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Two losing gambling games, when alternated in a periodic or random fashion, can produce a

winning game. This paradox has been inspired by certain physical systems capable of

rectifying fluctuations: the so-called Brownian ratchets. In this paper we review this

paradox, from Brownian ratchets to the most recent studies on collective games, providing

some intuitive explanations of the unexpected phenomena that we will find along the way.

1. Introduction: a noisy revolution

Imagine two simple gambling games, say A and B, in which

I play against you. Each one is a losing game for me, in the

sense that my average capital is a decreasing function of the

number of turns we play. Once you are convinced that I

lose in both games, I give you a third proposal: alternate

the games following the sequence AABBAABB. . . If you

frown, the proposal can be modified to make it less

suspicious: in each run we will randomly choose the game

that is played. If you accept either of these proposals you

would have trusted your intuition too much, not realizing

that random systems may behave in an unexpected way.

The phenomenon we have just described is known as

Parrondo’s paradox [1 – 3]. It was originally inspired by a

class of physical systems: the Brownian ratchets [4 – 8] and

lately has received the attention of scientists working on

several fields, ranging from biology to economics. These are

systems capable of rectifying thermal fluctuations, such as

those exhibited by a Brownian particle.

Brownian motion was one of the first crucial proofs of

the discreteness of matter. First observed by Jan Ingen-

housz in 1785, and later rediscovered by Brown in 1828, the

phenomenon consists of the erratic or fluctuating motion of

a small particle when it is embedded in a fluid. At the

beginning of the 20th century, Einstein realized that these

fluctuations were a manifestation of the molecular nature

of the fluid{ and devised a method to measure Avogadro’s

number by using Brownian motion [9]. Since then, the

study of fluctuations has been a major topic in statistical

mechanics.

The theory of fluctuations helped to understand noise in

electrical circuits, activation processes in chemistry, the

statistical nature of the second law of thermodynamics, and

the origin of critical phenomena and spontaneous symme-

try breaking, to cite only a few examples. In most of these

cases, the role played by thermal fluctuations or thermal

noise is either to trigger some process or to act as a

disturbance. However, in the past two decades, the study of

fluctuations has led to models and phenomena where the

effect of noise is more complex and sometimes unexpected

and even counter-intuitive.

Noise can enhance the response of a nonlinear system to

an external signal, a phenomenon known as stochastic

resonance [10]. It can create spatial patterns and ordered

states in spatially extended systems [11, 12], and Brownian

ratchets show that noise can be rectified and used to induce

a systematic motion in a Brownian particle [4 – 8]. In these

new phenomena, noise has a very different role from that

considered in the past: it contributes to the creation of

order. This could be relevant in several fields, and specially

in biology, since most biological systems manage to keep

themselves in ordered states even while surrounded by

noise, both thermal noise at the level of the cell and

environmental fluctuations at the macroscopic level.

However, fluctuations are not only restricted to physics,

chemistry or biology. The origin of the theory of

probability is closely related to gambling games, social

statistics and even to the efficiency of juries [13]. Statistical

mechanics and probability theory have both contributed to

each other and also to fields like economics. In 1900, five

years before Einstein’s theory of the Brownian motion, the

French mathematician Louis Bachelier worked out a
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theory for the price of a stock very similar to Einstein’s [14].

Recently this link between probability, statistical mechanics

and economics has crystallized in a new field: econophysics

[15].

Some of the aforementioned constructive role of noise

has been observed in complex systems beyond physics.

Stochastic resonance, for instance, has an increasing

relevance in the study of perception and other cognitive

processes [10, 16]. Similarly, we expect that other elemen-

tary stochastic phenomena such as rectification will be

observed in many situations not restricted to physics.

With this idea in mind, Parrondo’s paradox came up as a

translation to simple gambling games of a Brownian

ratchet discovered by Ajdari and Prost [4]. The ratchet

was afterwards named by Astumian and Bier the flashing

ratchet [6] and it was related to the idea proposed by

Magnasco [5] that biological systems could rectify fluctua-

tions to perform work and systematic motion.

The paradox does not make use of Brownian particles,

but only of the simpler fluctuations arising in a gambling

game. However, it illustrates the mechanism of rectification

in a very sharp way, and for this reason we think that it

could contribute to extend the ‘noisy revolution’, i.e. the

idea that noise can create order, to those fields where

stochastic dynamics is relevant.

The paper is organized as follows. In section 2 we briefly

review the flashing ratchet and explain how it can rectify

fluctuations. Section 3 is devoted to the original Parrondo’s

paradox. There we introduce the paradoxical games as a

discretization of the flashing ratchet, discuss an intuitive

explanation of the paradox that we have called reorganiza-

tion of trends, and present an extension of the original

paradox inspired by this idea. In section 4 we introduce

several versions of the games involving a large number of

players. Some interesting effects can be observed in these

collective games: redistribution of capital brings wealth

[17], and collective decisions taken by voting or by

optimizing the returns in the next turn can lead to worse

performance than purely random choices [18, 19]. Finally,

in section 5 we briefly review the literature on the paradox

and present our main conclusions.

2. Ratchets

Here we revisit the flashing ratchet [4, 6], one of the

simplest Brownian ratchets and the most closely related to

the paradoxical games. We refer to the exhaustive review by

Reimann on Brownian ratchets [7] or the special issue in

Applied Physics A, edited by Linke [8], for further

information on the subject.

Consider an ensemble of independent one-dimensional

Brownian particles in the asymmetric sawtooth potential

depicted in figure 1. It is not difficult to show that, if the

potential is switched on and off periodically, the particles

exhibit an average motion to the right. Let us assume that

the temperature T is low enough to ensure that kT is much

smaller than the maxima of the potential, and that we start

with the potential switched on and with all the particles

around one of its minima, as shown in the upper plot of

figure 1. When the potential is switched off, the particles

diffuse freely, and the density of particles spreads as

depicted in the central plot of the figure. If the potential

is then switched on again, each particle will move back to

the initial minimum or to one of the nearest neighbouring

minima, depending on its position. Particles within the dark

region will move to the right-hand minimum, those within

the small grey region will move to the left-hand minimum,

and those within the white region will move back to their

initial positions. As is apparent from the figure and due to

the asymmetry of the potential, more particles fall into the

right-hand minimum and thus there is a net motion of

particles to the right. For this to occur, the switching can be

either random or periodic, but the average period must be

of the order of the time to reach the nearest barrier by free

diffusion (see [4, 6] for details).

This motion can be seen as a rectification of the thermal

noise associated with free diffusion. The diffusion is

symmetric: some particles move to the right and some to

the left, but their average position does not change.

However, when the potential is switched on again, most

Figure 1. The flashing ratchet at work. The figure represents

three snapshots of the potential and the density of particles.

Initially (upper figure), the potential is on and all the particles

are located around one of the minima of the potential. Then the

potential is switched off and the particles diffuse freely, as shown

in the centred figure, which is a snapshot of the system

immediately before the potential is switched on again. Once

the potential is connected again, the particles in the darker

region move to the right-hand minimum whereas those within the

small grey region move to the left. Due to the asymmetry of the

potential, the ensemble of particles move, on average, to the

right.
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of the particles that moved to the left are driven back to the

starting position, whereas many particles that moved to the

right are pushed to the right-hand minimum. The asym-

metric potential acts as a rectifier: it ‘kills’ most of the

negative fluctuations and ‘promotes’ most of the positive

ones.

The effect remains if we add a small force toward the

left, i.e. in a direction opposite to the induced motion. In

this case, the ratchet still induces a motion against the

force. Consequently, particles perform work and the

system can be considered a Brownian motor. It can be

proved that this type of motor is compatible with the

second law of thermodynamics. In fact, the efficiency of

such a motor is far below the limits imposed by the

second law [20, 21]. However, the ratchet with a force

exhibits a curious property: when the potential is

permanently on or off, the Brownian particles move in

the same direction as the force, whereas they move in the

opposite direction when the potential is switched on and

off. This is the essence of the paradoxical games: we have

two dynamics; in each one a quantity, namely the position

of the Brownian particle, decreases in average; however,

the same quantity increases in average when the two

dynamics are alternated.

3. Games

The flashing ratchet can be discretized in time and space,

keeping most of its interesting features. The discretized

version adopts the form of a pair of simple gambling

games, which are the basis of Parrondo’s paradox.

3.1. The original paradox

We consider two games, A and B, in which a player can

make a bet of 1 euro. X(t) denotes the capital of the player,

where t=0, 1, 2. . . stands for the number of turns played.

Game A consists of tossing a slightly biased coin so that the

player has a probability pA of winning which is less than a

half. That is, pA=1/2 – e, where the bias e is a small

positive number.

The second game, B, is played with two biased coins, a

‘bad coin’ and a ‘good coin’. The player must toss the bad

coin if her capital X(t) is a multiple of 3, the probability of

winning being pbad=1/10 – e. Otherwise, the good coin is

tossed and the probability of winning is pgood=3/4 – e. The
rules of games A and B are represented in figure 2, in which

the darkness represents the ‘badness’ of each coin.

For these choices of pA, pgood and pbad, both games are

fair if e=0, in the sense that hX(t)i is constant. This is

evident for game A, since the probabilities to win and lose

are equal. The analysis of game B is more involved, but we

will soon prove that the effect of the good and the bad coins

cancel each other for e=0.

On the other hand, both games have a tendency to lose if

e4 0, i.e. hX(t)i decreases with the number of turns t.

Surprisingly enough, if the player randomly chooses the

game to play in each turn, or plays them following some

predefined periodic sequence such as ABBABB. . . , then her

average capital hX(t)i is an increasing function of t, as can

be seen in figure 3.

The paradox is closely related to the flashing ratchet. If

we visualize the capital X(t) as the position of a Brownian

particle in a one-dimensional lattice, game A, for e=0, is a

discretization of the free diffusion, whereas game B

resembles the motion of the particle under the action of

the asymmetric sawtooth potential. Figure 4 shows this

spatial representation for game B compared with the

ratchet potential. When the particle is on a dark site, the

bad coin is used and the probability to win is very low,

whereas on the white sites the most likely move is to the

right. The sawtooth potential has a short spatial interval in

which the force is negative and a long interval with a

positive force. Equivalently, game B uses a bad coin on a

‘short interval’, i.e. on one site of every three on the lattice,

and a good coin on a ‘long interval’ corresponding to two

consecutive sites which are not a multiple of three (see

figure 4).

As in the flashing ratchet, game B rectifies the fluctua-

tions of game A. Suppose that we play the sequence

AABBAABB. . . and that X(t) is a multiple of three

immediately after two instances of game B. Then we play

game A twice, which can drive the capital back to X(t) or to

X(t)+ 2. In the latter case, the next turn is for game B with

a capital that is not a multiple of three, which means a good

9/10+ε1/10-ε1/4+ε3/4-ε

1/2-ε 1/2+ε

Figure 2. Rules of the paradoxical games. In game A, the

player wins (her capital increases by one euro) with a probability

1/2 – e and loses (her capital decreases by one euro) with a

probability 1/2+ e, e being a small positive number. In the

figure, these probabilities are represented by a coin with two

possible outcomes. In game B, the probability to win and lose

depends on the capital X(t) of the player: if X(t) is a multiple of

three, then we use a ‘bad’ coin, with a probability to win equal to

1/10 – e; if X(t) is not a multiple of three, then a ‘good’ coin, with

a probability to win equal to 3/4 – e, is used. In the figure the

darkness of the coins represents their ‘badness’ for the player.
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chance of winning. That is, game B rectifies the fluctuations

that occurred in the two turns of game A. The rectification

is not as neat as in the low temperature flashing ratchet, but

enough to cause the paradox.

There is a more rigorous way of associating a potential

to a gambling game by using a master equation [22].

However, it provides a similar picture of game B, as a

random walk that is non-symmetric under inversion of the

spatial coordinate and capable of rectifying fluctuations.

3.2. Reorganization of trends

Beside the ratchet effect, one can explain the paradox

considering another interesting mechanism. Recall that

game B is played with two coins: a good one, used

whenever the capital of the player is not a multiple of three,

and a bad one which is used when the capital is a multiple

of three. Therefore, the ‘profitability’ of game B crucially

depends on how often the bad coin is used, i.e. on the

probability p0 that the capital is a multiple of three. It turns

out that, when game B is played, this probability is not 1/3,

as one could naively expect, but larger. This can be

reasoned from figure 4. When the capital is at a white site,

its most likely move is to the right, whereas at dark sites the

most likely move is to the left. The capital thus spends more

time jumping forth and back between a multiple of three

and its left-hand neighbour than what would happen if it

moved completely at random. Consequently, the prob-

ability p0 is larger than 1/3. On the other hand, under game

A the capital does move in a random way. Therefore,

playing game A in some turns shifts p0 towards 1/3, or,

equivalently, reduces the number of times the bad coin of

game B is used. In other words, game A, although losing,

boosts the effect of the good coin in B, giving the overall

game a winning tendency. We have named this mechanism

reorganization of trends, since game A reinforces the

positive trend already present in game B.

In this section, we formulate this argument in a

quantitative way. Let us first consider game B separately.

The probability to win in the t-th turn can be calculated as

pwinðtÞ ¼ p0ðtÞpbad þ ½1� p0ðtÞ�pgood; ð1Þ

where p0(t) is the probability of X(t) being a multiple of 3

(i.e. of using the bad coin).

One can calculate the value of p0(t), by using very simple

techniques from the theory of Markov chains. First, we

define the random process

YðtÞ�XðtÞ mod 3 ð2Þ

taking on only three possible values or states, Y(t)=0, 1, 2,

depending on whether the capital X(t) is a multiple of three,

a multiple of three plus one, or a multiple of three plus two,

respectively. This variable Y(t) is a Markov process, i.e. the

statistical properties of Y(t+1) depend only on the value

taken on by Y(t). This allows one to derive a master

equation for its probability distribution.

Let p0(t), p1(t) and p2(t) be the probability that Y(t) is

equal to 0, 1 and 2, respectively. There are two

possibilities for Y(t)=2 to occur: either Y(t – 1)=0 and

we lose in the tth turn (with probability 1 – pbad), or Y(t –

1)=1 and we win in the tth turn (with probability pgood).

Therefore

p2ðtÞ ¼ ð1� pbadÞp0ðt� 1Þ þ pgoodp1ðt� 1Þ: ð3Þ

Following the same type of argument, one can derive

equations for p0(t) and p1(t), and the three equations can be

written in matrix form as

ppðtÞ ¼ PPBppðt� 1Þ; ð4Þ

where

ppðtÞ �
p0ðtÞ
p1ðtÞ
p2ðtÞ

0
@

1
A ð5Þ

and

Figure 4. A random walk picture of game B compared with the

ratchet potential. The bad coin (black dots) plays the role of the

negative force acting on a short interval, whereas the two

consecutive good coins (white dots) are the analogue of the

positive force acting on the long intervals.

Figure 3. Average capital for 5000 players as a function of the

number of turns for game A, B and their periodic and random

combinations. e=0.005 and [a, b] stands for periodic sequences
where A (B) is played a (b) consecutive turns.
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PPB �
0 1� pgood pgood

pbad 0 1� pgood
1� pbad pgood 0

0
@

1
A: ð6Þ

After a small number of turns of game B, pp(t) approaches
a stationary value ppstB, which is invariant under the

transformation given by equation (4), i.e.

ppstB ¼ PPBppstB : ð7Þ

The first component of the solution of this equation reads

pst0B ¼ 5

13
� 440

2197
eþOðe2Þ ’ 0:38� 0:20 e; ð8Þ

where we have used the values of the original paradox,

pbad=1/10 – e and pgood=3/4 – e, and have expanded the

solution up to first order of e, to simplify the exposition.

Substituting this value in equation (1) we obtain the

probability of winning for game B for sufficiently large t

pwin;B ¼ 1

2
� 147

169
eþOðe2Þ; ð9Þ

which is less than 1/2 for e4 0. This proves that game B is

fair for e=0 and losing for e4 0, as shown in figure 3.

The paradox arises when game A comes into play. Game

A is always played with the same coin, regardless of the

value of the capital X(t), and therefore drives the

probability distribution pp(t) to a uniform distribution.

Thus, game A makes p0(t) tend to 1/3. Since 1=3 < pst0B, the
effect of game A is to decrease the probability of using the

bad coin in the turns where B is played.

This can be seen in a more precise way, since the random

combination of games A and B can be again solved by

using the master equation:

ppstAB ¼ 1

2
½PPB þPPA�ppstAB; ð10Þ

where

PPA ¼
0 1� pA pA
pA 0 1� pA

1� pA pA 0

0
@

1
A ð11Þ

with pA=1/2 – e. The probability of using the bad coin

decreases to

pst0AB ¼ 245

709
� 48880

502681
eþOðe2Þ ’ 0:35� 0:10 e: ð12Þ

The probability of winning in this randomized combination

of games A and B is

pwin;AB ¼ pst0AB

pbad þ pA
2

þ ½1� pst0AB�
pgood þ pA

2

¼ 727

1418
� 486795

502681
eþOðe2Þ;

ð13Þ

which is greater than 1/2 for a sufficiently small e.

This is the mechanism behind the paradox which we have

termed ‘reorganization of trends’: although game A itself

consists of a negative trend because it uses a slightly bad

coin, it increases the probability of using the good coin of

B, i.e. game A reinforces the positive trend already present

in B enough to make the combination win.

Periodic sequences can also be studied as Markov

chains and their probability of winning in a whole period

can be easily computed using different combinations of

the matrices PPA and PPB. Finally, the slopes of the curves

in figure 3 can be calculated as hX(t+1)i –
hX(t)i=2pwin – 1.

3.3. Capital-independent games

The modulo rule in game B is quite natural in the original

representation of the games as a Brownian ratchet.

However, the rule may not suit some applications of the

paradox to biology, biophysics, population genetics,

evolution and economics. Thus, it would be desirable to

devise new paradoxical games based on rules independent

of the capital. Parrondo et al. introduced such a game in

[23], inspired by the reorganization of trends explained in

the last section.

In the new version, game A remains the same as before,

but a game B’, which depends on the history of wins and

losses of the player, is introduced. Game B’ is played with

four coins B’1, B’2, B’3, B’4 following the history-based rules

explained in table 1.

The paradox reappears, for instance, when setting

p1=9/10 – e, p2= p3=1/4 – e and p4=7/10 – e. With these

numbers and for e small and positive, B’ is a losing game,

while either a random or a periodic alternation of A and B’
produces a winning result. Figure 5 shows a theoretical

computation of the average capital for these history-

dependent paradoxical games.

The paradox is reproduced because there are bad coins in

game B’ which are played more often than in a completely

random game, i.e. a quarter of the time. For the above

choices of pi, i=1, 2, 3, 4, the bad coins are B’2 and B’3.
The other two coins, B’1 and B’4, are good coins.

Due to the fact that game B’ rules depend on the

history of wins and losses, the capital X(t) is no longer a

Markovian process. However, the random vector

Table 1. History-based rules for game B’.

Before last

t7 2 Last t7 1 Coin at t

Prob. of

win at t

Prob. of

loss at t

Loss Loss B’1 p1 1–p1
Loss Win B’2 p2 1-p2
Win Loss B’3 p3 1-p3
Win Win B’4 p4 1-p4
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YðtÞ ¼ XðtÞ � Xðt� 1Þ
Xðt� 1Þ � Xðt� 2Þ

� �
ð14Þ

can take on four different values and is indeed a Markov

chain. The transition probabilities are again easily obtained

from the rules of game B’ and an analytical solution can be

obtained following a similar argument as in section 3.2 (see

however [23] for details).

We see that the mechanism that we have called

reorganization of trends can be used to extend the paradox

to other gambling games. It is also noteworthy that the

price we must pay to eliminate the dependence on the

capital in the original paradox is to consider history-

dependent rules, i.e. games where the capital is no longer

Markovian.

4. Collective games

In this section we analyse three different versions of

paradoxical games played by a large number of individuals.

The three share the feature that it can sometimes be better

for the players to sacrifice short term benefits for higher

returns in the future.

4.1. Capital redistribution brings wealth.

Reorganization of trends tells us that the essential role of

game A in the paradox is to randomize the capital and

make its distribution more uniform. Toral has found that a

redistribution of the capital in an ensemble of players has

the same effect [17].

In the new paradoxical games introduced by Toral in

[17], there are N players and one of them is randomly

selected in each turn. They can play two games. The first

one, game A’, consists of giving a unit of his capital to

another randomly chosen player in the ensemble, that is,

game A’ is nothing but a redistribution of the total capital.

The second one, game B, is the same as in the original

paradox. Under game A’ the capital does not change,

whereas game B is, as before, a losing game. The striking

result is that the random combination of the two games is

winning, i.e. the redistribution of capital performed in the

turns where A’ is played turns the losing game B into a

winning one, actually increasing the total capital available.

Thus, the redistribution of capital turns out to be beneficial

for everybody. This effect is shown in figure 6 where the

average total capital in a simulation with 10 players and

500 realizations is depicted for games B and A’, and for

their random combination. It is remarkable that the effect

is still present when the capital is required to flow from

richer to poorer players (see [17] for details).

The explanation of this phenomenon follows the same

lines as in the original paradox.

4.2. Dangerous choices I: the voting paradox

Up to now, we have considered sequences of games that are

‘imposed’ on the player or players. Either they play game

A, game B, or a periodic or random sequence, but we never

allow the players to choose the game to be played in each

turn. In the case of a single player this deference is quite

generous, since her capital would increase on average under

the following trivial choice: she selects game B if her capital

is not a multiple of three and game A otherwise. This is

undoubtedly the best strategy, because the best coin is

always used in every turn. Moreover, it is not difficult to see

that this choice strategy performs much better than any

other random or periodic combination of games.

However, things change when we consider an ensemble

of players. How can the ensemble choose the game to be

played in each turn? There are some possibilities, such as

letting them vote for the preferred game or trying to

maximize the winning probability in each turn. Which is

then the best choice strategy? We will see that the

paradoxical games also yield some surprises in this context:

the choice preferred by the majority of the ensemble turns

out to be worse than a random or periodic combination of

games. Even if we select the game maximizing the profit in

every turn, we can end with systematic losses, as shown in

the next section.

Consider a set of N players who play game A or B

against a casino. In each turn, all of them play the same

game. Therefore, they have to make a collective decision,

choosing between game A or B in each turn. We will first

use a majority rule to select the game, that is, the game

Figure 5. Average capital as a function of the number of turns

in the capital independent games. We plot the result for game A

and B’, as well as for the random combination and the periodic

sequence AAB’B’. . . In all the cases, e=0.003.
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which receives more votes is played by all the players

simultaneously. The vote of each player will be determined

by her capital, following the strategy that we have

explained above for a single player. Players with capital

that is a multiple of three will vote for game A, whereas the

rest will vote for B.

This strategy, which is optimal for a single player, turns

out to be losing if the number of players is large enough

[19]. This is shown in figure 7, where we plot the average

capital in an ensemble with an infinite number of players.

On the other hand, if the game is selected at random the

capital increases with time.

In order to explain this behaviour, we will focus on the

evolution of p0(t), the fraction of players whose capital is

a multiple of three. The selection of the game by voting

can be rephrased in terms of p0(t). As mentioned above,

every player votes for the game which offers her the higher

probability of winning according to her own state. Then,

every player whose capital is a multiple of three will vote

for game A in order to avoid the bad coin in B. That

accounts for a fraction p0(t) of the votes. The remaining

fraction 1 –p0(t) of the players will vote for game B to

play with the good coin. Since the majority rule

establishes that the game which receives more votes is

selected, game A will be played if p0(t)4 1/2. Conversely,

the whole set of players will play game B when p0(t) is

below 1/2.

On the other hand, as we have seen in section 3.2,

playing game B makes p0(t) tend to a stationary value given

by equation (8), namely, pst0B ’ 0:38� 0:2e < 1=2 for e > 0,

whereas playing game A makes p0 tend to 1/3. This is still

valid for the present model, since the N players only

interact when they make the collective decision, otherwise

they are completely independent.

If p0(t)4 1/2, then the ensemble of players will select

game A. The fraction p0(t) will decrease until it crosses this
critical value 1/2. At that turn, B is the selected game and it

will remain so as long as p0 does not exceed 1/2. However,

this can never happen, since game B drives p0 closer and

closer to pst0B which is below 1/2. Hence, after a number of

turns, the system gets trapped playing game B forever with

p0 asymptotically approaching pst0B. Since e is positive, game

B is a losing game (cf. section 3.2) and, therefore, the

majority rule yields systematic losses, as can be seen in

figure 7. We have also plotted in figure 8 the fraction p0(t),
to check that, once p0(t) crosses 1/2, game B is always

chosen and p0(t) approaches pst0B, staying far below 1/2.

On the other hand, if, instead of using the majority rule,

we select the game at random or following a periodic

sequence, game A will be chosen even though p05 1/2.

This is a bad choice for the majority of the players, since

playing B would make them toss the good coin. That is, the

random or periodic selection will contradict from time to

time the will of the majority. Nevertheless, choosing the

game at random keeps p0 away from pst0B, as shown in figure

8, i.e. in a region where game B is winning p0 < pst0B
� �

.

Therefore, the random choice yields systematic gains, as

shown in figure 7.

It is worth noting that choosing the game at random is

exactly the same as if every player voted at random.

Therefore, the players get a winning tendency when they

vote at random whereas they lose their capital when they

vote according to their own benefit in each run.

Figure 6. Average capital per player as a function of the

number of turns in game B, game A’ (redistribution of capital)

and the random combination. The data have been obtained for

e=0.01, simulating an ensemble of 10 players and averaging

over 500 realizations.

Figure 7. Average capital per player in the collective games as

a function of the number of turns, when the game is selected at

random and following the preference of the majority of the

players (MR). Notice that, in the stationary regime, the majority

rule (MR) yields systematic losses whereas the random choice

wins on average. These are analytical results with e=0.005 and

an infinite number of players.
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4.3. Dangerous choices II: the risks of short-range

optimization

Yet another ‘losing now to win later’ effect can be

observed in the collective paradoxical games with another

choice strategy. As in the previous example, we consider a

large set of players, but we have to add a small ingredient

to achieve the desired effect: now only a randomly selected

fraction g of them play the game in each turn. Suppose we

know the capital of every player so we can compute which

game, A or B, will give the larger average payoff in the

next turn. Again, and even more strikingly, selecting the

‘most favourable game’ results in systematic losses

whereas choosing the game at random or following a

periodic sequence steadily increases the average capital

[18].

Knowledge of the capital of every player allows us to

choose the game with the highest average payoff in the next

turn, since this optimal game can easily be obtained from

the fraction p0(t) of players whose capital is a multiple of

three. These individuals will play the bad coin if game B is

chosen and the remaining fraction 1 – p0(t) will play the

good coin. Hence, the probability of winning for game B

reads

pwinB ¼ p0pbad þ ð1� p0Þpgood: ð15Þ

In case game A is selected, the probability to win is

pwinA= pA=1/2 – e for all time t. Therefore, to choose the

game with the larger payoff hX(t+1)i – hX(t)i=2pwin – 1

in every turn t, we must

play A if pwinA 	 pwinBðp0Þ;
play B if pwinA < pwinBðp0Þ;

ð16Þ

or equivalently

play A if p0ðtÞ 	 p0c;

play B if p0ðtÞ < p0c;
ð17Þ

with p0c:(pA – pgood)/(pA – pbad)=5/13. We will call this

way of selecting the game the short-range optimal strategy.

We will also consider that the game is selected following

either a random or periodic sequence. These are both blind

strategies, since they do not make any use of the

information about the state of the system. However, and

surprisingly enough, they turn out to be much better than

the short-range optimal strategy, as shown in figure 9.

Notice that (17) is similar to the way the game is selected

by the majority rule considered in the previous section, but

replacing 1/2 by the new critical value p0c=5/13. There-

fore, the explanation of this model goes quite along the

same lines as for the voting paradox, although with some

differences. Unlike 1/2, p0c equals the stationary value of

p0(t) for game B when e=0. As in the voting paradox,

game A drives p0 below p0c because game A makes p0 tend
to 1/3. If p0(t)5 p0c, then game B is played, but p0(t+1)

will be still below p0c only for g sufficiently small. For

example, if g=1/2 and e=0, game B is chosen forty times

in a row before switching back to game A, making p0
become approximately equal to pst0B at almost every turn.

This behaviour is shown in figure 10. As long as p0 is close
to pst0B, the average capital remains approximately constant,

as shown in figure 11.

In contrast, the periodic and random strategies choose

game A with p05p0c. Although this does not produce

earnings in that turn, it keeps p0 away from pst0B. When

game B is chosen again, it has a large expected payoff since

p0 is not close to pst0B. By keeping p0 not too close to pst0B, the
blind strategies perform better than the short-range optimal

prescription, as can be seen in figure 11.

The introduction of e4 0 has two effects. First of all, it

makes pst0B decrease by a small amount, as indicated in

equation (8). This makes it even more difficult for the short-

range optimal strategy to choose game A, and after a few

runs game B is always selected. Since game B is now a

losing game, the short-range optimal strategy is also losing

whereas periodic and random strategies keep their winning

tendency, as can be seen in figure 9.

To summarize, the short-range optimal strategy

chooses B most of the time, since it is the game which

gives the highest returns in each turn. However, this

choice drives p0(t) to a region in which B is no longer a

winning game. On the other hand, the random strategy

Figure 8. The fraction of players p0(t) with a capital multiple

of three as a function of time when the game is chosen at random

and following the majority rule (MR). In both cases, e=0.005

and N=?. The horizontal lines indicate the threshold value for

the majority rule (1/2), and the stationary values for games A

and B, pst0A and pst0B, respectively. The figure clearly shows

that the random strategy keeps p0(t) small, whereas the

majority rule, selecting B most of the time, drives p0(t) to a

value where both game A and B are losing.
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from time to time sacrifices the short term returns by

selecting game A, but this choice keeps the system in a

‘productive region’. We could say that the short-range

optimal strategy is ‘killing the goose that laid the golden

eggs’, an effect that is also present in simple deterministic

systems [18].

5. Conclusions

We have presented the original Parrondo’s paradox and

several examples showing how the basic mechanisms

underlying the paradox can yield other counter-intuitive

phenomena. We finish by reviewing these mechanisms as

well as the literature related with the paradox.

The first mechanism, the ratchet effect, occurs when

fluctuations can help to surmount a potential barrier or a

‘losing streak’. These fluctuation either come from another

losing game, such as in the original paradox, from a

redistribution of the capital, such as in Toral’s collective

games [17], or from a purely diffusive motion, such as in the

flashing ratchet.

A second mechanism is the reorganization of trends,

which occurs when game A reinforces a positive trend

already present in game B. The same mechanism can be

observed in the games with capital independent rules and it

helps to understand the counter-intuitive behaviour of the

collective games presented in section 4.2 and 4.3, where

random choices perform better than the choice preferred by

the majority or the one optimizing short-term returns.

These models also prompt the question of how information

can be used to design a strategy. It is a relevant question for

control theory and also for statistical mechanics, since the

paradox is a purely collective effect that goes away for a

Figure 9. Average capital as a function of time for the three

different strategies explained in the text, with N=?, g=0.5

and e=0.005. The short-range (SR) optimal strategy is losing in

the stationary regime, whereas the two blind strategies, i.e.

choosing the game to be played either at random or following the

periodic sequence (ABBABB. . .), yield a systematic gain.

Figure 10. The fraction p0(t) of players with a capital multiple

of three as a function of the number of turns, for e=0, N=?
and g=0.5. The horizontal lines show the stationary values for

game A and game B (which coincides with the critical fraction

p0c for the short-range optimal strategy). As we have in figure 8

with the majority rule, the short-range optimal strategy drives

p0(t) towards higher values than the other two strategies.

Figure 11. Average capital as a function of time for the three

different strategies explained in the text and for e=0, N=?
and g=0.5. In this case the short-range optimal strategy is still

winning, due to the small jumps coinciding with the selection of

game A. However, for most of the turns game B is played with a

value of p0(t) very close to pst0B.
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single player, i.e. the choices following the short-range

optimal strategy and the majority rule perform much better

than the random or periodic ones.

There is a third mechanism which we have not addressed

in the paper, but immediately arises if we consider the

games as dynamical systems: the outcome of an alternation

of dynamics can always be interpreted as a stabilization of

transient states. This interpretation has allowed some

authors to extend the basic message of the paradox to

pattern formation in spatially extended systems [24 – 27]. In

these papers, a new mechanism of pattern formation based

on the alternation of dynamics is introduced. They show

how the global alternation of two dynamics, each of which

leads to a homogeneous steady state, can produce

stationary or oscillatory patterns upon alternation.

Another interesting application of the stabilization of

transient states is presented in [28]. Two dynamics for the

population of a virus are introduced with the following

property: in each dynamics, the population vanishes,

whereas the alternation of the two dynamics, whose origin

could be the seasonal variation, induces an outbreak of the

virus.

Similar effects can be seen in quantum systems. Lee et al.

have devised a toy model in which the alternation of two

decoherence dynamics can significantly decrease the deco-

herence rate of each separate dynamics [29]. Also in the

quantum domain, the paradox has received some attention:

there have been some proposals of a quantum version of

the games [30, 31] closely related with the recent theory of

quantum games [32], and the paradox has been reproduced

in the contexts of quantum lattice gases [33] and quantum

algorithms [34].

To finish this partial account of the existing literature on

the paradox, we mention the work by Arena et al. [35], who

analyse the performance of the games using chaotic instead

of random sequences of choices; that of Chang and Tsong

[36], who study the hidden coupling between the two games

in the paradox and present several extensions even for

deterministic dynamics; and the paper by Kocarev and

Tasev [37], relating the paradox with Lyapunov exponents

and stochastic synchronization.

In summary, Parrondo’s paradox has drawn the atten-

tion of many researchers to non-trivial phenomena

associated with switching between two dynamics. We have

tried to reveal in this paper some of the basic mechanisms

that can yield an unexpected behaviour when switching

between two dynamics, and how these mechanisms work in

several versions of the paradox. As mentioned in the

introduction, we believe that the paradox and its extensions

are contributing to a deeper understanding of stochastic

dynamical systems. In the case of statistical mechanics,

switching is in fact a source of non-equilibrium which is

ubiquitous in nature, due to day – night or seasonal

variations [28]. Nevertheless, it had not been studied in

depth until the recent introduction of ratchets and

paradoxical games. As the paradox suggests, we will

probably see in the future new models and applications

confirming that noise and switching, even between equili-

brium dynamics, can be a powerful combination to create

order and complexity.
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