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1 Introduction and motivation

Since its advent, the holographic AdS/CFT correspondence [1, 2, 3, 4] has been
exploited to study the physics of non-Abelian quark-gluon plasmas at finite tem-
perature using gravitational physics of AdS black holes, and vice versa. The dual
gravitational description of strongly coupled gauge theories provides an efficient way
to study the thermodynamic properties such as the phase structure of the gauge the-
ory. More recently, this correspondence was furthered to the hydrodynamical level, as
was originally proposed in [5] and has been significantly developed afterward (see [6]
and references therein for earlier work on hydrodynamics in the AdS/CFT context).
Namely, the long-wavelength physics of the field theory plasma described by a hy-
drodynamical Navier–Stokes equation is holographically dual to the long-wavelength
fluctuation of the horizons of AdS black holes. This correspondence allows for a
detailed quantitative study of the plasma from the bulk, and vice versa.

Generally, thermodynamics and hydrodynamics are macroscopic effective descrip-
tion obtained by coarse-graining the underlying microscopic physics which is more
fundamental. It is thus very natural to make steps toward more microscopic non-
equilibrium aspects of the AdS/CFT correspondence, underpinning the above-men-
tioned thermodynamical/hydrodynamical correspondence. Historically, Brownian mo-
tion [7] played a crucial role in connecting the macrophysics and the underlying mi-
crophysics. This peculiar motion is due to collisions with the fluid particles in random
thermal motion, and gave crucial evidence for the atomic theory of nature; for exam-
ple, it allowed to determine the Avogadro number. Brownian motion is a ubiquitous
phenomenon; any particle immersed in a fluid at finite temperature exhibits such
Brownian motion, from a small pendulum suspended in a dilute gas to a heavy par-
ticle in quark-gluon plasma. Therefore, study of Brownian motion in the AdS/CFT
setup is expected to help us understand the microscopic workings of strongly coupled
plasmas. Conversely, we should be able to learn about quantum physics of AdS black
holes from the boundary side.

The AdS/CFT correspondence has already been successfully and fruitfully used
for understanding features of quark-gluon plasmas. For example, the KSS bound
[8, 6] on the ratio of shear-viscosity to entropy density for relativistic hydrodynamic
systems, η/s ≥ 1/4π played a major role in understanding the properties of quark-
gluon plasmas. Furthermore, studies of the motion of quarks, mesons, and baryons in
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the quark-gluon plasma have been carried out in the holographic framework starting
with the seminal papers [9, 10, 11, 12, 13, 14, 15, 16], by considering the dynamics
of probe strings and D-branes in asymptotically AdS black hole spacetime—for a
sample of recent reviews on the subject, see [17]. The general philosophy in these
discussions was to use the probe dynamics to extract the rates of energy loss and
transverse momentum broadening in the medium, which bear direct relevance to the
physical problem of motion of quarks and mesons in the quark-gluon plasma. In such
computations, the motion of an external quark in the quark-gluon plasma is assumed
to be described by a Langevin equation [18].

Therefore, one can say that the most basic data of the Langevin equation describ-
ing Brownian motion in the CFT plasma are already available. However, rather than
taking such approaches which are phenomenological in some sense, one could study
more fundamental aspects of Brownian motion in the AdS/CFT context. For exam-
ple, in the first place, why does an external quark exhibit Brownian motion, and why
is the motion described by a Langevin equation? What is the bulk meaning of the
fluctuation-dissipation theorem relating γ and κ? The main purpose of the current
article is to elucidate the AdS/CFT physics of Brownian motion, by addressing such
questions. For example, the computation of the random force in [13, 14, 16] using the
GKPW prescription [2, 3] does not immediately explain what the bulk counterpart of
the random force is. We will see that it corresponds to a version of Hawking radiation
in the bulk.1

More recent papers discussing aspects of Brownian motion in the AdS/CFT con-
text include [20, 21, 22, 23].

2 Brownian motion

Let us start the discussion from the field theoretic, or boundary, side of the story
in the AdS/CFT context, by briefly reviewing the Langevin dynamics that describes
the Brownian motion. A general formulation of non-relativistic Brownian motion is
based on the generalized Langevin equation [24, 25], which takes the following form
in one dimension:

ṗ(t) = −
∫ t

−∞
dt′ γ(t − t′) p(t′) + R(t) + K(t), (1)

where p = mẋ is the (non-relativistic) momentum of the Brownian particle at position
x, and ˙ ≡ d/dt. The first term on the right hand side of (1) represents (delayed)
friction, which depends on the past trajectory of the particle via the memory kernel
γ(t). The second term corresponds to the random force which we assume to have the

1For an earlier discussion of the relation between Hawking radiation and diffusion the context of
AdS/QCD, see [19].
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following average:
⟨R(t)⟩ = 0, ⟨R(t)R(t′)⟩ = κ(t − t′), (2)

where κ(t) is some function. K(t) is an external force that can be added to the system.
The separation of the force into frictional and random parts on the right hand side of
(1) is merely a phenomenological simplification—microscopically, the two forces have
the same origin (collision with the fluid constituents). One can think of the particle
as losing energy to the medium due to the friction term and concurrently getting a
random kick from the thermal bath modeled by the random force. The two functions
γ(t) and κ(t) completely characterize the Langevin equation (1). Actually, γ(t) and
κ(t) are related to each other by the fluctuation-dissipation theorem [26].

The time evolution of the displacement squared of a Brownian particle obeying
(1) goes as follows [27]:

⟨s(t)2⟩ ≡ ⟨[x(t) − x(0)]2⟩ ≈


T

m
t2 (t ≪ trelax) : ballistic regime

2Dt (t ≫ trelax) : diffusive regime

(3)

The crossover time trelax between two regimes is given by

trelax =
1

γ0

, γ0 ≡
∫ ∞

0
dt γ(t), (4)

while the diffusion constant D is given by

D =
T

γ0m
. (5)

In the ballistic regime, t ≪ trelax, the particle moves inertially (s ∼ t) with the velocity

determined by equipartition, ẋ ∼
√

T/m, while in the diffusive regime, t ≫ trelax, the

particle undergoes a random walk (s ∼
√

t). This is because the Brownian particle
must be hit by a certain number of fluid particles to get substantially diverted from
the direction of its initial velocity. The time trelax between the two regimes is called
the relaxation time which characterizes the time scale for the Brownian particle to
forget its initial velocity and thermalize.

Another physically relevant time scale, the microscopic (or collision duration)
time tcoll, is defined to be the width of the random force correlator function κ(t).
Specifically, let us define

tcoll =
∫ ∞

0
dt

κ(t)

κ(0)
. (6)

If κ(t) = κ(0)e−t/tcoll , the right hand side of this precisely gives tcoll. This tcoll char-
acterizes the time scale over which the random force is correlated, and thus can be
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thought of as the time elapsed in a single process of scattering. In many cases,

trelax ≫ tcoll. (7)

There is also a third natural time scale tmfp given by the typical time elapsed between
two collisions. In the kinetic theory, this mean free path time is typically tcoll ≪
tmfp ≪ trelax; however in the case of present interest, this separation no longer holds,
as we will see. For a schematic explanation of the timescales tcoll and tmfp, see Figure
1.

Figure 1: The A sample of the stochastic variable R(t), which consists of many pulses
randomly distributed.

3 Brownian motion in AdS/CFT

The AdS/CFT correspondence states that string theory in AdSd is dual to a CFT
in (d− 1) dimensions. In particular, the (planar) Schwarzschild-AdS black hole with
metric

ds2
d =

r2

ℓ2

[
−h(r) dt2 + dX⃗2

d−2

]
+

ℓ2

r2h(r)
dr2, h(r) = 1 −

(
rH

r

)d−1

(8)

is dual to a CFT at a temperature equal to the Hawking temperature of the black
hole,

T =
1

β
=

(d − 1) rH

4π ℓ2
. (9)

In the above, ℓ is the AdS radius, and t, X⃗d−2 = (X1, . . . , Xd−2) ∈ Rd−2 are the
boundary coordinates. The black hole horizon at r = rH . In this black hole geometry
(8), let us consider a fundamental string suspended from the boundary at r = ∞,
straight down along the r direction, into the horizon at r = rH ; see Figure 2. In the
boundary CFT, this corresponds to having a very heavy external charged particle.
The X⃗d−2 coordinates of the string at r = ∞ in the bulk give the boundary position
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Figure 2: The bulk dual of a Brownian particle: a fundamental string hanging from
the boundary of the AdS space and dipping into the horizon. The AdS black hole
environment excites the modes on the string and, as a result, the string endpoint at
infinity moves randomly, corresponding to the Brownian motion on the boundary.

of the external particle. As we discussed above, such an external particle at finite
temperature T is expected to undergo Brownian motion.

The physical mechanism for Brownian motion in the gravitational picture is as
follows. Any fields in a black hole environment get excited by the Hawking radiation.
The transverse position of a string is also a field, although restricted to live on the
string worldsheet, and is thus subject to Hawking radiation. Intuitively, the string is
randomly kicked by the quantum effects on the horizon. This fluctuation propagates
along the string worldsheet and, consequently, the endpoint of the string at r = ∞
exhibits a Brownian motion which can be modeled by a Langevin equation. This
whole process is dual to the quark doing Brownian motion due to collisions with
the constituents of the quark-gluon plasma. We will refer to the string dual to the
Brownian particle on the boundary as the Brownian string.

We study this motion of a string in the probe approximation where we ignore
its backreaction on the background geometry. Also, if we take the string coupling
gs to be very small, the interaction of the Brownian string with the thermal gas of
closed strings in the bulk of the AdS space can be ignored. The reason is as follows.
How much the closed strings in the bulk of the AdS space is excited and how much
the fluctuation modes on the Brownian string are excited are both controlled by gs.
Furthermore, the interaction between those closed string modes and the fluctuation
modes on the Brownian string is controlled by gs. So, the magnitude of interaction
effects is down by a power of gs as compared to the physics of the fluctuation itself
and can be ignored. As a result, the only part of the Brownian string that interacts
is the near-horizon part.

As the action of the Brownian string, we use the Nambu-Goto action. If we
parametrize the string worldvolume by xµ = t, r, the transverse position is a field
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X⃗d−2(x). The Nambu-Goto action expanded in X is

SNG = const + S2 + S4 + · · · , (10)

S2 = − 1

4πα′

∫
dt dr

[
Ẋ2

h(r)
− r4h(r)

ℓ4
X ′2.

]
(11)

We will consider small fluctuation and use the quadratic part S2 as the action. This
corresponds to the nonrelativistic limit of the Brownian motion. This quadratic
action is analogous to Klein-Gordon action and, as such, can be studied using mode
expansion just like Klein-Gordon scalar. Explicitly, the mode expansion is

X(t, r) =
∫ ∞

0
dω

[
fω(r)e−iωtaω + h.c.

]
(12)

where fω(r) is the complete basis of positive energy solutions to the equation of
motion derived from the quadratic action (11):[

ω2 +
h(r)

ℓ4
∂r

(
r4h(r)∂r

)]
fω(r) = 0 (13)

and aω are annihilation operators satisfying the usual commutation relation [a†
ω, aω′ ] =

2πδ(ω − ω′). For d = 3, this equation (13) can be solved exactly while for d > 3 it
can be solved in the low frequency limit.

The equation (13) must be solved with an appropriate boundary condition. Near
the boundary r = ∞, we put a UV2 cutoff at rH = rc and impose Neumann boundary
condition ∂rX|rc = 0. This can be thought of as putting a “flavor brane” at r = rH

and it makes the mass of the Brownian particle finite. This is necessary because if the
Brownian string were infinitely long then the mass of the Brownian particle would be
infinite and there would be no Brownian motion.

As we have said, the Brownian string gets excited near the horizon, and the result-
ing fluctuation propagates to the UV endpoint and leads to the boundary Brownian
motion. Therefore, there is a direct relation between the fluctuation of the Brownian
string near the horizon and the position of the boundary Brownian particle. To un-
derstand the precise dictionary, let us look at the wave-functions of the world-sheet
fields in the two interesting regions: (i) near the black hole horizon and (ii) close to
the boundary. Near the horizon (r ∼ rH), the expansion (12) becomes

X(t, r ∼ rH) ≈
∫ ∞

0

dω√
2ω

[(
e−iω(t−r∗) + eiθωe−i(t+r∗)

)
aω + h.c.

]
(14)

where r∗ is the tortoise coordinate dr∗ = (ℓ2/r2h(r))dr. The first term in the paren-
theses of (14) corresponds to the mode emerging out from the black hole while the

2We use the terms “UV” and “IR” with respect to the boundary energy. In this terminology, in
the bulk, UV means near the boundary and IR means near the horizon.
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second term correspond to the mode falling into the black hole. θω is a phase shift.
Eq. (14) means that the oscillators aω is directly related to the amplitude of the modes
e−iω(t−r∗) coming out of the horizon. On the other hand, at the UV cut-off r = rc,
which we have chosen to be the location of the regularized boundary, (12) becomes

x(t) ≡ X(t, rc) =
∫ ∞

0
dω

[
fω(rc)e

−iωtaω + h.c.
]
. (15)

We will interpret this as the position of the Brownian particle in the boundary theory.
Here, the operators aω are related to the Fourier coefficients of x(t).

Using the above relation between (14) and (15), one can predict the correlators
for the outgoing modes near the horizon, ⟨aω1a

†
ω2

. . .⟩ etc., from the boundary corre-
lators ⟨x(t1) x(t2) . . .⟩ in field theory. In particular, if we would be able to make a
very precise measurement of Brownian motion in field theory, we could in principle
predict the precise state of the radiation that comes out of the black hole. In the
semiclassical approximation, the radiation is purely thermal as Hawking showed, but
in the quantum theory the state of the radiation must reflect the quantum gravity
microstate which the black hole is in. In this way, we can learn about the physics
of quantum black holes in the bulk from the boundary data. This of course requires
us to compute the correlation function for the test particle’s position in a strongly
coupled medium, which is a difficult task that we will not undertake here.

Semiclassical analysis

However, at the semiclassical level, we can utilize this dictionary to rather go from
the bulk to the boundary and learn about the boundary Brownian motion from the
bulk data. This is possible because, semiclassically, the state of the outgoing modes
near the horizon is given by the usual Hawking radiation [28, 29]. Namely,

⟨a†
ωaω′⟩ =

2πδ(ω − ω′)

eβω − 1
. (16)

In the d = 3 (AdS3) case, where we can solve the equation of motion (13) exactly,
we can use the expectation value (16) and the dictionary (14), (15) to accurately
compute the correlators for x, the position of the Brownian particle. Namely, we
can use the AdS/CFT correspondence to precisely predict the form of the Brownian
motion that the external quark undergoes.

Explicitly, the displacement squared, regularized by normal ordering, for d = 3
becomes

s2(t) ≡ ⟨ : [x(t) − x(0)]2 : ⟩ =
4α′β2

π2 ℓ2

∫ ∞

0

dω

ω

1 + (βω
2π

)2

1 + ω2ℓ4

sin2 ωt
2

eβω − 1
. (17)

7



By evaluating the integral for rc ≫ rH , we find the following behavior:

s2(t) ≈


T

m
t2 (t ≪ trelax),

α′

πℓ2T
t (t ≫ trelax).

(18)

where m = rc/2πα′ is the mass of the external quark. So, we observe two regimes,
the ballistic and diffusive regimes, exactly as for the standard Brownian motion (3).
The crossover time trelax is given by

trelax ∼ α′m

ℓ2T 2
. (19)

The diffusion constant that can be read off from the diffusive regime (see (3)) is
consistent with the known results for test quarks moving in the thermal N = 4 super
Yang-Mills plasma [9, 10, 11, 13].

Using these data, we can determine γ(t), κ(t) that characterize the Langevin equa-
tion and thus Brownian motion in the d = 3 case [30]. The result is

1

γ[ω] − iω
=

α′β2 m

2π ℓ2

1 − iν/ρc

1 − iρcν
, κ(ω) =

4πℓ2

α′β3

1 + ν2

1 + ρ2
cν

2

β|ω|
eβ|ω| − 1

, (20)

where ν = βω/2π, ρc = rc/rH . Divergences have been regularized by normal ordering.
Also,

κ(ω) =
∫ ∞

−∞
dt κ(t) eiωt, γ[ω] =

∫ ∞

0
dt γ(t) eiωt. (21)

It is possible to show that these satisfy the fluctuation-dissipation theorem; more
details and a proof that the fluctuation-dissipation theorem holds in general for any
d are presented in [30].

4 Time scales

In the above, we discussed the time scales associated with Brownian motion: the
relaxation time trelax, the collision duration time tcoll, and the mean-free-path time
tmfp, which are important quantities characterizing the properties of the plasma. trelax
and tcoll can be straightforwardly read off from the parameters γ(t), κ(t) characterizing
the Langevin equation. The result is [30]

trelax ∼ m√
λT 2

, tcoll ∼
1

T
, (22)
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where we borrowed the standard notation for the ’t Hooft coupling for four dimen-
sional N = 4 super Yang-Mills and set λ = ℓ4/α2. The time scale tmfp can be thought
of as the relaxation time for a plasma constituent, because any particle in thermal
environment, including the plasma constituent itself, will undergo Brownian motion.
In a CFT, a quasi-particle in plasma should have energy of order T , because it is the
only dimensional scale available. So, tmfp can be estimated by replacing m in trelax by
T :

tmfp ∼ 1√
λT

. (23)

In the weak coupling case, λ ≪ 1, we have trelax ≫ tmfp ≫ tcoll and the conven-
tional kinetic theory picture where the Brownian particle is hit by fluid particles once
in a while is good. On the other hand, in the strong coupling case, we have tcoll ≫ tmfp

which implies that a plasma particle is interacting with many other plasma particles
simultaneously. This is presumably closely related to the observed small thermal-
ization time of the QCD quark-gluon plasmas. This fact is also reminiscent of the
conjecture [31, 32] that black holes can scramble information very fast, whose dual
picture is that a degree of freedom in the boundary theory interacts with a huge
number of other degrees of freedom simultaneously.

One can argue that the mean-free-path time tmfp can be directly computed from
the connected 2- and 4-point functions of the random force R(t) [30]. From the
bulk point of view, connected 4-point functions receive contribution from the quartic
terms that appear in the expansion of the Nambu-Goto action as in (10). Such 4-point
functions should be computable [30, 33] making use of the formalism for Lorentzian
AdS/CFT correspondence [34, 35].

Acknowledgment

I would like to thank Ardian Atmaja, Jan de Boer, Veronika Hubeny, Mukund Ranga-
mani, and Koenraad Schalm for collaborations, including [30], which the current ar-
ticle is based on.

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and super-
gravity,” Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999)
1113] [arXiv:hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators
from non-critical string theory,” Phys. Lett. B 428, 105 (1998) [arXiv:hep-
th/9802109].

9



[3] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2,
253 (1998) [arXiv:hep-th/9802150].

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, “Large N
field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183 [arXiv:hep-
th/9905111].

[5] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, “Nonlinear
Fluid Dynamics from Gravity,” JHEP 0802, 045 (2008) [arXiv:0712.2456 [hep-
th]].

[6] D. T. Son and A. O. Starinets, “Viscosity, Black Holes, and Quantum Field
Theory,” Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arXiv:0704.0240 [hep-th]].

[7] R. Brown, “A brief account of microscopical observations made in the months of
June, July and August, 1827, on the particles contained in the pollen of plants;
and on the general existence of active molecules in organic and inorganic bodies,”
Philos. Mag. 4, 161 (1828); reprinted in Edinburgh New Philos. J. 5, 358 (1928).

[8] P. Kovtun, D. T. Son and A. O. Starinets, “Viscosity in strongly interacting
quantum field theories from black hole physics,” Phys. Rev. Lett. 94, 111601
(2005) [arXiv:hep-th/0405231].

[9] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, “Energy loss of a
heavy quark moving through N = 4 supersymmetric Yang-Mills plasma,” JHEP
0607, 013 (2006) [arXiv:hep-th/0605158].

[10] H. Liu, K. Rajagopal and U. A. Wiedemann, “Calculating the jet quenching
parameter from AdS/CFT,” Phys. Rev. Lett. 97, 182301 (2006) [arXiv:hep-
ph/0605178].

[11] S. S. Gubser, “Drag force in AdS/CFT,” Phys. Rev. D 74, 126005 (2006)
[arXiv:hep-th/0605182].

[12] C. P. Herzog, “Energy loss of heavy quarks from asymptotically AdS geometries,”
JHEP 0609, 032 (2006) [arXiv:hep-th/0605191].

[13] J. Casalderrey-Solana and D. Teaney, “Heavy quark diffusion in strongly coupled
N = 4 Yang Mills,” Phys. Rev. D 74, 085012 (2006) [arXiv:hep-ph/0605199].

[14] S. S. Gubser, “Momentum fluctuations of heavy quarks in the gauge-string du-
ality,” Nucl. Phys. B 790, 175 (2008) [arXiv:hep-th/0612143].

[15] H. Liu, K. Rajagopal and U. A. Wiedemann, “Wilson loops in heavy ion colli-
sions and their calculation in AdS/CFT,” JHEP 0703, 066 (2007) [arXiv:hep-
ph/0612168].

10



[16] J. Casalderrey-Solana and D. Teaney, “Transverse momentum broadening of a
fast quark in a N = 4 Yang Mills plasma,” JHEP 0704, 039 (2007) [arXiv:hep-
th/0701123].

[17] D. Mateos, “String Theory and Quantum Chromodynamics,” Class. Quant.
Grav. 24, S713 (2007) [arXiv:0709.1523 [hep-th]].
S. S. Gubser, “Heavy ion collisions and black hole dynamics,” Gen. Rel. Grav.
39, 1533 (2007) [Int. J. Mod. Phys. D 17, 673 (2008)].
D. T. Son, “Gauge-gravity duality and heavy-ion collisions,” AIP Conf. Proc.
957 (2007) 134.
J. D. Edelstein and C. A. Salgado, “Jet Quenching in Heavy Ion Collisions from
AdS/CFT,” AIP Conf. Proc. 1031, 207 (2008) [arXiv:0805.4515 [hep-th]].

[18] G. D. Moore and D. Teaney, “How much do heavy quarks thermalize in a heavy
ion collision?,” Phys. Rev. C 71, 064904 (2005) [arXiv:hep-ph/0412346].

[19] R. C. Myers, A. O. Starinets and R. M. Thomson, “Holographic spectral func-
tions and diffusion constants for fundamental matter,” JHEP 0711, 091 (2007)
[arXiv:0706.0162 [hep-th]].

[20] D. T. Son and D. Teaney, “Thermal Noise and Stochastic Strings in AdS/CFT,”
JHEP 0907, 021 (2009) [arXiv:0901.2338 [hep-th]].

[21] G. C. Giecold, E. Iancu and A. H. Mueller, “Stochastic trailing string and
Langevin dynamics from AdS/CFT,” JHEP 0907, 033 (2009) [arXiv:0903.1840
[hep-th]].

[22] G. C. Giecold, “Heavy quark in an expanding plasma in AdS/CFT,” JHEP 0906,
002 (2009) [arXiv:0904.1874 [hep-th]].

[23] J. Casalderrey-Solana, K. Y. Kim and D. Teaney, “Stochastic String Motion
Above and Below the World Sheet Horizon,” arXiv:0908.1470 [hep-th].

[24] R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29, 255-284
(1966).

[25] H. Mori, “Transport, collective motion, and Brownian motion,” Prog. Theor.
Phys. 33, 423 (1965).

[26] R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics II – Nonequilibrium
Statistical Mechanics,” Springer-Verlag.

[27] G. E. Uhlenbeck and L. S. Ornstein, “On The Theory Of The Brownian Motion,”
Phys. Rev. 36, 823 (1930).

11



[28] A. E. Lawrence and E. J. Martinec, “Black Hole Evaporation Along Macroscopic
Strings,” Phys. Rev. D 50, 2680 (1994) [arXiv:hep-th/9312127].

[29] V. P. Frolov and D. Fursaev, “Mining energy from a black hole by strings,” Phys.
Rev. D 63, 124010 (2001) [arXiv:hep-th/0012260].

[30] J. de Boer, V. E. Hubeny, M. Rangamani and M. Shigemori, “Brownian motion
in AdS/CFT,” JHEP 0907, 094 (2009) [arXiv:0812.5112 [hep-th]].

[31] P. Hayden and J. Preskill, “Black holes as mirrors: quantum information in
random subsystems,” JHEP 0709, 120 (2007) [arXiv:0708.4025 [hep-th]].

[32] Y. Sekino and L. Susskind, “Fast Scramblers,” JHEP 0810, 065 (2008)
[arXiv:0808.2096 [hep-th]].

[33] A. Atmaja, J. de Boer, K. Schalm and M. Shigemori, work in progress.

[34] K. Skenderis and B. C. van Rees, “Real-time gauge/gravity duality: Prescription,
Renormalization and Examples,” JHEP 0905, 085 (2009) [arXiv:0812.2909 [hep-
th]].

[35] B. C. van Rees, “Real-time gauge/gravity duality and ingoing boundary condi-
tions,” arXiv:0902.4010 [hep-th].

12


