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Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial

assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we

report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a

substrate. An optical interference method enabled direct observation of microscopic rotations of the slender

bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed

anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth

directions follows different power laws as a function of the length, �L−2.5 and �L−3, respectively, and is

more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes

the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with

the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for

studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces,

and exploring the optimal self-assembly conditions of nanostructures.
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I. INTRODUCTION

Microscopic slender objects such as bacterial and sperm
cells [1–4], flagella [5], microtubules [6], nanotubes [7,8], and
nanowires [9–11] suspended in a liquid are subject to Brownian
fluctuation due to random collision of the liquid molecules. The
mean-square displacement of Brownian motion is proportional
to the inverse of the frictional coefficients that count the
viscous drags from surrounding fluid flows. This is described
in the Einstein relation of diffusivity, D = kB T/ηŴ, where
kB is the Boltzmann constant, T is temperature, η is fluid
viscosity, and Ŵ is the hydrodynamic friction tensor. Near
a surface, the flows induced by the Brownian motion of the
particle are reflectively modified and in turn affect the particle’s
motion, and such hydrodynamic interaction (HI) generally
causes anisotropic increase of the components of the friction
tensor Ŵ. This complex anisotropic friction tensor leads to
anisotropic Brownian motion. In most realistic situations
in technological or biological systems [1–18], microscopic
objects are confined by boundaries such as substrate surfaces
and cell membranes. Understanding their HI with a nearby
boundary is crucial for understanding the real dynamics in
the motion of molecules and cells [1–7,17–19], as well as the
self-assembly of colloidal objects [8–11,13–15]. Unlike the
sphere-wall HI that has been well studied extensively [20–24],
however, much more complex HIs between slender particles
and a wall are still poorly understood. Especially, little is
known about the diffusive behavior of objects in contact with
the wall [23,24].

The Brownian motion of the slender particle is subject not
only to the solvent flows reflected from the environment, but
also to those induced by the motion of itself [12,13,14,16,19].
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Recent studies have advanced our understanding of the effect
of such HI induced by the particle itself in an isotropic
environment, such as the coupling between the translational
and the rotational diffusions of rodlike particles [12,14,16].
However, the HI with the nearby interfaces further increases
the complexity and has hampered its theoretical understanding
[13,14]. Experimentally, it is difficult to observe the near-wall
Brownian motion of the slender particle with conventional
optical methods because of complicated light scatterings.
Particularly, a direct visualization of the minute change of
the inclined angle between the moving particle and the
surface has been elusive [14,17] and previous works typically
assumed the particle being parallel to the wall [12,25]. In
this work, we report an experimental study of the Brownian
motion of nanowires tethered on a substrate. We developed
a dynamic interference imaging technique to visualize the
three-dimensional (3D) diffusive motion of tethered nanowires
in situ and, together with our hydrodynamic model, directly
observed their complex HI near the surface.

II. INTERFEROMETRIC IMAGING METHOD

In our experiment, a suspension of silicon nanowires
(150 nm in diameter, with lengths varying from 5 to 25 μm)
was stored in a closed chamber on a glass cover slip. Some
of the nanowires had one end tethered to the glass surface
due to the van der Waals force [Fig. 1(a)] and the other end
free, undergoing Brownian rotation around the tethered point.
The nanowires used in the experiments are rigid enough such
that bending is negligible (Appendix A). The electrostatic
force was negligible in our experiment since the solution
was at relatively high ion strength (10 mM of KCl). When
monochromatically illuminated, the light backscattered from
the nanowire interferes with the light reflected from the glass-
water interface, producing a modulated pattern along the wire.
This interference pattern can be used to measure the inclination
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FIG. 1. (Color online) Backscattering interference contrast microscopy (BICM) for characterizing dynamic Brownian motion of nanowires

tethered to a wall. (a) Schematic diagram of the BICM. One end of a uniform silicon nanowire (150 nm in diameter) in water is tethered

to a glass surface while the other end freely diffuses. A monochromatic light is applied to the sample with a small illumination angle. The

backscattered light from the nanowire interferes with that reflected from the water-glass interface, producing a periodic interference pattern

along the wire. (b) An interference image (left) and a dark-field image (right, scale bar = 5 μm) of the same nanowire taken using the same

objective. A single interference image allows us to measure both inclined (θ ) and azimuth (φ) angles of the tethered nanowire at once with

high spatial and temporal resolutions. (c) A sequence of interference images enables tracking the Brownian motion of the tethered nanowire,

revealing the complex hydrodynamic interactions (HIs) between the wires and a wall.

angle (θ ) at high angular (up to �10−5 rad, corresponding
to 1 Å displacement of the free end of a 10-μm nanowire)
and temporal (<0.004 s) resolutions, while a dark-field image
cannot [Fig. 1(b); also see Appendix A and Supplemental
Material [26]). Direct measurement of the azimuth angle (ϕ) at
a high resolution (up to an order of �10−5 rad) was achieved
by fitting the image of the nanowire with a single ellipse.
A single interference image thus measures both the inclined
and the azimuth angles simultaneously, allowing us to track
the 3D Brownian motion of the tethered nanowires accurately
[Fig. 1(c)]. In general, nanoscopic objects were not suitable
for reflection interference contrast microscopy [27] because
they only weakly scatter light and induce significant phase
shifts. Here we utilize the fact that the silicon nanowires
strongly scatter visible light due to Mie resonance [28] and
the interference period is not affected by the phase shifts. The
latter is because the diameter of each high-quality nanowire is
uniform along its length, so the phase shift occurs uniformly
along each wire (Appendix A).

The continuous measurement of the 3D Brownian motion
of tethered nanowires clearly revealed the length-dependent
anisotropic reduction in their rotational diffusion, attributed
to the complex HI. Figure 2(a) displays typical angular
mean-square displacements of nanowires over time: AMSD =
〈�θ2,�φ2〉. It was observed that both 〈�θ2〉 and 〈�φ2〉 of
all nanowires increase linearly at short time scales (<0.1 s),

so their motions were diffusive and followed the general law of
Brownian motion: AMSD = 〈�θ2,�φ2〉 = 2Dθ,φ�t . From
the slopes, we obtained the angular diffusivities (Dθ,ϕ) for
the nanowires with lengths ranging from 5 to 25 μm. At
longer time scales, the mean-square displacement reached
a plateau with large fluctuations. This was likely due to
a combination of multiple factors including the geometric
restriction from the wall and the restoring forces from the
wire-wall joints, and the gravity [29]. In Fig. 2(b), compared
to the analytically calculated free rotational diffusivity of a
nanowire, the measured rotational diffusivities clearly show
the hindered, anisotropic diffusion due to the HI with the wall.
The reduction in Dθ was larger than that in Dφ because a
larger portion of reflected flows from the wall is directed back
toward the wire, which preferentially reduced the diffusion
in the θ direction. The Dθ and Dφ clearly follow different
power laws as a function of the length, �L−2.5 and �L−3,
in good approximation for the rods we observed (<6% and
<3% errors, respectively). These power laws resulted in more
significant anisotropy in the rotational motion for shorter
nanowires since Dφ/Dθ�L−0.5. These indicate that a shorter
wire experienced more significant HI as it has a larger portion
of its length near the surface.

While Fig. 2 shows the overall diffusive behavior of the teth-
ered nanowires, our fast and accurate technique further enabled
measurement of angle-dependent HIs that dynamically change
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FIG. 2. (Color online) Measurement of overall angular mean-

square displacements (AMSD = 〈�θ2,�φ2〉) of the tethered

nanowires and their rotational diffusivities. (a) A double logarithmic

plot of the overall 〈�θ2〉 and 〈�φ2〉 of sample nanowires shows

the diffusive behavior (∝ t , shown as black lines with slope 1) at

short time scales (<0.1 s). Blue and red circles are the inclined

and azimuth 〈�θ2〉 and 〈�φ2〉 of a 9-μm nanowire. Squares are

those of a 20-μm nanowire. Their position data were taken at 250

and 180 Hz, respectively, for more than 30 000 frames. (b) The

rotational diffusivities of the tethered nanowires in the inclined

(Dθ , red circles) and azimuth (Dφ , blue circles) orientations show

more significant hydrodynamic wall effect in Dθ in an anisotropic

manner. The black curve is an analytical solution for free rotational

diffusivity of a cylindrical rod (no wall). Dθ and Dφ clearly follow

different power laws as a function of the length, �L−2.5 and

�L−3, in good approximation for the rods we observed (<6%

and <3% errors, respectively). These power laws resulted in more

significant anisotropy in the rotational motion for shorter nanowires

as Dφ/Dθ�L−0.5. The data were taken from 65 wires in total.

during the long time diffusion. The overall trajectories used
in Fig. 2 were sorted according to the initial inclined angle,
θinit, and the values of 〈�θ2〉 and 〈�φ2〉 were recalculated for
each sorted subset. At short time scales, the 〈�θ2〉 and 〈�φ2〉
sorted for different θinit increased linearly with different slopes.
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FIG. 3. (Color online) Measured and calculated diffusion depen-

dence on inclined angle and wire length. Representative plots of sorted

〈�θ 2〉 and 〈�φ2〉 in the inclined (a) and the azimuth (b) shows the

diffusive behavior at short time scale (<0.05 s), but at different slopes

(diffusivity) depending on the initial inclined angle θinit. The sample

data were of 9-μm nanowire and sorted with θinit by every 0.02 rad.

From top to bottom, the initial inclined angles are 0.19 (black),

0.09 (red), 0.03 (green), and 0.01 (blue) rad. (c), (d) are the inclined

angle- and/or length-dependent rotational diffusivities of the tethered

nanowires, Dθ , obtained from the slopes in (a), (b). The results clearly

show significant hydrodynamic wall effects when the wires are closer

to the wall. (c) Comparison between the measured angle-dependent

rotational diffusivities (dots) and the numerically calculated ones

(curves) at four different wire lengths. (d) Comparison between the

measured length-dependent rotational diffusivities for a large number

of sample wires (dots) and the numerically calculated ones (curves)

at two different θinit. Both (c) and (d) show experimentally measured

diffusivity quantitatively agrees well with calculated values without

any fitting parameters.

The slope apparently dropped as the θinit decreased [Figs. 3(a)
and 3(b)]. The angle-dependent diffusivity was then evaluated

as the half slope of each sorted 〈�θ2〉: Dθ (L,θinit) = 〈�θ2〉
2�t

.
It was approximately independent of �t at sufficiently short
time scales (<0.05 s; see Appendix A), suggesting that it
followed typical Brownian motion with this locally determined
diffusivity. At long time scales, the nanowires move from θinit

to different positions, where they experience different HIs
and other confinement effects from environments, resulting
in a deviation from the original local Dθ . The final results
in Figs. 3(c) and 3(d) show the increasingly more significant
reduction in local Dθ as the initial inclined angle θinit becomes
smaller. Here we focused on the diffusive rotation into the
inclined orientation, where the more significant wall effect was
observed. In Figs. 3(c) and 3(d), the experimental results (dots)
and the simulated ones (curves) were plotted together and show
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excellent agreement with no fitting parameter, demonstrating
the dominance of the hydrodynamic forces in the system
and the powerfulness of our experimental and numerical
approaches.

III. IMPLICIT THREE-DIMENSIONAL HYDRODYNAMIC

SIMULATION

To fully understand the effect of hydrodynamic interactions
in the system, we developed a 3D hydrodynamic model based
on a string-of-beads idealization of the system, and implicitly
solved it for the hydrodynamic velocity of each bead [19].
Here we introduce the basic idea of the model with Fig. 4(a),

in which we consider two beads B1 and B2 located at �X1

and �X2, respectively, as the simplest case (generalized in
Appendix B). If B1 moves with a steady speed �v1 (while B2

is stationary) in the Stokes regime, a steady speed �v1H,2 will

be induced at the location �X2. B1’s motion thereby exerts a
drag proportional to the induced velocity �v1H,2 on the bead B2

and consequently causes its drift. If the bead B2 also moves
with a translational velocity �v2, the hydrodynamic velocities
of each bead, i.e., velocity of each bead relative to the velocity
of its surrounding fluid, are given by the following implicit
formula [7]:

�v1H = �v1 − �v2H,1, (1)

�v2H = �v2 − �v1H,2. (2)

Generalization of Eqs. (1) and (2) to N beads leads to

�viH +

N
∑

j=1,j �=i

�vjH,i = �vi . (3)

Therefore the problem of hydrodynamic velocities of a system
of N beads reduces to a system of linear algebraic equations
that can be solved using standard methods. The input absolute
velocities, �vi , are given to individual beads assembling the
wire and wall, and constrain their shape fixed with respect
to each other. For example, when a wire rotates at the
angular velocity �ω and the nth bead composing the wire has
distance |�rn| from the tether, the absolute rotational velocity
of |�rn| �ω is given to the bead as input. After obtaining the
hydrodynamic velocity of each bead, one can calculate the
rotational friction coefficient ξrot, which reflects the complex
hydrodynamic interaction with the wall. Since the translational
friction coefficient for the spherical bead with diameter d

in media having viscosity μw is ξ0 = 3πdμw, the torque
equation is

ξrotω0 =
∑

k=beads

|�rk × ξ0�vkH |, (4)

where �rk is the position vector of the bead Bk from the tethering
point. Finally, the rotational diffusivity is proportional to the
inverse of the rotational friction coefficient: Drot = kBT /ξrot.
In performing numerical simulations, the extent of the bottom
wall was increased until computational results were asymptot-
ically converged (Appendix B).
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FIG. 4. (Color online) The 3D implicit hydrodynamic simulation

of the nanowire diffusion near a wall. (a) The implicit solution for

the hydrodynamic velocity, the velocity of each bead relative to its

surrounding fluid, considers Stokes superposition of solvent flows

efficiently (moving two beads are examples that cause multi-reflected

complex flows between them as described in Appendix B). The model

enables simulation of very large systems including the complex HI

between the wire and a wall. (b) The schematics of the numerical

models, wherein the wire and the wall are expressed as a chain and

a 2D array of beads, respectively. (c) The inclined angular diffusivity

of the tethered wire with different lengths and with different inclined

angles, Dθ (θinit,L), was comprehensively calculated in the developed

3D beads model [normalized by the rotational diffusivity calculated

for a free nanowire around its one end, Drot (L)]. The simulation

result shows significant hydrodynamic wall effects when the wires

are shorter and/or closer to the wall, which quantitatively agrees well

with the experimental observations.

Our approach simplifies the numerical calculation by
considering only the Stokes drag between the composing
individual beads, which is justified since the solution of the
relative velocity includes the effect of multireflected Stokes
flow. The model is far more efficient than the molecular
dynamic simulation that is incapable of modeling such
large systems. We first simulated the free rotational angular
diffusivity of a thin rod around its center as a chain of beads
in two-dimensional (2D) space. The results agreed well with
an analytical approximation (Appendix B). We then extended
the model to 3D space for studying the hydrodynamic wall
effects by modeling the wall as a 2D array of beads and the
tethered wire as a chain of beads [Fig. 4(b) and Appendix B].
Since the nanowire experienced different θ during the long
time diffusion, we performed comprehensive calculation of
Dθ for a wide range of wire lengths and θinit. The free
rotational diffusivity of the tethered wire around its end, Drot,
was also calculated for normalization. From the calculated
hydrodynamic wall effects visualized in Fig. 4(c), we see
the HI become increasingly significant as the wire lengths
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(b)(a)

FIG. 5. High-quality rigid silicon nanowires. (a) A scanning electron microscope (SEM) image of highly uniform silicon nanowires with

150-nm diameter (from Sigma, scale bar = 5 μm). (b) A magnified SEM image of an end of the nanowire (scale bar = 500 nm).

and/or the θinit decrease, which quantitatively agreed with our
experimental observations.

For comprehensive analysis of the HI, we also calculated
the Dϕ with several sets of the wire lengths and θinit. As
expected from the results in Fig. 2(b), the effects of HI
on Dϕ were much smaller than that on Dθ . As a result,
the anisotropy in the hydrodynamic effect becomes quite
significant when θinit become close to zero (see Appendix B
and [26]). It may contribute to the efficient functioning of
diffusive motor proteins [18,30,31] such as kinesin and F1F0-
ATPase beside walls. In general, the observed HI also affects
the near-interface diffusion of anisotropic biological objects
[1–6,17–19] including the cells and filamentous macro-
molecules. Extending our numerical approach to study the
3D motion of semiflexible objects is straightforward [19] and
we thus believe that it can also simulate the near-interface HI
in these biophysical systems.

IV. CONCLUSION

In summary, we have studied the Brownian motion of
tethered nanowires with high spatiotemporal resolutions,
offering fundamental insights for understanding the near-wall
diffusion of slender particles. Our interferometry technique
together with the versatile calculation method provides power-
ful platforms for studying interfacial microrheology of various
soft condensed matters including the biological particles near
cellular and artificial membranes [18,30–32]. For the nanoma-
terial self-assembly on a substrate, the quantitatively validated
string-of-beads model is an efficient tool for optimizing the
conditions, which potentially reduces the position inaccuracy
caused by the thermal fluctuation and hydrodynamic forces
[8–11]. In the near future, use of ferromagnetic nanowires
will enable active interfacial microrheology and further ex-
plore the rich dynamical response of fluids near surfaces
[33–35].
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APPENDIX A: EXPERIMENT

Our interference contrast microscopy requires a high-
quality scattering surface that is uniformly smooth and flat
along the length of the wire. The commercialized silicon
nanowire satisfies this uniformity both in diameter and in
flatness [Fig. 5(a)]. The magnified image in Fig. 5(b) shows
that the wire end is neither perfectly spherical nor flat. It
is likely that this roughness could contribute to constrain
the rotational diffusion of tethered wires, which appeared
as plateaus in the long time scales of the observation in
Fig. 2(a). The nanowires used in the experiments are rigid
enough such that bending is negligible. For the nanowires in
liquid, the possible effect of bending on Brownian motion
can be characterized by the persistence length, Lp = κ/kBT ,
where κ is the bending stiffness. κ = EI, where E is the elastic
modulus and I is the area moment of inertia about the filament
axis (I = πd4/64). Using the Young’s modulus of silicon
(E�130 GPa) and assuming that the silicon nanowires are
cylinders with diameter d = 150 nm, we obtain the persistent
length to be Lp = 785 m, which is far longer than the length
of the nanowire we used (<20 microns).

Figure 6 depicts the experiment setup of the backscattering
interference contrast microscopy (BICM). A mercury lamp
was used as the light source, from which monochromatic light
was selected using band-path filters. The monochromatic light
passed through a narrow aperture of 0.5 mm placed at the
Fourier plane and was focused onto the glass surface plane
with an objective lens [Carl Zeiss, 50× LD Epiplan HD DIC,
working distance (WD) = 6.5 mm, numerical aperture (NA) =
0.5]. The same lens then collected the backscattered light
from the nanowire together with the reflected light from the
glass-water interface, generating the interference pattern along
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FIG. 6. (Color online) Experimental setup of backscattering in-

terference contrast microscopy (BICM).

the wire. We interpreted the intensity profile of the interference
pattern, I , to calculate the inclination angle according to
Eq. (A1),

2I = (Imax + Imin) − C
Imax − Imin

2

× cos

{

4πnw

λ

[

h − sin2

(

α

2

)]

+ �

}

, (A1)

where Imax and Imin are maxima and minima intensity of
the interference pattern, C is correction constant in contrast
amplitude, nw is refractive index of water, h is the distance
from the wall, α is half the illumination cone angle defined
with illumination numerical aperture as INA = nw sin α, and
� is the phase shifts seen in the pattern. As the nonzero nu-
merical aperture introduces effects of damping the interference
contrast and of slightly stretching its periods, represented as
C and α, we placed the small aperture of 0.5 mm diameter at
the Fourier plane and effectively reduced the INA to 0.05 for
minimizing the measurement errors.

While we note that reflection interference contrast mi-
croscopy has been used to track microscale objects, its ap-
plication for nanoscale objects including nanowires is limited.
This is because those subdiffractive objects can scatter light
with significant phase shift and the signals become weaker.
We instead utilized the fact that the silicon nanowire generates
strong scattering signals owing to its Mie resonance under
visible light illumination and its intrinsically high optical index
(n≈ 4). Furthermore, as the phase shift � uniformly appeared
along their highly flat 1D surfaces, the scattered light stayed
in a phase and the interference period was thus maintained,
enabling our BICM.

As shown in Fig. 7 we calibrated and confirmed the
accuracy of the BICM. We partially deposited silicon dioxide
layer with e-beam evaporation and, after enclosing the SiO2

structure in the chamber, introduced the nanowire solution

(a)

Aperture at F-plane

Objective

50x

N.A. 0.5

Excitation filter

Beam

Splitter

Glass

Water
Silicon Nanowire

Mercury

Lamp

Camera

SiO2

Trench

Area BF 436/20 546/10 665/45

(b) (c) (d) (e) (f)

Distance [µm]

In
te

n
s
it
y
 [
-]

0 5 10 15 20 25
0

5

10

15

20

25

680 nm

SiO2

436/20

546/10

665/45 680 nm

SiO2

3D AFM image

Height measurement by AFM(h)(g)

Deposited

SiO2θ

FIG. 7. (Color online) Calibration of the BICM using nanowires on fabricated structures. (a) A partially deposited silicon dioxide layer

was used to have the wires leaning and immobilized on the fabricated structured at a fixed inclined angle. (b) Transmission bright-field image

of the leaning wire, where its upper area above the dashed line is the surface of the original cover slip and the lower area is the surface of the

deposited structure. (c) Backscattering interference contrast image under illumination of light at wavelength of 436 ± 10 nm, (d) is at 546 ±
5 nm, and (e) is at 665 ± 22 nm. In (f), plots show the intensity profile measured along the wire length in the image (b)–(d), while the curves

are drawn according to Eq. (1) for each color. The heights of the SiO2 structure measured by BICM were 673.98 nm at λ = 436 ± 10 nm,

675.8 nm at λ = 546 ± 5 nm, and 672.17 nm at λ = 665 ± 22 nm. After the BICM measurement, we dried the chamber and measured the

geometry of the structures with AFM as 681 nm (g) and (h).
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at high ion strength. After waiting for a long enough time,
some nanowires settled down at the bottom and leaned on the
edge of the deposited SiO2 structure [Fig. 7(a)]. We applied
BICM for the leaning nanowire that did not diffuse any more.
We performed the measurement on nanowires kept in water
because, when they dried, the nanowire would be bent due to
capillary forces as seen in Fig. 7(g). We used the same mercury
lamp and the objective lens. Figure 7(b) is the transmission
bright field image of the wire leaning on the SiO2 structure. The
upper area above the dashed line is the surface of the original
cover slip and the lower area is the surface of the deposited
SiO2 structure. Figure 7(c) is the backscattering interference
contrast image under illumination of light at a wavelength
of 436 ± 10 nm, Fig. 7(d) is at 546 ± 5 nm, and Fig. 7(e) is
at 665 ± 22 nm. In Fig. 7(f), plots show the intensity profile
measured along the wire length in the image, Figs. 7(b)–7(d),
while the curves are drawn according to Eq. (1) with λ =
436, 546, and 665 nm. For the wavelength of 546 nm, we
can clearly see the significant shift in phase caused by the
resonance of the nanowire. The diameter of the nanowire is
comparable to the effective wavelength of visible light at the
refractive index of silicon, and thus the nanowires were at Mie
resonance when applied to visible light. Since this phase shift
does not affect the periodicity of the interference pattern, the
theoretical curve could be fit well with the measured intensity
profile. For the fitting, � for 436 and 665 nm were zero while �

for 546 nm was 0.4. The heights of the SiO2 structure measured
by BICM were 673.98 nm at λ = 436 ± 10 nm, 675.8 nm at
λ= 546 ± 5 nm, and 672.17 nm at λ= 665 ± 22 nm. The fitting
was made from left side of the interference pattern since its
right side near the deposited SiO2 structure was distorted due
to the complex light scattering by the edge of the deposited
wall. After the BICM measurement, we dried the chamber
and measured the geometry of the structures with AFM
[Figs. 7(g) and 7(h)]. The strong surface tension generated
in drying the structures distorted the nanowire towards the
bottom, as seen in Fig. 7(g). The measured step height of the
deposited structure was 681 nm [Fig. 7(h)]. With consideration
of the layers of dried solutes, we confirmed the accuracy of
our optical measurement.

In the experiment of tracking the Brownian motion of the
tethered nanowires, the original solution of highly uniform
silicon nanowires (150 nm in diameter and 20 μm in length) in
isopropanol was purchased from Sigma-Aldrich. We replaced
the isopropanol of the original solution with de-ionized water,
by repeated centrifugation. For preparing wires with different
lengths, we intensely sonicated the solution to randomly break
the long nanowires into short ones. Finally, immediately after
increasing the ionic strength, the solution was infused to a
premade chamber described below. A clean cover slip was
prepared by RCA cleaning with a 1:1:5 solution of NH4OH,
H2O2, and H2O, followed by rigorous washing in de-ionized
water and drying with nitrogen blow. An adhesive separator
with 0.15 mm height (Sigma-Aldrich) was placed on the cover
slip to form a chamber and was sealed with an adhesive sealing
tape (Sigma) after introducing the nanowire solution. The
chamber was stable enough for observing the Brownian motion
of particles for several weeks after sealing. A normal inverted
optical microscope from Zeiss was used for all observations.
The incoherent light from a mercury lamp was reflected by a
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FIG. 8. (Color online) (a), (b) Estimation of the local rotational

diffusivity of the nanowire. Local rotational diffusivities in azimuth

and inclination directions, respectively, calculated from the linear

slopes in Figs. 3(a) and 3(b) (in the main text) with the general law of

random diffusion, 〈�θ2〉 = 2Dθ�t . From bottom to top, blue plots

are 0.01 rad at t = 0, green are 0.03, red are 0.09, and black are 0.19.

Each color corresponds to that plot in Figs. 3(a) and 3(b) in the main

text.

50:50 beam splitter and applied to the sample with a 50× Zeiss
objective (NA = 0.5, WD = 6.5 mm), after passing through an
aperture with 500 μm diameter and a narrow-band-pass filter
(546 nm ± 5 nm). The small aperture reduces the illumination
angle for minimizing measurement errors. A normal electron
multiplying charge-coupled device (EMCCD) camera (Andor)
was used to acquire images. For the image analysis, MATLAB

programs were used to analyze the interference images of
nanowires to obtain both the inclined and azimuth angles.
Sinusoidal fittings were used to obtain the periods of the
interference patterns with subpixel resolution for calculating
the inclined angles of the wires. On the other hand, a built-in
function of MATLAB was used to fit the nanowire images with
ellipsoids and calculate the azimuth orientations of their long
axis.

To estimate the local rotational diffusivity of the nanowire,
local rotational diffusivities in azimuth and inclination direc-
tions, respectively, were calculated from the linear slopes in
Figs. 3(a) and 3(b) with the general law of random diffusion,
〈�θ2〉 = 2Dθ�t . In Fig. 8, from bottom to top, blue plots are
0.01 rad at t = 0, green are 0.03, red are 0.09, and black are
0.19. Each color is corresponding to that plot in Figs. 3(a) and
3(b). At the short time scales below 0.05 s, the diffusivity value
approximately remained constant, validating measurement of
the local diffusivity. At long time scales, the nanowire moved
to different positions, where they experienced different HI
and the confinement effects from environments, resulting in
deviation from the original local Dθ .

APPENDIX B: SIMULATION

For developing the implicit hydrodynamic beads–based
model, as we concisely introduced in the main text, we first

consider two representative beads Bi located at �Xi . If Bi moves
with a steady speed �vi in the Stokes regime, its induced solvent

flow at the location �Xj can be determined as radial (vr i,j ) and

053010-7



OTA, LI, LI, YE, LABNO, YIN, ALAM, AND ZHANG PHYSICAL REVIEW E 89, 053010 (2014)

tangential (vθ i,j ) as

vr i,j =

(

3a

2|�rij |
−

a3

2|�rij |3

)

|�vi |cosθij ,

(B1)

vθ i,j = −

(

3a

4|�rij |
+

a3

4|�rij |3

)

|�vi |sinθij ,

where we define �r12 = �X2 − �X1 = {x,y,z} and angle θij by cosθij =
�rij ·�vi

|�rij ||�vi |
.

Under this Stokes regime assumption, the general hydrodynamic relations between beads can be represented as

�vi,j = Tij �vi, (B2)

T12 =
[

C
(1)
3×1,C

(2)
3×1,C

(3)
3×1

]

, (B3)

where

C
(1)
3×1 =

(

3a
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, (B4)
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By applying this representation to the generalized Eq. (3), which is developed in the main text and implicitly models the
hydrodynamics of the system composed of N beads,

�viH +

N
∑

j=1,j �=i

�vjH,i = �vi, (3)

we rewrite Eq. (3) as the following linear algebraic equation to implicitly solve the hydrodynamic problem.

⎡

⎢

⎢

⎣

I3×3 T21 · · · TN1

T12 I3×3 · · · TN2

...
...

...
...

T1N T2N · · · I3×3

⎤

⎥

⎥

⎦

3N×3N

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�v1h

�v2h

...
�vNh

⎫

⎪

⎪

⎬

⎪

⎪

⎭

3N×1

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�v1

�v2

...
�vN

⎫

⎪

⎪

⎬

⎪

⎪

⎭

3N×1

. (B7)

As shown in Fig. 9, simulation of the hydrodynamic
effect between the nanowire and the wall was performed by
incrementally increasing the extent of the wall matrix until
computational results were asymptotically converged. The
wire’s configuration was fixed with the largest wire length
and the highest inclined angle (24 μm = 160 beads as the wire
length and 0.2 rad for the inclined angle), which requires the
largest wall matrix. In other words, if the calculation converges
with this wire’s configuration, it should converge with all
the other configurations (shorter wires and smaller inclined
angles). nx is the number of beads in the wall, extending
perpendicular to the wire longitudinal direction (x axis), which
is the width of the wall. n−y is the number of beads in the
wall, extending parallel into the wire’s longitudinal direction
(y axis) from the wire-wall contact. n+y is the number of
beads in the wall, extending parallel into the wire’s longitudinal
direction (y axis) from the point 160 beads (wire length) away

from the contact. So, the height of the wall is the sum of
n−y , 160 beads (wire length), and n+y . In calculation, n−y

and n+y were set to be 20 and 90, respectively, with which
the calculation results converged in increasing either n−y or
n+y at any nx . In increasing nx , at last, the convergences of
the calculated angular rotational diffusivities in both inclined
and azimuth directions were confirmed as seen in the graph.
The convergence in Dφ was much slower than that in Dθ

and therefore requires a larger matrix. In Fig. 4(c), we used
nx = 30 for calculating the inclined angular diffusivity, Dθ , and
using nx = 75 for calculating the azimuth angular diffusivity,
Dφ .

Using the developed implicit hydrodynamic bead model,
we numerically calculated free rotational diffusivity of the
nanowire and compared it with that of the analytical approxi-
mation as shown in Fig. 10. The analytical solution for a thin
rod is given as the following equation and the result is plotted
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FIG. 9. (Color online) A schematic of simulation of the hydrodynamic effect between the nanowire and the wall. Its validness was confirmed

by incrementally increasing the extent of the wall matrix until computational results were asymptotically converged.

as [14]:

Drot =
kBT

ζrot

= kBT/πμw[L3/{3 ln(L/d) − 0.5}]. (B8)

The numerical result calculated by our hydrodynamics
model is plotted as black circles and shows good agreement
with the analytical curve, proving that our hydrodynamic
model correctly considers complex intrinsic HI.
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FIG. 10. (Color online) Comparison between the analytical ap-

proximation and the beads model for the rotational diffusion of the

free nanowire around its center.

Next, we calculated rotational diffusivity of the nanowires
between the inclined and azimuth angular rotational diffusion
at a fixed angle for different lengths using the implicit
hydrodynamic bead model (Fig. 11). The black circles are
free rotational diffusivity of the tethered wire around its end,
Drot, numerically calculated using our developed bead model
(without a wall). The filled (Dθ ) and empty (Dϕ) squares
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FIG. 11. (Color online) Comparison of rotational diffusivities of

the nanowire between the inclined and azimuth angular rotational

diffusion at a fixed angle for different length of wires, simulated

by the implicit hydrodynamic bead model. In addition, those free

nanowires estimated by analytical solution and calculated by the

developed model were plotted together.
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FIG. 12. (Color online) Comparison of rotational diffusivities of

the nanowire between the inclined and azimuth angular rotational

diffusion at different inclined angles for a fixed length of nanowires,

simulated by the implicit hydrodynamic bead model.

are also the numerically calculated rotational diffusivities for
the tethered wire in the inclined and azimuth directions,
respectively (with a wall). The curve is the analytically
approximated rotational diffusivity of the nanowire around
its one end in bulk, Drot, for comparison [without a wall, see
Eq. (B8)]. The inset plots the diffusional anisotropy (Dθ/Dϕ).
Here, the inclined angle is assumed 0.05 rad. The calculated
Dθ and Dϕ as well as the anisotropy in diffusivity showed good
agreement with the experimental results shown in Fig. 2(b),
validating our bead model for studying the hydrodynamic wall
effect.

Finally, we calculated rotational diffusivity of the nanowires
between the inclined and azimuth angular rotational diffusion
at different inclined angles for a fixed length of nanowires using
the implicit hydrodynamic bead model (Fig. 12). We calculated
both inclined and azimuth rotational diffusivity of the samples’
nanowires of 9 and 11 μm in length. The hydrodynamic drag
by the wall appears as the reduction in the diffusivities when
the nanowire becomes closer to the wall. As expected from
the experiment, the effect was clearly less significant on Dϕ ,
compared to that on Dθ , resulting in their highly anisotropic
diffusion.
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