooling matrix ( = π∗ = � 34 � 1
4� shows that the two servers function as a

single capacity pool for purposes of our Brownian system model, with server
1 contributing three times as much “effective capacity” as server 2.

7. An example due to laws. Consider the processing network pictured
in Figure 1, where six servers (represented by circles) are arranged in a 2 ×
3 array. The open-ended rectangles represent buffers in which jobs of nine
different classes are stored. There are external arrivals into buffers 1 and 2
only (at rates λ1 and λ2, respectively), and the system manager has discretion
as to how new arrivals will be processed: class 1 jobs can be processed by
either server 1 or server 4, class 2 jobs can be processed by any of servers
1, 2 or 3, and as the arrows in Figure 1 show, the routing of a job after its
first processing operation is completely determined by which server is chosen
to perform that initial operation. Thus there are a total of twelve processing
activities available to the system manger: two ways to process class 1 jobs,
three ways to process class 2 jobs and one way to process each of the other
seven job classes. Assuming that each of the twelve service time distributions
has mean 1, the input–output matrix R and resource consumption matrix A
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for this network are as follows:

R =




1 1
1 1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1




and

A =




1 1
1 1

1 1
1 1

1 1
1 1



�

In this representation, activities 1 and 2 correspond to the processing of class
1 jobs by servers 1 and 4, respectively, activities 3 through 5 correspond to the
processing of class 2 jobs by servers 1 through 3, respectively, and activities 6
through 12 correspond to the processing of classes 3 through 9, respectively,
by the one server which is qualified to process that class. (For example, only
server 6 can process class 9, and that is activity 12 in our system representa-
tion.)

This 2× 3 example was originally introduced by Laws [14, 15] and further
discussed in the survey paper by Kelly and Laws [13], but Laws’ represen-
tation of the system differs from the one presented here. Laws assumes that
routing decisions must be made immediately when new jobs arrive, whereas
we have assumed that new arrivals of either class 1 or class 2 can be held
in a common buffer, with routing decisions delayed until the system manager
commits a server to their initial processing operation. This distinction causes
Laws to define three more buffers than shown in Figure 1 (two buffers rather
than one for the horizontal input stream and three buffers rather than one
for the vertical input stream) but the distinction between immediate and de-
layed routing is inconsequential in heavy traffic, and the reduced Brownian
system model to be derived here (i.e., our equivalent workload formulation) is
identical to the one derived by Laws.

A more consequential difference is that Laws formulates his analog of the
primal linear program (2.1) and (2.2) in terms of complete routes rather than
elementary processing activities. For example, in Figure 1 there are exactly
two complete routes available to class 1 jobs and three complete routes avail-
able to class 2 jobs, so the coefficient matrices appearing in Laws’ analog of
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Fig. 1. The 2× 3 network.

(2.1) and (2.2) have only five columns. For current purposes it is not necessary
to review his LP formulation in detail, but the following remarks are called
for. First, Laws’ theory is restricted to processing networks where each activity
involves a single server processing a single job class (that is, no activity may
involve simultaneous use of two or more servers, nor may it involve multiple
inputs), with no uncertainty as to where the job can or must go after that
processing is complete, and it is not obvious how to extend his style of LP for-
mulation to the more general class of networks considered here. Second, our
formulation (2.1) and (2.2) involves exactly the same first-order data (R, A,
λ) that appear in the natural fluid approximation for the processing network
(see Section 3), and that parallelism has a number of advantages. Despite
these differences, the two LP formulations are essentially equivalent for the
class of models considered by Laws, and we shall cite various of his findings in
the paragraphs that follow, translating as necessary into the framework and
notation developed in this paper.

Assuming hereafter that the external arrival rates satisfy 1
2λ1 + 1

3λ2 = 1,
we find that the static planning problem (2.1) and (2.2) has a unique solution,
namely: ρ∗ = 1� x∗

j = 1
2λ1 for j = 1, 2, 6, 7, 11 and 12 (these are activities

which process what were originally class 1 arrivals); and x∗
j = 1

3λ2 for j = 3, 4,
5, 8, 9 and 10 (these are activities which process what were originally class 2
arrivals). Thus all twelve activities are basic, which implies that the set � ∗ of
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optimal solutions for our dual linear program (2.3) and (2.4) consists precisely
of pairs (µ�π) satisfying

µR = πA� πe = 1 and π ≥ 0�(7.1)

Thus, using the language of “workload contributions” and “relative server ca-
pacities” that was proposed in Section 2, each optimal solution of the dual
problem corresponds to a set of nonnegative relative server capacities πk that
sum to one and have the following property: for each buffer i, the sum of
the server capacities consumed in processing to completion a unit of class i
material is equal to a common value µi, regardless of which route (that is,
regardless of which available processing sequence) may be used to process the
material. In similar fashion, Laws [14] interprets solutions (µ�π) of (7.1) in
terms of a tolling scheme: πk represents the fee charged for server k capacity,
and µi is then the cost incurred (that is, the sum of all fees paid) in processing
to completion a class i job; the key requirement is that the sum of the fees
paid must be the same over all routes available to any given job class.

A detailed analysis shows that the set � ∗ defined by (7.1) has six distinct
extreme points, which are precisely the alternative basic optimal solutions
�µl� πl� identified in Section 2, as follows:

6µ1 = �3�2�1�1�0�2�1�3�1� and 6π1 = �2�0�1�0�2�1��
6µ2 = �3�2�1�0�0�1�2�3�2� and 6π2 = �2�1�0�0�1�2��
6µ3 = �3�2�3�1�2�0�1�1�1� and 6π3 = �0�2�1�2�0�1��
6µ4 = �3�2�2�0�1�0�2�2�2� and 6π4 = �1�2�0�1�0�2��
6µ5 = �3�2�3�2�2�1�0�1�0� and 6π5 = �0�1�2�2�1�0��
6µ6 = �3�2�2�2�1�2�0�2�0� and 6π6 = �1�0�2�1�2�0��

In this example, because all activities are basic, the matrices H and B intro-
duced in (2.8) are identical with R and A, respectively. It is easy to verify that
R has full row dimension, so Assumption 3 is satisfied, and hence one has
µl = πlAR+ for each l = 1� � � � �6 (see Proposition 6). Because the 6×9 matrix
AR+ has full row dimension, any given subset of the vectors µ1� � � � � µ6 has
the same dimension as the corresponding subset of the vectors π1� � � � � π6. It
can be verified that π1� π2 and π3 are linearly independent and that their
span includes π4� π5 and π6. Thus the dimension of our equivalent workload
formulation is d = 3; our “canonical choice” of basis matrix is

M =



µ1

µ2

µ3


 = 1

6



3 2 1 1 0 2 1 3 1

3 2 1 0 0 1 2 3 2

3 2 3 1 2 0 1 1 1


 �(7.2)
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which has the representation

M = (AR+ where ( =



π1

π2

π3


 = 1

6



2 0 1 0 2 1

2 1 0 0 1 2

0 2 1 2 0 1


 �(7.3)

To repeat, we have found that d < L∗ in this example, and thus our “canonical
choice” of the basis matrix M is nonunique, depending on the particular order
in which the external points �µl� πl� of � were enumerated.

In Section 6 of [13], Kelly and Laws state that a suitable definition of work-
load for the Brownian model of this network is a three-dimensional process
W�t� = MZ�t�, where M is computed from precisely the same pooling ma-
trix ( displayed in (7.3). Their matrix M is actually different from (7.2) be-
cause of the difference in system representation referred to earlier, but their
three-dimensional workload process is entirely equivalent to the one derived
here. The justification for that equivalent workload formulation is contained
in Laws’ Ph.D. dissertation [14], where virtually all the results presented in
this paper were developed for the restricted class of networks that he con-
sidered (see above). In fact, Laws’ treatment of those networks went beyond
what is given in this paper, because he characterized precisely the “nonbottle-
neck servers” whose influence is negligible in the heavy traffic limit, whereas
such servers have been deleted with only a passing remark in our treatment.
Apart from the examples and exposition contained in the Kelly–Laws survey
paper [13], the only part of Laws’ general theory that has been published in
the open literature is that concerned with networks whose Brownian models
have a one-dimensional equivalent workload formulation [15]. (In our nota-
tion, this is the case d = 1.) That is, Laws’ paper [15] deals with networks of
the restricted type described earlier in this section where, moreover, just one
“generalized cut constraint” is binding in the heavy traffic limit; one must look
in his Ph.D. dissertation [14] to find his deep and illuminating derivation of
equivalent workload formulations when several such constraints are binding
in the heavy traffic limit.

Turning to the general interpretation of the optimal dual variables µ and π
that was developed in Section 3, one sees that each of the vectors π1� � � � � π6

displayed above corresponds to a different pair of servers that may be ren-
dered “noncritical” by a perturbation of the following sort. Starting with large
amounts of material in buffers 1 and 2, but all other buffers empty, the process-
ing plan which minimizes time-to-emptiness τ (with exogenous inputs turned
off) is one that keeps all servers busy throughout the interval [0� τ]. Now imag-
ine that a small amount δi of additional material is placed in each buffer i,
assuming for simplicity that the entire vector δ = �δi� is nonnegative. To see
which servers remain “critical” in minimizing time-to-emptiness, we compute
µlδ for each l = 1� � � � �6 and focus on the value of l for which that product
is maximal. For concreteness, suppose it is l = 1. Then the processing plan
which minimizes time-to-emptiness is one in which both server 2 and server
4 experience some idleness; one knows this because π1

2 = π1
4 = 0. Thus added



102 J. M. HARRISON

capacity from those servers would have no impact on MTTE, but the four
positive values π1

k show the effect (in terms of reducing MTTE) of added ca-
pacity for the servers who remain critical after the perturbation. Readers are
invited to hypothesize specific perturbations δ to see whether they can foresee
which servers are rendered noncritical without actually computing µlδ for all
l = 1� � � � �6.
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