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Motivated by experimental evidence of violations of the no-slip boundary condition for liquid flow

in micrometer-scale geometries, we propose a simple, complementary experimental technique that

has certain advantages over previous studies. Instead of relying on externally induced flow or probe

motion, we suggest that colloidal diffusivity near solid surfaces contains signatures of the degree of

fluid slip exhibited on those surfaces. To investigate, we calculate the image system for point forces

�Stokeslets� oriented perpendicular and parallel to a surface with a finite slip length, analogous to

Blake’s solution for a Stokeslet near a no-slip wall. Notably, the image system for the point source

and perpendicular Stokeslet contain the same singularities as Blake’s solution; however, each is

distributed along a line with a magnitude that decays exponentially over the slip length. The image

system for the parallel Stokeslet involves a larger set of fundamental singularities, whose magnitude

does not decay exponentially from the surface. Using these image systems, we determine the

wall-induced correction to the diffusivity of a small spherical particle located “far” from the wall.

We also calculate the coupled diffusivities between multiple particles near a partially slipping wall.

Because, in general, the diffusivity depends on “local” wall conditions, patterned surfaces would

allow differential measurements to be obtained within a single experimental cell, eliminating

potential cell-to-cell variability encountered in previous experiments. In addition to motivating the

proposed experiments, our solutions for point forces and sources near a partial-slip wall will be

useful for boundary integral calculations in slip systems. © 2005 American Institute of Physics.

�DOI: 10.1063/1.2083748�

I. INTRODUCTION

Recent reports of an apparent breakdown of the no-slip

boundary condition for liquid flows in small geometries pro-

vide an exciting and surprising opportunity to revisit one of

the most fundamental questions in hydrodynamics. It has be-

come textbook knowledge that, in the framework of con-

tinuum mechanics, the velocity of a viscous fluid at a solid

boundary is equal to that of the solid. If the solid is at rest,

the adjacent fluid must also be at rest. Although it cannot be

derived from first principles, decades of agreement with ex-

periments has led to a consensus that the no-slip boundary

condition is indeed correct for the fluid/solid boundary.
1

The simplest and most natural violation of the no-slip

condition would involve a surface slip velocity that varies in

proportion to the local shear rate, written in the case of a flat

surface as

u� = �
�u�

�n
, u� = 0, �1�

where n is the direction normal to the surface. This condition

naturally introduces a new length scale, �, called the slip

length. In gases, the slip length is related to the mean-free

path, � f, where noncontinuum effects become important.
2

The analogous picture does not appear to hold for liquids,

however. Liquid molecules are in constant collision, and any

analogous mean-free path would be of molecular order, sig-

nificantly smaller than recent experiments suggest �discussed

later�. Regardless of the discrepancy between physical ori-

gins of apparent slip in liquids and gases, the effects of slip

are expected to become important when the experimental

length scale h is of the same order as the slip length �.

Therefore, by analogy with gaseous slip flows, we will use

an effective Knudsen number,

Kn =
�

h
, �2�

to describe flows near a partial-slip surface. Obviously, we

expect slip effects to play a significant role when Kn

�O�1�.
In the past half-century, the no-slip condition saw only

occasional challenges.
3,4

More recently, however, various ex-

perimental systems have probed liquid flows on small

enough length scales h that Kn may no longer be small,

allowing a more thorough and sustained reinvestigation of

the no-slip boundary condition. These experimental tech-

niques differ in the way that flow is created and slip is mea-
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sured, and fall into five primary categories, reviewed in Ref.

5. �i� One can measure the relationship between the flow rate

and the pressure drop in capillaries or microchannels,
6,7

which depends on Kn. �ii� One can measure the force re-

quired for squeeze flows in long and narrow geometries such

as are found in the surface force apparatus �SFA� or atomic

force microscope �AFM�.8–19
Slip reduces the viscous resis-

tance, and quasisteady probe motion is assumed. �iii� One

can measure pressure-driven velocity profiles in a capillary

or microchannel using small particles as passive tracers.
20,21

Tracers that are sufficiently small, uncharged, and far from

the wall should faithfully reproduce the fluid velocity, al-

though the high diffusivity of small probes requires averag-

ing techniques. �iv� One can measure an externally driven

flow near a wall using fluorescence correlation spectroscopy

with labeled molecular tracers.
22 �v� One can use near-field

laser velocimetry, wherein evanescent optical waves �expo-

nentially localized to a small region near a wall� are used to

measure the velocity of photobleached molecular probes in

an externally driven flow.
23,24

There are now many published reports of apparent vio-

lations of the no-slip condition, both experimental
6–27

and

theoretical.
28–30

Apparent slip has been measured over sur-

faces that are completely wetting,
9,10,23

partially wetting,
12,13

and nonwetting.
7,8,11,13,20,30

Roughness has been predicted

and measured to decrease slip,
15,23,31,32

although in some

cases roughness appears to increase slip.
10,33

In some mea-

surements and simulations, the slip length appears to be in-

dependent of shear rate,
8,11,23,30

whereas in others it depends

upon shear rate.
7,9,10,12,13,29

Moreover, apparent slip lengths

ranging from nanometers
9

to micrometers
13

have been re-

ported. It is thus reasonable to conclude that no consensus

has been reached concerning the existence and physical ori-

gin of fluid/solid slip, and the physical factors that influence

it.

The large variability in the published results could be

due in part to the variety of experimental techniques em-

ployed. After all, physical mechanisms other than liquid/

solid slip can resemble apparent slip in experiments,
34–38

and

could lead to incorrect conclusions as to the nature of the

actual solid/liquid interface. Different experimental tech-

niques are susceptible to these effects to different degrees.

Additionally, all require an externally forced flow or motion,

which introduces an additional source of experimental uncer-

tainty. Furthermore, multiple experimental cells are typically

required to probe different solid/liquid surfaces. Finally,

many experiments involve averaging, over the length of a

capillary, the area of a SFA, or the diffusive motion of trac-

ers.

In this paper, we propose a complementary technique to

probe the nature of the liquid/solid boundary that is largely

immune to the issues raised above. The idea is to measure

the influence of the wall on the Brownian motion of sus-

pended tracers. A spherical particle of radius a, far from the

wall, diffuses with a bulk diffusivity D0=kBT /6��a, assum-

ing the particle itself to have a no-slip surface. When a wall

is located a distance h from the particle, particle diffusivity is

affected in a manner that depends on the nature of the sur-

face. A no-slip wall �Kn=0� gives corrections to the perpen-

dicular �D�� and parallel �D�� diffusion coefficients,

D� = D0�1 −
9a

8h
�, D

�
= D0�1 −

9a

16h
� , �3�

with errors of order O�a3 /h3�.39
If, however, the surface is

perfectly slipping �i.e., sustains no shear stress, or Kn=��,
the particle diffusivities are given by

D� = D0�1 −
3a

4h
�, D

�
= D0�1 +

3a

8h
� . �4�

Finite values of the slip length �or Kn� should interpolate

between these two limits. We note in particular that the par-

allel diffusivity goes from being wall hindered for Kn�1 to

enhanced for Kn�1. Naturally, a knowledge of the relation

between slip length and diffusivity would allow the slip

length of a solid/fluid interface to be inferred from the mea-

sured diffusivity of nearby particles. No external flow is re-

quired, and walls with patterned wettability allow various

surfaces to be probed within a single experimental cell,

which would allow differential measurements that are free of

the uncertainties due to cell-to-cell variability. This builds

upon an idea that was first pursued by Alméras et al.,
40

who

characterized the influence of wettability and slip on the par-

allel diffusion coefficient of a small particle between two

walls, as involved in molecular diffusion under

confinement.
41

In this work, we calculate fundamental solutions for

Stokes flows near a single partial-slip wall. Our results give

an explicit relationship between solid/liquid slip and colloi-

dal diffusivity, as well as expressions for the flow fields

themselves. In addition to aiding in intuition for partial-slip

systems, the flow fields we calculate will be useful for

boundary integral calculations in partial-slip systems. Addi-

tionally, we explore the feasibility of measuring the effect of

a partial-slip wall upon colloidal diffusivity as a means of

measuring the wall slip itself. Recent years have seen precise

experimental measurements of colloidal diffusivity near

walls and/or other colloids. Corrections of order a /h can be

accurately measured, and excellent agreement has been

found with theory.
42–44

This technique has various advantages. First, it does not

require an external flow and therefore alleviates the experi-

mental difficulties associated with precise flow manipulation.

As a consequence, the experiment can be performed in a

closed cell, and thus avoid contamination by impurities.

Consequently, the liquid can be degassed or put under vari-

able pressure to probe the influence of adsorbed

nanobubbles, as discussed below. Second, our method does

not average over different experiments, sample volume, or

apparatus size, but instead makes use of a single colloidal

probe. Third, multiple solid/liquid interfaces can be probed

within a single experimental cell by using deliberately pat-

terned surfaces. This would allow differential measurements

to be performed, and possibly to track surface-attached

nanobubbles.
45–47

The paper is organized as follows. In Sec. II, we con-

sider the effects of a partial-slip wall on the two main fun-

damental singularities of Stokes flow—the point force
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�Stokeslet� and the point source. In a manner analogous to

Blake’s image system for a no-slip wall,
48

we interpret the

wall’s contribution in terms of a series of image singularities.

This is the central result of our work. In Sec. III, we use this

solution to provide an analytical formula for the influence of

a partial-slip wall on the diffusivity of a small spherical par-

ticle. In Sec. IV, we consider the coupled mobilities/

diffusivities of two small particles, and propose alternate ex-

perimental tests for slip to complement those in Sec. III. As

the calculations themselves are somewhat laborious, we rel-

egate the details to Appendices, and save the main body of

the text for key results and discussion.

II. IMAGE SYSTEMS NEAR A PARTIAL-SLIP
SURFACE

Analogous to point charges and point masses in electro-

statics and gravitation, flow fields associated with fundamen-

tal singularities are useful in treating Stokes flows.
49

There

are two families of fundamental singularities in Stokes flows:

�i� the point source/sink and their derivatives, which corre-

spond to irrotational potential flow and are entirely analo-

gous to electrostatic fields, and �ii� the point force �Stokeslet�
and its derivatives, whose flow fields are viscous and rota-

tional. These fundamental singularities aid in the intuition for

viscous flows, and in providing approximate and asymptotic

solutions. Furthermore, they form the basis for boundary in-

tegral techniques in Stokes flow calculations in more com-

plicated geometries, where flow and pressure fields are com-

puted by solving for surface distributions of fundamental

singularities.
49

In a classic paper, Blake
48

interpreted the flow field due

to a Stokeslet near a no-slip surface in terms of a system of

image singularities, located on the opposite side of the wall.

Blake’s image system consists of an equal but opposite

Stokeslet, a Stokeslet dipole �i.e., force–dipole� and a source

dipole �potential dipole�. A perfectly slipping surface �Kn

=�� has a simpler image system: a single Stokeslet of equal

magnitude and symmetric direction, as in Fig. 1. The image

system for a partial-slip surface �0�Kn��� is more com-

plicated, and is the subject of the following analysis. In what

follows, we present the complete image system for a Stokes-

let near a planar partial-slip boundary. To address other situ-

ations in which fundamental singularities are important, like

boundary-integral analyses, we also provide the image sys-

tem for a point source near a partial-slip wall. Higher-order

�multipolar� singularities can be derived from these two by

differentiation, although subtleties exist �discussed later�. We

note also that the image systems near a planar two-fluid in-

terface have been studied.
50,51

Because our calculation is

analogous to Blake’s, but algebraically more involved, we

save the details for Appendices A–D.

A. Setup and boundary conditions

We choose the x-y plane to lie along the solid wall, with

the z coordinate directed perpendicular to the surface, and

consider a Stokeslet of strength F located at �x ,y ,z�
= �0,0 ,h�. The velocity field, u, satisfies the incompressible

Stokes equations

� �2u = �p, � · u = 0 , �5�

subject to partial-slip boundary conditions �Eq. �1��. We de-

compose u into three components:

u = U + V + w , �6�

where U is the flow field due to the Stokeslet itself, V is the

flow field due to the primary image Stokeslet of strength F̃

located at �x ,y ,z�= �0,0 ,−h� �Fig. 1�, and w is an as yet

unknown velocity field that solves Eq. �5�. The Green’s func-

tion for the Stokeslet is given by
48,49

GS�r� =
1

8��
�1

r
+

rr

r3 � . �7�

Since the wall breaks the isotropy of the particle mobil-

ity, we consider the perpendicular ��� and parallel ���
Stokeslets separately, giving velocity fields

U� = FGz
S�r� , �8a�

U
�
= FGx

S�r� , �8b�

with r= �x ,y ,z−h�. Here we have introduced the notation

Gz
S�r� = GS�r − r0� · ez, �9�

where r0 is the location of the Stokeslet, r is the observation

point, and the subscript indicates the direction of the force.

In what follows, we will also use the following notation for

higher-order singularities:

Gz;x
SD�r� = � �

�x0

�GS�r − r0� · ez��
r0=0

	 −
�

�x
�GS�r� · ez� ,

�10a�

Gz;xy
SQ �r� = � �2

�x0 �y0

�GS�r − r0� · ez��
r0=0

	
�2

�x �y
�GS�r� · ez� . �10b�

Here GSD represents a Stokeslet doublet, GSQ a Stokeslet

quadrupole, and so on. Note that derivatives are taken with

respect to the singularity location �rather than the observa-

tion point�, one derivative for each coordinate following the

semicolon.

FIG. 1. First image of the Stokeslet; �a�: Stokeslet �F ,h� perpendicular to

the surface; the first image is the Stokeslet �−F ,−h�; �b�: Stokeslet �F ,h�
parallel to the surface; the first image is the Stokeslet �F ,−h�. Note that

these would be the complete image systems if the surface was perfectly

slipping �Kn=��.
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For the primary image Stokeslets located at z=−h, we

pick F̃ as in Fig. 1 to enforce the no-flux condition at the

wall, giving velocity fields

V� = − FGz
S�r̄� , �11a�

V
�
= FGx

S�r̄� , �11b�

where r̄= �x ,y ,z+h�.
Enforcing the partial-slip boundary condition �Eq. �1�� at

the surface z=0 imposes boundary conditions on w,

�1 − �
�

�z
�w� = − 2U�, w3 = 0. �12�

We use Fourier transforms in the x and y directions and the

general solution to Stokes equations, as given in Appendix

A. The amplitudes of the Fourier components are determined

by enforcing the slip boundary condition �12�; for details see

Appendix B for the perpendicular case, and Appendix C for

the parallel case. These solutions can be used to calculate the

change in the particle mobility, and therefore diffusivity.

An interesting result is that the Fourier coefficients for

both cases can be related directly to the coefficients in the

no-slip series, which allows the partial-slip solution to be

expressed in terms of weighted integrals of the no-slip image

systems. This results in a clear physical interpretation of the

partial-slip image system in terms of weighted integrals of

fundamental singularities.

B. Stokeslet perpendicular to slip surface

As shown in Appendix B, the total velocity field for a

Stokeslet oriented perpendicular to a partial-slip wall can be

expressed as u�=U�+V�+w�, where U� and V� are given

by Eqs. �8a� and �11a�, and w� is given by

w��r,�� =
Fh

�



0

�

e−s/2���h + s�Gz
D − Gz;z

SD��r + �h + s�ez�ds ,

�13�

where GD is a potential �source� dipole, defined by

Gz
D =

1

8��

�

�z0

�� r − r0

�r − r0�3
��

r0=0

	 −
1

8��

�

�z
� r

r3� . �14�

Note that in �13� and throughout this article, the vector terms

in brackets following G functions represent the arguments of

those functions. Analogous formulas and notation for source

quadrupoles Gxixj

Q follow in a straightforward fashion,

Gxixj

Q =
1

8��

�2

�xi �x j

� r

r3� . �15�

This image system therefore represents a weighted line inte-

gral of source dipoles and Stokeslet dipoles, whose magni-

tude decays exponentially with distance �scaled by the slip

length�. In fact, Eq. �13� represents a line integral of Blake’s

image system for no-slip walls.
52

The streamlines for the

complete image system are displayed in Fig. 2.

Scaling the integration variable s with �u gives a form

for the image system,

w��r,�� = Fh

0

�

e−u/2��h + �u�Gz
D − Gz;z

SD��r + �h + �u�ez�du ,

�16�

which is amenable to asymptotic analysis. The basis for the

analysis that follows is that the integrand is only appreciable

when u	O�1�, and is exponentially small otherwise.

Since z and h play the same role in the argument of the

two singularities in Eq. �16�, we can consider the limit where

�� �z+h� in the singularities in Eq. �16�. A Taylor expansion

of the term in brackets gives

w��r� � 2Fh��h + 2��Gz
D − Gz;z

SD��r̄�

+ 4Fh��− �h + 4��Gzz
Q + Gz;zz

SQ ��r̄� . �17�

In the limit when the particle is farther from the wall than the

slip length ���h, or Kn�1�, Eq. �17� becomes

w��r,� � h� = 2Fh�hGz
D − Gz;z

SD��r̄� + 4Fh�


�Gz
D − hGzz

Q + Gz;zz
SQ ��r̄� . �18�

The first term is Blake’s solution for a no-slip wall, and the

second term represents an O�Kn� correction to the image

system due to slip. Furthermore, in the limit where h��

�z, Eq. �17� results in

w��r� � 4Fh�Gz
D�r̄� , �19�

which differs significantly from Blake’s solution.

C. Stokeslet parallel to slip surface

As shown in Appendix C, the total velocity field for a

Stokeslet oriented parallel to a partial-slip wall can be ex-

pressed as u� =U� +V� +w�, where U� and V� are given by

Eqs. �8b� and �11b�, and w� is given by

FIG. 2. Streamlines for a Stokeslet

oriented perpendicular to a partial-slip

wall, with �a� Kn=0 �Blake’s solution,

no-slip�, �b� Kn=1, �c� Kn=� �perfect

slip�. The streamlines are displayed in

the plane which includes the Stokeslet

and is perpendicular to the nearby

surface.

103102-4 E. Lauga and T. M. Squires Phys. Fluids 17, 103102 �2005�

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



w
��r,�� =

F

�



0

�

�− Gx
S + hGz;x

SD − h2Gx
D��r + �h + s�ez�e

−s/2�ds

− 4F�

0

�

Gz;y
RD�r + �h + s�ez��e

−s/2� − 1�2ds

+ 4F�

0

�

�Gx
D − hGxz

Q ��r + �h + s�ez�



1 − �1 +
s

2�
�e−s/2��ds , �20�

where Gz;y
RD is a rotlet dipole, given by �see details in Appen-

dix C�

Gz;y
RD =

1

2 �Gy;xy
SQ − Gx;yy

SQ � . �21�

The solution, Eq. �20�, can again be interpreted as a line

integral of the fundamental singularities above, but their

weight does not systematically decay exponentially away

from the image location. These are shown in Fig. 3. Note

that, as �→�, each term in Eq. �20� goes to zero due to the

rapid spatial decay of the singularities �GD�1/r3, GRD

�1/r3, GQ�1/r4� and due to the vanishing value of the

weights in Eq. �20� as s→0.

Rescaling s by � in Eq. �20� gives

w
��r,�� = F


0

�

�− Gx
S + hGz;x

SD − h2Gx
D��r + �h + �u�ez�e

−u/2


du − 4F�2

0

�

Gz;y
RD�r + �h + �u�ez��e

−u/2 − 1�2


du + 4F�2

0

�

�Gx
D − hGxz

Q ��r + �h + �u�ez�



1 − �1 +
u

2
�e−u/2�du , �22�

which leads to asymptotic formulas for the image system

using an expansion of the terms in Eq. �22�. In the limit

Kn�1, the image system is found to be given by

w
��r,�� � 2F�− Gx

S + hGz;x
SD − h2Gx

D��r̄�

+ 4�F�Gx;z
SD − hGz;zx

SQ + h2Gxz
Q ��r̄� , �23�

which is Blake’s solution for a no-slip surface plus an O�Kn�
correction. Note that the rotlet dipole in Eq. �22�, Gz;y

RD, will

only appear in asymptotic formulas for the image system at

order O�Kn2�.

D. Image system for a point source

For completeness, and because other singularities are

important for, e.g., boundary-integral techniques, we con-

sider the image system for a point source, which we will

denote by �.�, as well as higher-order singularities. For the

point source, the velocity field and its first image are given

by

U�.� =
Q

8��

r

r3
, �24a�

V�.� =
Q

8��

r̄

r̄3
, �24b�

where 4�Q can be interpreted as the source flow rate. Here

again, we decompose the velocity field u�.�=U�.�+V�.�+w�.�

and need to solve for w�.�. The boundary conditions for w�.�

are exactly proportional to those for w� �Eq. �B1��; corre-

spondingly, the two solutions are proportional as well, giving

w�.� = −
2Q

Fh
w�

= −
2Q

�



0

�

e−s/2���h + s�Gz
D − Gz;z

SD��r + �h + s�ez�ds .

�25�

E. Higher-order singularities

Finally, we note that higher-order singularities may be

derived from the Stokeslet and point source image systems

presented above, by taking derivatives with respect to the

singularity location. Subtleties do exist, however, so care

should be taken.
52

Derivatives along the plane of the wall

can be computed in a straightforward fashion, but derivatives

perpendicular to the wall are more subtle, because the am-

plitude of the image singularities depends on the distance

from the wall. In general, the correct image system will al-

ways be obtained if the derivative is calculated by taking the

limit of two such opposing singularities �since each solution

obeys the correct boundary condition on the wall in the first

place�. That is, if usin�h� is the fundamental singularity lo-

cated a distance h from the wall, and ui�h� is the proper

image, then the image system for a perpendicular dipole of

usin�h� can be found by taking the limit

FIG. 3. Streamlines for a Stokeslet

oriented parallel to a partial-slip wall,

with �a� Kn=0 �Blake’s solution, no-

slip�, �b� Kn=1, �c� Kn=� �perfect

slip�. The streamlines are displayed in

the plane which includes the Stokeslet

and is perpendicular to the nearby

surface.
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uD = lim
�→0

�usin�h� + ui�h� − usin�h − �� − ui�h − ��
�

� . �26�

III. INFLUENCE OF SLIP ON BROWNIAN
MOTION

A. Diffusion of a spherical particle

We now turn to a specific application of the above cal-

culation: the diffusivity D of a solid spherical particle of

radius a near a partial-slip wall. Using the Stokes–Einstein

relation, the diffusivity is directly proportional to the particle

mobility b via D=kBTb; thus the �deterministic� calculation

of mobility yields the diffusivity.

Particle mobilities are defined as the velocity response to

a force F acting on the particle. In the absence of solid

boundaries, and if the no-slip boundary condition is satisfied

on the particle surface, the velocity field established around

the particle is given by

u =
1

8��
�1

r
+

rr

r3 � · F +
a2

24��
� 1

r3
−

3rr

r5 � · F , �27�

leading to the �isotropic� Stokes mobility

b0 =
1

6��a
. �28�

The first term in Eq. �27�, which decays like 1/r, corre-

sponds to a Stokeslet, whereas the second term �source di-

pole� is necessary to satisfy the no-slip boundary condition

on the surface of the particle, and decays like 1/r3.

The presence of a nearby surface �a distance h from the

particle� modifies the flow field around the particle, and

hence its mobility, which is now an anisotropic tensor b. To

account for such effects, one can employ an approximate and

iterative technique known as the method of reflections.
39

When the particle is “far” from the wall �a�h�, it sets up a

flow field that locally appears like that around a particle in an

infinite fluid. This flow field, however, violates the boundary

conditions at the wall, and so an additional field �“reflec-

tion”� is introduced to correct the boundary conditions at the

wall. This first reflection, however, violates the boundary

conditions at the particle surface, necessitating a second re-

flection, and so on.

Thus, in our approximation, the particle travels through

its local fluid environment with Stokes mobility �28�, and is

advected by the image flow uw via Faxen’s law

uadv = uw +
a2

6
�2uw. �29�

Thus the leading-order correction �in a� to the mobility is

given by the wall-induced flow uw evaluated at the particle

location. Furthermore, to obtain the O�a� component of uw,

only the image system for the Stokeslet in �27� is required.

Errors to this approach are of order a3 /h3, since the source

dipole flow in �27� and the Laplacian in �29� are smaller by

a2. Note also that, since only the image system for the

Stokeslet is required for the leading-order wall correction to

the mobility, the result is insensitive to the boundary condi-

tions �i.e., size, shape, or slip� on the particle itself.

B. The effect of slip upon single-particle diffusivity

The components of the velocities at the position of the

Stokeslets and in the same direction as the applied force,

denoted generically, �u1 ,u2 ,u3�, are given by

u3
� =

F

6��a
+ V3

��0,0,h� + w3
��0,0,h� , �30�

u1
�

=
F

6��a
+ V1

� �0,0,h� + w1
� �0,0,h� . �31�

The first terms �U� ,U�� represent the bulk �Stokes� mobility;

the second terms �V� ,V�� represent advection with the flow

field established by the primary image Stokeslets; and the

third terms �w� ,w�� reflect advection with the higher-order

image field, as detailed in Appendices B and C. The flow

velocities from the primary image Stokeslet, evaluated at the

particle position, are

V3
��0,0,h� = −

F

8��h
, V1

� �0,0,h� =
F

16��h
, �32�

and inverting the Fourier transforms from Appendices B and

C reveals the contribution from higher-order singularities to

be

w3
��0,0,h� = −

F

4��h
I�Kn� , �33a�

w1
� �0,0,h� = −

F

8��h
J�Kn� , �33b�

where the functions I and J are defined by

I�Kn� = 

0

�
x2

1 + 2x Kn
e−2x dx

=
Kn�Kn − 1� + e1/Kn��0,1/Kn�

8 Kn3
, �34a�

FIG. 4. Variations with the Knudsen number Kn of the functions I and J

involved in the corrections to perpendicular and parallel diffusivity, as de-

fined in �36a� and �36b�.
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J�Kn� = 

0

� �1 + Kn r��1 − r�2 + 2�1 + 2 Kn r�
�1 + Kn r��1 + 2 Kn r�

e−2r dr

=
− Kn�3 Kn + 1� + e1/Kn�1 + 2 Kn�2��0,1/Kn�

8 Kn3

+
e2/Kn��0,2/Kn�

Kn
, �34b�

where � is the incomplete Gamma function,
53

��a,x� = 

x

�

ta−1e−t dt . �35�

The results of Eqs. �30� and �31� yield the desired relation

between wall slip and nearby colloidal diffusivities, given to

leading order in a /h by

D�

D0

=
b�

b0

= 1 −
3a

4h
�1 + 2I�Kn�� + O�a3

h3� , �36a�

D
�

D0

=
b

�

b0

= 1 +
3a

8h
�1 − 2J�Kn�� + O�a3

h3� . �36b�

The functions I and J are illustrated in Fig. 4. These far-

field results complement calculations in the �opposite� lubri-

cation limit, h−a�a.
54

It is significant to note that appre-

ciable variation in parallel diffusivity �J� occurs over about

three decades in Kn, giving a fairly wide range of experi-

mental conditions under which one might hope to measure �.

C. Asymptotic limits

When the slip length is small ���h�, we can use a Tay-

lor expansion of Eqs. �36a� and �36b� and obtain the

asymptotic results,

D�

D0

= 1 −
9a

8h
�1 − Kn + O�Kn2�� + O�a3

h3� , �37a�

D
�

D0

= 1 −
9a

16h
�1 − Kn + O�Kn2�� + O�a3

h3� . �37b�

The results for a no-slip surface, Eq. �3�, are therefore recov-

ered as the slip length vanishes. The “slightly slipping” result

can also be obtained simply from the no-slip solution, using

a reciprocal theorem for Stokes flow, as shown in Appendix

E.

When the slip length is large, ��h, on the other hand,

Eqs. �36a� and �36b� can be approximated by

D�

D0

= 1 −
3a

4h

1 +

1

4 Kn
+ O� 1

Kn2�� + O�a3

h3� , �38a�

D
�

D0

= 1 +
3a

8h

1 +

5

Kn
ln� 1

Kn
� + O� 1

Kn
�� + O�a3

h3� .

�38b�

The results for a no-shear surface, Eq. �4�, are recovered

when the slip length diverges, albeit slowly �note the loga-

rithmic dependence in the parallel case�.

IV. COUPLED DIFFUSION OF TWO PARTICLES NEAR
A PARTIAL-SLIP SURFACE

We extend in this section the idea proposed in Sec. III to

the coupled diffusivity of two colloids. We consider two

spherical particles, radius a, located at distance d from each

other along the x axis and at a distance h above the slipping

surface.

The diffusivity tensor, D, for a general N-particle system

is given by
55

D = kBTb , �39�

where b is the N-particle mobility tensor. In the case of two

particles, these mobilities are the tensors relating the forces

F1 and F2, acting on each particle and their velocities, u1 and

u2, as

u1 = b11 · F1 + b12 · F2, �40a�

u2 = b21 · F1 + b22 · F2. �40b�

The values of the tensors b11=b22 reflect the self-

diffusion of each particle, and the influence of slip on their

values was presented in Sec. III. We calculate below the

influence of slip on the coupling tensors, b12
T =b21. Note that

unlike b11 and b22, the coupling tensors b12 and b21 do not

depend on the particle size a, but rather on the value of the

new length scale, d.

Since there is symmetry between particles 1 and 2, we

have b12
T =b21, and it is therefore sufficient to calculate only

b21. Furthermore, since the particles are aligned along the x

direction, the tensor has only five nonzero entries,

b21 = �
bx2x1

0 bx2z1

0 by2y1
0

bz2x1
0 bz2z1

� . �41�

By symmetry, bx2z1
=−bz2x1

, leaving just four independent

components in the coupling mobility/diffusivity.

We adopt the same method as in Sec. III and consider

the limit a�h, so that we replace the full velocity field

around the particle by a Stokeslet. In the case of no slip, the

coupled mobilities �influence of the point force and its image

system� are given by

103102-7 Brownian motion near a partial-slip boundary Phys. Fluids 17, 103102 �2005�

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



b21�Kn = 0� =
1

8��d�
2�1 −

1 + 
 +
3

4
2

�1 + 
�5/2 � 0
−

3

2
3/2

�1 + 
�5/2

0 1 −
1 +

3

2


�1 + 
�3/2
0

3

2
3/2

�1 + 
�5/2
0 1 −

1 +
5

2
 + 3
2

�1 + 
�5/2

� , �42�

whereas when the slip length is infinite, they are given by

b21�Kn = �� =
1

8��d�
2�1 +

1 +
1

2


�1 + 
�3/2� 0 −

1/2

�1 + 
�3/2

0 1 +
1

�1 + 
�1/2
0


1/2

�1 + 
�3/2
0 1 −

1 + 2


�1 + 
�3/2

� , �43�

with


 =
4h2

d2
. �44�

These are exact expressions for the leading-order far-field

corrections to the mobility, and are independent of particle

size a or shape. Higher-order corrections for spheres involve

Faxen corrections and image systems for the source–dipole,

which are of order O�a3 /h3� and O�a3 /d3�. The qualitative

difference between the no-slip and perfect slip formulas con-

cern their spatial decay in the limit 
→0 �h�d�. In that

case, all components of the mobility tensor decay faster in

the case of no slip than in the case of perfect slip.

We present below the calculation for bz2z1
, as it is the

configuration where calculations are the easiest. Calculations

for other components of the mobility tensor are derived in

Appendix F, with results summarized below as well.

In order to evaluate bz2z1
, we consider a unit vertical

force applied to particle 1, and determine the vertical veloc-

ity at the position of particle 2. Two factors contribute to the

value of bz2z1
: the direct influence of the Stokeslet flow field

from particle 1 and the influence of the image system for this

Stokeslet below the slipping surface. Given the decomposi-

tion assumed in Eq. �6�, the mobility is given by

bz2z1
�Kn� = bz2z1

�Kn = �� + w3
��dex + hez,�� . �45�

Using Eq. �43� and evaluating the integral in Eq. �13� leads

to

bz2z1
�Kn� =

1

8��d

1 −

1 + 2


�1 + 
�3/2

+



2
� 1

Kn



0

�

e−u/Kn
1 − 2
�1 + u�2

�1 + 
�1 + u�2�5/2
du�� .

�46�

For a fixed value of Kn, the asymptotic behavior of the in-

tegral in parentheses in Eq. �46� in the limit 
→0 is given by

1

Kn



0

�

e−u/Kn
1 − 2
�1 + u�2

�1 + 
�1 + u�2�5/2
du

= 1 −
9

2
�1 + 2 Kn + 2 Kn2�
 + O�
2� . �47�

Consequently, for any value of the slip length, there exists a

range of 
,


 � min�1,
1

Kn2� , �48�

which corresponds to the far-field limit

d2 � max�h2,�2� , �49�

for which the integral in Eq. �47� goes to one asymptotically.

It follows that, evaluating Eq. �46�, the mobility always de-

cays asymptotically as O�
2 /�d��1/d5; this is the same

power law as the no-slip case. The case of perfect slip is

therefore a singular limit: as Kn→�, the range of 
 for

which this asymptotic behavior is valid, 
�1/Kn2, shrinks

to zero, resulting in an asymptotic behavior of the perfect-

slip diffusivities qualitatively different from that of any other

partially slipping surface. We can then use these results to

obtain, for a given slip length, the asymptotic behavior of the

mobility as 
→0. Substituting the result of Eq. �47� in Eq.

�46�, we obtain

bz2z1
�Kn� = −

9
2

64��d
�1 + 4 Kn + 4 Kn2��1 + O�
�� . �50�

As is obvious in Eq. �50�, the numerator is a function of Kn,

and, as a consequence, a measure of the behavior of the

spatial decay of the coupled diffusivities of the two particles

allows, in principle, to infer the value of the slip length.

The other components of the mobility tensor b21 are cal-

culated in Appendix F for small values of 
. They are given

by
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bx2x1
�Kn� =

3


8��d
�1 + 2 Kn + Kn2��1 + O�
�� , �51�

by2y1
�Kn� =

3
2

64��d
�1 + 4 Kn + 12 Kn2 + 16 Kn3

+ 8 Kn4��1 + O�
�� , �52�

bx2z1
�Kn� = −

3
3/2

16��d
�1 + 3 Kn + 2 Kn2��1 + O�
�� , �53�

and similarly, their measurement would allow an estimation

of the slip length on the surface; Eqs. �51� and �52� are valid

when d�max�h ,�� and Eq. �53� when d2�max�h2 ,�2�.
Note that the largest leading-order influence of a nonzero slip

length are obtained for the components bz2z1
and by2y1

of the

coupled matrix �behavior �1+4 Kn for small Kn�, although

these components decay most quickly with 
. The most

slowly decaying coupling mobility is bx2x1
.

V. DISCUSSION AND CONCLUSIONS

Having presented the fundamental singularities for

Stokes flow near a partial-slip planar wall and explored the

consequences for colloidal diffusion, we now turn to exam-

ine issues relevant to experimental studies of slip.

Before we begin, it is significant to note that there are

several length scales inherent in the systems we have been

considering: the colloidal radius a, distance from the wall h,

slip length �, and �for multiparticle systems� the distance d

between the particles. The theory presented above concerns

the fluidic response to a point force, and thus the results we

presented are valid for particles that are “far” from the wall,

so that a�h. �Note, however, that excellent agreement be-

tween theory and experiment was obtained for the coupled

colloidal diffusion, even for systems with a /h�1/3.
42� This

is significant because the transition between “no-slip” and

“perfect slip” occurs, not surprisingly, around Kn�O�1�, or

h��. Thus, to experimentally observe the transition between

the two slip regimes �and thus measure � convincingly�, a

tracer is required that is of the same order as the slip length

itself.

Different slip lengths could be probed with different ex-

perimental techniques. Several experiments
4,13,20,22,25

have

reported slip lengths of order micrometers, which would al-

low the use of micrometer-sized colloids. Optical tweezers

can trap colloids of this size, and thus allow their repeatable

and precise three-dimensional placement. Repeatedly trap-

ping and releasing single or multiple colloids has proven an

excellent method for measuring spatially varying single- or

multiparticle diffusivities,
42–44

and would thus be naturally

adaptable to probe the slip properties of walls as described

previously. Such studies have been developed using video

microscopy, which most typically would measure motion

parallel to the wall, and project out perpendicular motion.

Again, this requires a probe that is large enough to be

trapped by optical tweezers, which places a lower limit on

the slip length that could practically be measured, although a

null measurement using tweezers would be useful in putting

an upper bound on the slip length of a surface.

Other slip experiments
3,6–8,10–12,14–19,21–23,26,27

report

shorter �10–100 nm� slip lengths, which would require

smaller �10–100 nm� tracers. For visualization, such tracers

should presumably be fluorescent, such as quantum dots

�see, e.g., Ref. 22�. These small colloids are more difficult, if

not impossible, to hold with optical tweezers, which rules out

their precise manipulation and placement. Instead, tech-

niques such as total internal reflection microscopy allow ac-

curate three-dimensional measurements of their positions,

and could thus be used to probe surfaces with 10–100 nm

slip lengths. Such techniques have the additional advantage

of precise, three-dimensional measurements, and could thus

be used to probe both the perpendicular and parallel diffu-

sivities. Additional issues also arise with such small tracers:

obviously, the diffusive motion is significantly higher, so cor-

respondingly particle motion must be resolved on faster time

scales. Furthermore, colloid/wall interactions �electrostatic,

van der Waals, and so on
56� can become significant at these

shorter length scales, and must be treated properly in data

analysis.

We now discuss issues specific to single-particle diffu-

sivities. From Eqs. �3� and �4�, it is evident that variations in

Kn give rise to a change in single-particle diffusivities of at

most

�D�

D0

=
3a

8h
,

�D
�

D0

=
15a

16h
, �54�

to leading order in a /h. The effect on the diffusivity parallel

to the wall is larger than for the perpendicular diffusivity, and

furthermore changes sign: parallel diffusivity is hampered by

a no-slip wall, but enhanced by a significantly slipping wall,

with a crossover occurring at Kn�5.45, where J�Kn�=1/2.

Furthermore, from Fig. 4, the parallel diffusivity changes

over about three decades in Kn, providing a further advan-

tage to the parallel mode of measurement. In principle, sig-

nificantly smaller particles �a�h��� could be used in such

measurements; however, the correction to the self-diffusivity

is of order a /h, and thus the smaller the probe, the smaller

the effect to be measured.

Multiparticle diffusion, on the other hand, affords a

greater variety of measurements. In Refs. 42 and 44, pair

diffusivities were measured in terms of center-of-mass and

relative motion variables, wherein corrections due to hydro-

dynamic interactions are smaller than the bulk “Stokes” dif-

fusivity by factors of order a. Rather than measuring these

particular modes, we suggest simply measuring the cross-

correlation between two probes:

1

2

d

dt
���1 ��2� = kBTb�1�2

, �55�

where � and � can take the values �x ,y ,z� and b represents

the coupling mobility. Notably, the coupling mobilities de-

pend on neither the shape nor the size of the colloids them-

selves. �This feature plays a significant role in so-called two-

point microrheology.
57� From Eqs. �50�–�53�, one can see

that the largest effect of slip upon cross-correlated diffusive
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motion occurs for the zz and yy modes, although the xx has

the slowest spatial decay and may be easiest to measure �see

Fig. 5�.
Another attractive feature of the proposed experimental

system is the ease of performing multiple experiments within

the same experimental cell. Surfaces with patterned proper-

ties could be used to probe surfaces with different putative

slip lengths, and differential measurements could be used to

remove the uncertainties associated with cell-to-cell variabil-

ity.

Although the calculations presented here are valid only

for particles “far” from the wall, the experiments proposed

here need not be performed in this limit. In fact, the results

we present here could assist in boundary-integral studies to

obtain the various mobilities/diffusivities for systems with

colloidal spheres “near” partially slipping walls.

Throughout the paper, we have assumed the surface of

the particle to obey the no-slip condition. If, instead, the

particle exhibits a slip length �p, the bulk particle diffusivity

would increase to

D̃0 = D0

1 + 3 Knp

1 + 2 Knp

, �56�

where Knp=�p /a. However, the image system responds to

the �unchanged� Stokeslet, and thus the wall corrections in

Eqs. �36a� and �36b� remain valid independent of Knp. Only

the “self”-diffusion term is affected by particle slip; the first

reflected interaction terms �between two particles, or be-

tween a particle and a wall� are unchanged.

Finally, although the idea proposed here is concerned

primarily with passive microrheology, the change in the par-

ticles mobilities could in theory also be measured using ac-

tive microrheology, i.e., measuring the direct relationship be-

tween particle motion and a known applied force, whether

that force were applied to the particle itself �in which case

the self-mobility would be measured, similar to AFM experi-

ments using colloidal probes
9,10,12,14,16–18,58�, or to an adja-

cent particle �in which case the coupling mobility would be

measured�.
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APPENDIX A: GENERAL SOLUTION OF THE STOKES
EQUATIONS NEAR A PLANAR BOUNDARY

We present in this section the general solution of the

Stokes equation near a solid boundary, using the notations

introduced in Sec. II A, for a general velocity field u. We

introduce the Fourier transform in the directions parallel to

the plane, for each of the velocity components

ũ j�k1,k2,z� = F�u j� =
1

2�

 
 u j�x,y,z�eik1x+ik2y dx dy ,

�A1�
�j = 1,2,3�

and its inverse

u j�x,y,z� = F−1�ũ j�

=
1

2�

 
 ũ j�k1,k2,z�e−ik1x−ik2y dk1 dk2. �A2�

The general solution to Eq. �5� is given by

ũ� = � h

8��
��A� + ik�Bz�e−kz, � = �1,2� , �A3a�

ũ3 = � h

8��
��A3 + kBz�e−kz, �A3b�

where k= �k1
2+k2

2�1/2 and � can take the values �1, 2�, and

where we have taken the magnitude of the force to be F=1

to simplify the notations �as the equations are linear with

respect to F, this can be done without loss of generality�. The

four dimensionless constants �A1 ,A2 ,A3 ,B� are linked

through the continuity equation, giving

i�k1A1 + k2A2� = k�B − A3� . �A4�

The remaining three constants are found by applying the slip

boundary conditions, Eq. �12�, on the surface, which deter-

mines the velocity field uniquely.

We note for future use that the Fourier transform of the

velocity field �A3� can be divided into two components:

ũ = ũa + zũb, �A5�

giving corresponding real-space velocity fields

FIG. 5. Variation of the coupled mobility bx2x1
�nondimensionalized by

1/4��h� with d /h, for four values of the Knudsen number: Kn=0.1 �circles

and solid line�, Kn=1 �squares and solid line�, Kn=5 �triangles and solid

line� and Kn=� �dashed-dotted line�. Inset: the same data but in log–log

scale, which included the asymptotic behaviors for each value of Kn�� as

given in Eq. �51� �dashed lines�.
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u = ua + zub, �A6�

where ua=F−1�ũa�, and ub=F−1�ũb�.

APPENDIX B: SOLUTION FOR PERPENDICULAR
STOKESLET

The boundary conditions, Eq. �12�, for the flow w� due

to a Stokeslet perpendicular to the surface are thus given by

the no-flux condition, w3
�=0, and the slip condition

�w�
� − �

�w�
�

�z
��x,y,0� = − 2U�

� =
h

4��
� x

rh
3
,

y

rh
3� , �B1�

where rh
2=x2+y2+h2 and �= �1,2�. In Fourier space, these

conditions become w̃3
�=0 and

�w̃�
� − �

�w̃�
�

�z
��kx,ky,0� = i

h

4��

k�

k
e−kh. �B2�

Using the general formalism of Eq. �A3� together with the

boundary conditions, Eq. �B2�, we obtain

A1
� =

2ik1

k�1 + 2�k�
e−kh, �B3a�

A2
� =

2ik2

k�1 + 2�k�
e−kh, �B3b�

A3
� = 0, �B3c�

B� =
− 2

1 + 2�k
e−kh. �B3d�

Writing these constants as

A�
��k,z,�� =

A�
��k,z,0�
1 + 2�k

, �B4a�

B��k,z,�� =
B��k,z,0�

1 + 2�k
, �B4b�

where A j
��k ,z ,0� and B��k ,z ,0� are the Fourier coefficients

for Blake’s no-slip case, allows us to express the Fourier

components of the velocity field as

w̃��r,�� = w̃a
��r,�� + zw̃b

��r,�� , �B5�

where

�1 − 2�
�

�z
�w̃a

��r,�� = w̃a
��r,0� , �B6a�

�1 − 2�
�

�z
�w̃b

��r,�� = w̃b
��r,0� . �B6b�

Differentiating Eq. �B5� and inverting the Fourier transforms

leads to

�1 − 2�
�

�z
�w��r,�� = w��r,0� − 2�wb

��r,�� . �B7�

The solution w��r ,0� is such that V��r�+w��r ,0� is

Blake’s solution for a no-slip surface, that is, w��r ,0�

=2h2Gz
D−2hGz;z

SD, where Gz
D represents the source dipole in

the z direction,

Gz
D�r� = −

�

�z
� 1

8��

r

r3� �B8�

and Gz;z
SD represents a z dipole of z Stokeslets,

48,49

Gz;z
SD�r� = −

�

�z
�ez · GS�r�� . �B9�

Furthermore, if we recognize that

wb
��r,0� = − 2hGz

D�r� , �B10�

we can integrate each term in Eq. �B7� using Eq. �B6b� and

integration by parts to obtain

w��r,�� =
h

�



0

�

e−s/2���h + s�Gz
D − Gz;z

SD��r + �h + s�ez�ds .

�B11�

Thus the complete image system for a Stokeslet oriented

perpendicular to a partial-slip wall is given by u�=U�

+V�+w�, where U� and V� are given by Eqs. �8a� and

�11a�, and where w��r ,�� is given by �B11�. Notably, this is

the same image system as in Blake’s no-slip solution; in the

partial-slip case, however, the image singularities are distrib-

uted along a line in the −ez direction, with a magnitude that

decays exponentially over 2�.

APPENDIX C: SOLUTION FOR PARALLEL
STOKESLET

The image system for a Stokeslet oriented parallel to a

partial-slip wall is more complicated than for the perpendicu-

lar Stokeslet, but conceptually similar. In this case, Eq. �12�
for w� become w3

�
=0 and

�w�
�

− �
�w�

�

�z
��x,y,0� = − 2U�

�
= −

1

8��
� 2

rh

+
2x2

rh
3

,
2xy

rh
3 � ,

�C1�

with rh
2=x2+y2+h2 and �= �1,2�. In Fourier space, and using

Eq. �D1�, these conditions become w̃3
�
=0 and

�w̃�
�

− �
�w̃�

�

�z
��kx,ky,0�

= −
1

8��
�2

k1
2�1 − hk� + 2k2

2

k3
,
− 2k1k2�1 + hk�

k3 �e−kh.

�C2�

Here again we can now solve for w̃�, using the general

formalism given by Eq. �A3�, gives

A1
�

= −
2

hk3� k1
2�1 − hk��1 + �k� + 2k2

2�1 + 2�k�
�1 + �k��1 + 2�k�

�e−kh,

�C3a�

A2
�

=
2k1k2

hk3 � �1 + �k��1 + hk� + 2�k

�1 + �k��1 + 2�k�
�e−kh, �C3b�
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A3
�

= 0, �C3c�

B
�
=

2ik1�hk − 1�
hk2�1 + 2�k�

e−kh. �C3d�

These can be written as

A�
� �k,z,�� =

C�
� �k,0�

1 + 2�k
+

D�
� �k,0�

1 + �k
�C4�

and

B
��k,z,�� =

B
��k,0�

1 + 2�k
, �C5�

where

C1
� �k,z,0� =

2k1
2�hk − 1�

hk3
e−kh,

�C6�

C2
� �k,z,0� =

2k1k2�hk − 1�
hk3

e−kh,

D1
� �k,z,0� = −

4k2
2

hk3
e−kh, D2

� �k,z,0� =
4k1k2

hk3
e−kh. �C7�

As for the perpendicular case, we decompose the veloc-

ity field w̃� as

w̃
��r,�� = w̃c

��r,�� + w̃d

� �r,�� + zw̃b

� �r,�� , �C8�

where we now have

�1 − 2�
�

�z
�w̃c

��r,�� = w̃c

��r,0� , �C9a�

�1 − �
�

�z
�w̃d

� �r,�� = w̃d

� �r,0� , �C9b�

�1 − 2�
�

�z
�w̃b

� �r,�� = w̃b

� �r,0� , �C9c�

so we get

�1 − 2�
�

�z
�w

��r,�� = w
��r,0� − �

�

�z
wd

� �r,��

− 2�wb

� �r,�� , �C10�

where w��r ,0� is such that V��r�+w��r ,0� is Blake’s image

system for a no-slip surface, that is w��r ,0�=−2Gx
S+2hGz;x

SD

−2h2Gx
D. Solving for each of the three terms of Eq. �C10�

using Eqs. �C9b� and �C9c� as well as an integration by parts

allows the flow field to be expressed as u� =U� +V� +w�,

where U� and V� are given by Eqs. �8b� and �11b� and w� is

given by

w
��r,�� =

1

�



0

�

�− Gx
S + hGz;x

SD − h2Gx
D��r + �h + s�ez�


e−s/2�ds + 4�

0

�

gd�r + �h + s�ez�


�e−s/2� − 1�2 ds + 4�

0

�

gb�r + �h + s�ez�



1 − �1 +
s

2�
�e−s/2��ds , �C11�

where we have defined two new singularities:

gd�r� =
1

4

�2

�z2
�wd

� �r,0��, gb�r� =
1

2

�

�z
�wb

� �r,0�� . �C12�

Their Fourier transforms are given by

g̃d�k,z� =
1

8��
�−

k2
2

k
,
k1k2

k
,0�e−kz, �C13�

g̃b�k,z� =
�1 − hk�

8��
�− k1

2

k
,
− k1k2

k
,ik1�e−kz, �C14�

and therefore, by inverse Fourier transforms, we find

gd�r� =
�

�y

 1

8��
�ez 


r

r3�� = − Gz;y
RD�r� , �C15�

gb�r� = �1 + h
�

�z
��Gx

D� = �Gx
D − hGxz

Q ��r� , �C16�

where Gz;y
RD is the rotlet dipole in the �y ;z� direction, that is,

the y dipole of the z rotlet Gz
R, flow field due to a point

torque and defined as

Gz
R =

1

2 �Gy;x
SD − Gx;y

SD� , �C17�

and therefore

Gz;y
RD =

1

2 �Gy;xy
SQ − Gx;yy

SQ � . �C18�

As a summary, the solution for w� in the case of the

parallel Stokeslet is given by

w
��r,�� =

1

�



0

�

�− Gx
S + hGz;x

SD − h2Gx
D��r + �h + s�ez�


e−s/2� ds − 4�

0

�

Gz;y
RD�r + �h + s�ez��e

−s/2� − 1�2


ds + 4�

0

�

�Gx
D − hGxz

Q ��r + �h + s�ez�



1 − �1 +
s

2�
�e−s/2��ds , �C19�

which is, again, a line integral of fundamental singularities

distributed along a line in the −ez direction, with a weighted

magnitude. Unlike the perpendicular case, however, not all

of the magnitudes of the singularities decay exponentially

away from the image location.
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APPENDIX D: SOME USEFUL FOURIER
TRANSFORMS

Below is a list of two-dimensional Fourier transforms

used to derive the image systems in Appendices B and C:

F�1

r
� =

1

k
e−kz, F� z

r3� = e−kz, F�3xz

r5 � = ik1e−kz,

�D1a�

F� x

r3� =
ik1

k
e−kz, F
 1

r3�3z2

r2
− 1�� = ke−kz, �D1b�

F�3xy

r5 � = −
k1k2

k
e−kz, F
 1

r3�1 −
3x2

r2 �� =
k1

2

k
e−kz,

�D1c�

F� x2

r3� =
k2

2 − k1
2zk

k3
e−kz, F� xy

r3 � = −
k1k2�1 + zk�

k3
e−kz,

�D1d�

where we have used the notation r2=x2+y2+z2.

APPENDIX E: FIRST INFLUENCE OF SLIP LENGTH
ON PARTICLE DIFFUSIVITIES: ALTERNATIVE
METHOD

We show in this section that the results given by Eq. �37�
for small slip length can also been obtained by using the

reciprocal theorem. Let us consider the volume V of fluid

above the solid surface S and two steady velocity fields, u

and û, with corresponding stress tensors, � and �̂, and vol-

ume forcing f and f̂, respectively. The reciprocal theorem

states that



S

u · �̂ · ez dS − 

S

û · � · ez dS = 

V

f̂ · u dV − 

V

f · û dV .

�E1�

We take û to be the flow field due to the point force F̂ at

�x ,y ,z�= �0,0 ,h� near a no-slip surface. Let us also consider

the flow field, v, due to the same point force near a surface

with small slip length, in the sense ��h. We perform a

regular perturbation expansion and write

v = û + Kn u + O�Kn2� . �E2�

The boundary condition for v on the surface is v=� �v /�z,

which becomes, at leading order in O�Kn�, u=h �û /�z. Ap-

plying the reciprocal theorem for u and û and using the

relation between the stress tensor and the rate-of-strain tensor

leads to

�h

S

� �û

�z
·
�û

�z
�dS = F · U , �E3�

where � is the shear viscosity of the fluid. In the case of a

Stokeslet perpendicular to the surface, F=Fzez; Eq. �E3� be-

comes

FzUz =
9Fz

2

2��h



0

�
u3

�1 + u2�5
du =

9Fz
2

48��h
, �E4�

so

D�

D0

= 1 −
9a

8h
�1 − Kn� . �E5�

In the case of a Stokeslet parallel to the surface F=Fxex, Eq.

�E3� becomes

FxUx =
9Fx

2

4��h



0

�
u5

�1 + u2�5
du =

9Fx
2

96��h
, �E6�

so

D
�

D0

= 1 −
9a

16h
�1 − Kn� . �E7�

The results given by Eqs. �E5� and �E7� are the same as those

obtained in Eq. �37�.

APPENDIX F: CALCULATION OF COUPLED
MOBILITIES

For convenience, we define below the integrals

I1 =
1

�



0

�

�− Gx
S + hGz;x

SD − h2Gx
D��r + �h + s�ez�e

−s/2� ds ,

�F1a�

I2 = − 4�

0

�

Gz;y
RD�r + �h + s�ez��e

−s/2� − 1�2 ds , �F1b�

I3 = 4�

0

�

�Gx
D − hGxz

Q ��r + �h + s�ez�



1 − �1 +
s

2�
�e−s/2��ds , �F1c�

so that the complete image system for a parallel Stokeslet,

Eq. �C19�, is written w��r ,��=I1+I2+I3.

1. Calculation of bx2x1

Because of the decomposition in Eq. �6�, the mobility is

given by

bx2x1
�Kn� = bx2x1

�Kn = �� + w1
� �dex + hez,�� . �F2�

The integrals in Eq. �F1� and their asymptotic behaviors for

small 
 are given by

I1 · ex =
1

4��d

 1

Kn



0

�

e−u/Kn� 3

4
�1 + 2u�

�1 + 
�1 + u�2�5/2

−
2 + 
� 5

4 +
5

2u + u2�
�1 + 
�1 + u�2�3/2 �du� , �F3a�

=
1

4��d

− 2 + 
�5

2
+ 5 Kn + 4 Kn2� + O�
2�� ,

�F3b�
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I2 · ex = −
1

4��d
�Kn



0

� 1

�1 + 
�1 + u�2�3/2


�e−u/Kn − 1�2 du� , �F3c�

=
1

4��d

− 
1/2 Kn + 
�Kn +

3

2
Kn2� + O�
2�� ,

�F3d�

I3 · ex =
1

4��d

Kn 



0

� �2 + 
� 1

2 −
1

2u − u2�
�1 + 
�1 + u�2�5/2

−

15

2 
�1 + u�

�1 + 
�1 + u�2�7/2�
1 − �1 +
u

Kn
�e−u/Kn�du� ,

�F3e�

=
1

4��d
�
1/2 Kn − 
�3 Kn + 4 Kn2� + O�
2�� ,

�F3f�

leading to the asymptotic behavior

w1
� �dex + hez,��

=
1

4��d

− 2 + 
�5

2
+ 3 Kn +

3

2
Kn2� + O�
2�� ,

�F4�

and therefore, using Eqs. �43� and �F2�, to the mobility

bx2x1
�Kn� =

3


8��d
�1 + 2 Kn + Kn2��1 + O�
�� . �F5�

This asymptotic behavior is valid in the limit d�max�h ,��.

2. Calculation of by2y1

In this section, we suppose that the two particles are

aligned along the y axis, at a distance d from each other, and

apply a force in the x direction on the first particle. The

mobility obtained in this case is the component bx2x1
for par-

ticles aligned along y, which is equal, by symmetry, to the

by2y1
component for particles aligned along x. Consequently,

the mobility is given by

by2y1
�Kn� = by2y1

�Kn = �� + w1
� �dey + hez,�� . �F6�

The integrals in Eq. �F1� and their asymptotic behaviors for

small 
 are now given by

I1 · ex = −
1

4��d

 1

Kn



0

� �1 + 
� 5

4 +
5

2u + u2�
�1 + 
�1 + u�2�3/2 �


e−u/Kn du� , �F7a�

=
1

4��d

− 1 + 
�1

4
+

1

2
Kn + Kn2�

− 
2�3

4
Kn2 +

9

2
Kn3 + 9 Kn4� + O�
3�� , �F7b�

I2 · ex =
1

4��d
�Kn 



0

� 2 − 
�1 + u�2

�1 + 
�1 + u�2�5/2


�e−u/Kn − 1�2 du� , �F7c�

=
1

4��d


1/2 Kn − 
�2 Kn + 3 Kn2�

+ 
2�2 Kn + 9 Kn2 + 21 Kn3 +
45

2
Kn4� + O�
3�� ,

�F7d�

I3 · ex =
1

4��d

Kn 



0

� �− 1 + 
� 1

2 −
1

2u − u2�
�1 + 
�1 + u�2�5/2 �



1 − �1 +
u

Kn
�e−u/Kn�du� , �F7e�

=
1

4��d

− 
1/2 Kn + 
�3

2
Kn + 2 Kn2�

− 
2�5

4
Kn + 6 Kn2 +

27

2
Kn3 + 12 Kn4� + O�
3�� ,

�F7f�

so that

w1
� �dey + hez,�� =

1

4��d

− 1 +

1

4

 + 
2�3

4
Kn +

9

4
Kn2

+ 3 Kn3 +
3

2
Kn4� + O�
3�� , �F8�

and therefore, using Eqs. �43� and �F6�, the mobility is given

by

by2y1
�Kn� =

3
2

64��d
�1 + 4 Kn + 12 Kn2 + 16 Kn3

+ 8 Kn4��1 + O�
�� . �F9�

This asymptotic behavior is valid in the limit d�max�h ,��.

3. Calculation of bx2z1
„=−bz2x1

…

In this case, we have

bx2z1
�Kn� = bx2z1

�Kn = �� + w1
��dex + hez,�� , �F10�

with

w1
��r,�� =

1

8��d
� 
1/2

Kn



0

� 1 + 
�u2 +
1

2u −
1

2�
�1 + 
�1 + u�2�5/2

e−u/Kn du� ,

�F11�
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=
1

8��d


1/2 − 
3/2�3 +

9

2
Kn + 3 Kn2� + O�
5/2�� ,

�F12�

and therefore, using Eqs. �43� and �F10�, we obtain

bx2z1
�Kn� = −

3
3/2

16��d
�1 + 3 Kn + 2 Kn2��1 + O�
�� .

�F13�

This asymptotic behavior is valid in the limit d2

�max�h2 ,�2�.
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