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The densities of first passage times of the process {W( t) - ct
2

: t ~ s} 

are determined analytically in terms of Airy functions; the joint distribu

tion of the maximum and the location of the maximum of this process is also 

expressed in terms of Airy functions. Corresponding results are given for 

two-sided Brownian motion. The structure of a jump process of locations of 

maxima of Brownian motion with respect to a family of parabolas is derived. 

This process plays a fundamental role in describing the limiting global 

behavior of certain estimators of densities and distribution functions. As 

a probabilistic side result the distribution of excursion integrals is 

obtained. 
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I. Introduction. Let {W(t): t ~ s} be one-dimensional Brownian 

motion in standard scale, starting at x at time s • We will study processes 

of the form 

(I. I) 
2 

{W(t) -et t ~ s}, 

where c > O, and in particular determine analytically in terms of Airy 

functions the joint density of the maximum and the location of the maximum 

of such a process (Corollary 3.1 in section 3). We will also derive analo

gous results for the process 

(I. 2) 
2 

{W(t)-ct : t E JR.}, 

where {W(t): t E JR.} is two-sided Brownian motion~ originating from zero. 

Processes of type (I.I) and (1.2) arise in the following contexts: 

maximum number of infectives during a closed epidemic (Daniels (1974), 

Barbour ( 1981), Daniels & Skyrme ( 1984)), strength of a series - parallel 

system or a bundle of threads (Daniels (1945), Phoenix & Taylor (1973), 

Smith (1982)), estimation of the mode of a distribution (Chernoff (1964),' 

Venter (1967)), estimation of a monotone or unimodal density or hazard 

rate (Prasaka Rao (1969), Groeneboom (1984)),and monotone empirical Bayes 

tests (van Houwelingen (1984)); this list of situations where the processes 

of type (I.I) and (1.2) are studied is by no means exhaustive. 

As an example, it was shown by Chernoff (1964) that an intuitively 

appealing estimator of the mode of a distribution (based on an interval 

of fixed length, shifted along the line to a position where it contains 

the highest number of observations) converges in distribution (after stan

dardization) to the location of the maximum of the process (1.2), with 

c =I, as the sample size tends to infinity, if the underlying distribu

tion satisfies certain regularity conditions. He also showed that this 

random variable 

(I. 3) 2 V = sup{ t E JR.: W(t) - t is maximal} 

has a deusity given by 

(I. 4) = ~ lim 2 a: u(t,x) a: u(-t,x), 
xtt 
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where 

(I. 5) u(t,x) = P(t,x){W(u) > 
2 

u ' for some u ~ t} 

is the probability that Brownian motion, starting at position x at time t , 

will cross the parabola g(u) = u2 
at some time u ~ t. Note that we de

fine the location of the maximum of the process (1.2) as the last time that 

the maximum is attained, although, with probability one, there will only be 

one such maximum; we define the location of the maximum by (1.3) to have a 

well-defined functional of the process also on sets of probability zero. It 

is also shown in Chernoff (1964) that u(t,x) is a solution of the (back

ward) heat equation 

( 1. 6) 
a at u(t,x) = 

1 a2 

2 --2 u(t,x) 
ox 

under the boundary conditions 

(1~7) 
2 

u(t,t ) lim 
2 

u(t,x) = 1, 
x+t 

lim u(t,x) = O, 
X +-co 

in the domain 
2 

{(t,x): x < t }. 

The nature of the solution of the heat equation, defined by (1.6) and 

(1.7), has been somewhat of a mystery. Numerical results were kindly pro

vided to me by W.R. van Zwet, who developed a method for solving the heat 

equation numerically, in cooperation with M.N. Spijker. 

It is shown in Theorem 3.1 of this paper that there exists in fact a 

solution in closed form in terms of the Airy functions Ai and Bi (for 

definitions, see [I]). Our basic tools are the Cameron-Martin-Girsanov 

formula, which is used to reduce the computations for the drifting process 

to computations for a (killed) process without drift, and the Feynman-Kac 

formula by which the Radon-Nikodym derivative of the drifting process with 

respect to the process without drift is further analyzed. In this way we 

obtain at the same time probabilistic interpretations of the analytical 

results;~Theorem 2.1 provides an example of this parallel development. In 

particular, it is shown that there is a close relation between Airy func

tions and expectations of certain functionals of Bes(3) processes, where 

we denote by Bes(3) a 3-dimensional Bessel process (radial part of 
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3 - dimensional Brownian motion). 

The plan of the paper is as follows. The basic machinery is developed 

in section 2, where we determine the structure of the drifting process (I.I), 

killed when reaching a certain level (see e.g. Lemma 2.1); we also determine 

the densities of the first passage times of the process (I.I) (see Theorem 

2.1). In section 3 we determine the joint density of the maximum and the 

location of the maximum of the processes (I.I) and (1.2). As a corollary we 

obtain the (marginal) density of the location of the maximum of the process 

(1.2), which is given by 

(I • 8) f
2

(t) = ~g (t)g (-t), 
c c 

where the function has Fourier transform 

(I. 9) S E ]R. , 

see Corollary 3.3. This last result was recently derived independently, by 

different methods, in Daniels & Skyrme (1984). 

In section 4 we derive the structure of a jump process of locations of 

maxima of Brownian motion with respect to a fcunily of parabolas. This pro

cess plays a fundamental role in describing the limiting global behavior 

of certain "isotonic" estimators of densities and distribution functions. 

This is detailed in Groeneboom (1984) in the context of the estimation of 

a monotone density. As a probabilistic side result we obtain the distribu

tion of 

(I. 10) 
I 

f e(t)dt, 
0 

where {e(t): t E [O,l]} is a Brownian excursion on [0,1] (which is, 

loosely speaking, a Brownian bridge "conditioned to be positive"). The 

Laplace transform of the density of the random variable (I.JO) is given by 

(4.13) in Lemma 4.2. 
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2. First passage times of the process 
2 

{W(t) - et : t ~ s}. 

Let, for s E 1R, C([s, 00); R) be the space of continuous functions 

f: [s,oo) + 1R, endowed with the topology of uniform convergence on compact 

sets, and let F be the Borel a-field of C([s, 00);R). Furthermore, let, 

for c > O, the probability measure Q(s,x) on F correspond to the pro-
c 

cess {X(t): t ~ s}, starting at x at time s , where X(t) = W(t) - ct
2 

and {W(t): t ~ s} is Brownian motion (in standard scale), starting at 
2 

x + cs at time s . 

In this section we will show that the densities under 

first passage times 

Q(s,x) 
c 

of the 

(2.1) T = inf{t ~ S 
a 

X(t) a}, a > x, 

can be written as functionals of a Bessel Bes(3) process, and we will 

characterize analytically these functionals in terms of Airy functions (for 

definitions and properties of Airy functions, see e.g. [l]). 

Some of the relevant properties of a Bes(3) process are summarized 

below. A Bes(3) process is a one-dimensional diffusion process with tran

sition densities 

2t- 3 / 2 y 2 ~ (y/lt)' x = 0, y > O, 

(2.2) 

x,y > O, 

where The process describes the distribution of 

the radial part of 3 -dimensional Brownian motion, see e.g. Ito and McKean 

(1974), section 2.3. The process can also be characterized as Brownian 

motion (Doob-)conditioned to hit 00 before 0, see e.g. Williams (1974) 

(this last interpretation is the one which is most useful for our purposes). 

The distribution of the first passage time T is given in the follow
a 

ing theorem. 

Theorem 2. 1. Let, for c > 0, s, x E 1R , Q (s ,x) be the probability 
c 

measure on the Bore i a - fie "ld of C ( [ s, 00 ) ; R) , corresponding to the pro-

cess Ot(t): t 2:: s}, where X(t) = W(t) - ct
2 

and {W(t): t 2:: s} is 
2 

Brownian motion, starting at x + cs at time s • Let the first passage 

time • of the process X be defined by (2.1), where, as usuai, we define 
a 
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T = oo, if {t ~ s: X(t) 
a 

a} 0. Then 

(i) 

(ii) 

Q(s,x){T E dt} = 
c a 

2 2 3 3 
exp{--

3 
c (t -s) - 2cs(a-x)}l/J (t-s) a-x 

t-s 
•EO{exp(-2c f B(u)du) IB(t-s) = a -x} dt, 

0 

where {B(u): u ~ O} is a Bes(3) process, starting at zero at 

time O, with corresponding expectation EO, and where 
3 _1 2 

l/J (u) = {2Tiu } 2 z exp(-z /2u), u, z > O, is the value at u of z 
the density of the time of the first passage through zero of 

Brownian motion, starting at z at time 0 • 

Q(s,x){T E dt} = 
c a 

2 2 3 3 
= exp{--

3 
c (t -s) - 2sc(a-x)} h (t.-s)dt, 

c,a-x 

where the function h 
c,a-x 

has Laplace transform 

00 

f e-Au h (u)du = 
c,a-x 

0 

= Ai((4c)
113

(a-x) + S)/Ai(~), 

and Ai denotes the Airy function Ai, as defined on p. 446 

of [l]. 

We will prove Theorem 2.1 by studying the structure of the process X, 

which is killed when reaching a • It follows from the Cameron-Martin

Girsanov formula that the transition densities of this process factorize 

into the transition densities of ordinary Brownian motion, killed when 

reaching a , and a factor involving an integral over a Brownian bridge, 

which is conditioned on staying below a. This factorization is given in 

the following lennna. 
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Lemma 2.1. Let, for a> x, y and s < t, the transition density qa be 

defined by 

(2.3) Q(s,x){X(t) E dy, max < < X(u) <a} 
C S-U-t 

a 
q (s,x;t,y)dy, 

i.e. qa is the transition density of the process X, kiUed when 

reaching a . Then 

(2.4) a 
q (s,x;t,y) (t-s)-!{cp{~\} _ <t>(x +y- 2a)} 

'lt-s lt-s 

2 2 3 3 
• exp{-3 c (t -s) + 2c(ty-sx)} 

t 

• E~s,x){exp(2cI W(u)du)jW(t) = y}, 
s 

where {W(u): u ;:: s} is a Brownian motion process, starting at x at time 

s, and killed when reaching a, with corresponding expectation operator 
(s x) -1 2 Ea ' , and where <f>(z) = (27r) 2 exp(-!z ) . 

Remark 2.1. Here and in the following, the index a (for "cemetary") is -

used as a notational convention to indicate that there is a killing going on. 

P f f L 2 I Let P
(s,x) roo o emma . • be the probability measure on the Borel 

a - field F of C([s , 00); JR), corresponding to the Brownian motion 

{W(t): t;:: s}, starting at x at time s . Furthermore, let F = 
t 

= cr{W(z): s ~ z ~ t}. By the Cameron-Martin-Girsanov formula (Stroock and 

Varadhan (1979), section 6.4) we have 

Q (s ,x) (A) 
c 

p (s ,x) 
E IA•Z(t), 

where I A is the indicator of the set A and 

Z(t) I
t 2 2 3 3 

exp{-2c udW(u) - 3 c (t - s ) }. 
s 

The stochastic integral It udW(u) can be defined by integration by parts: 
s 

(2.5) 

where 

t 

I udW(u) = 
s 

t 
tW(t) - sW(s) - I W(u)du. 

s 

Now let A = {W(u) < a, s ~ u ~ t} and define 

I is the indicator of the interval [y-t:,y+E] 

-I 
f = (2t:) I 

£ [y-t:,y+t:]' 
[y-£ ,y+E]. 
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Then, if E(s,x) is the expectation operator corresponding to the measure 

Q
(s,x) 

we get 
c ' 

E(s,x)f (X(t))I 
£ {maxs ~ u ~ t X(u) < a} 

;_I y+£ p(s,x) t a 
= (2£) J E {IAexp(-2cfudW(u))jW(t)=z}•p (x,z)dz, 

t-s y-£ s 

where pu(x,z) = u-~{~(x/:) - ~(x+i: 2 a)} is the transition density of 

Brownian motion, killed when reaching a. Letting £ + 0, we obtain 

a 
q (s,x;t,y) 

a p (s ,x) t 2 2 3 3 
= pt-s(x,y) E {IAexp(-2cf udW(u))jW(t) =y}•exp{-3c (t -s )} 

s 

a ( s x) ft I 2 2 3 3 pt-s(x,y) E
0 

' {exp(-2c udW(u)) W(t) =y}•exp{-
3

c (t -s )}. 
s 

Relation (2.4) now follows from (2.5). 0 

It is well-known that, for a > 0, the density f of the first 
a 

passage time T inf{t ~ 0: W(t) = a} of ordinary Brownian motion (with-a 
out drift) {W( t) : t ~ O}, starting at x < a at time 0 ' satisfies 

f (t) 
a 

1 1 . a a< ) - 2 im y ta ay pt x,y ' 

a - 1 x-y x+y+2a 
where pt (x,y) = t 2 {$(-t-) - ~ ( t ) } is the transition density of 

Brownian motion, killed when reaching a • The following lennna shows that 

the same relation holds for the drifting process X . 

Lemma 2.2. With the notation of Lerro-na 2.1 we have, for s < t and x <a, 

Q(s,x){T 
E dt} 

I a 
= --a q (s,x;t,a)dt, c a 2 4 

where a 
lim 

a a 
and a4q (s,x;t,a) = t a-:<I (s,t;t,y) T y a y a 

inf{t ~ s: X(t) a}. 

Proof. We 

(note that 

have, if a > x and t > s, 

a 

J 
a 

q (s,x;t,y)dy 

T > t means that the killed process has not died before time t , 
a 
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and hence has a value y < a at time t). Thus the density of 

· d b Q(s,x) · · b 

T at t , 
a 

induce y the measure c , is given y 

a a a 
- at f q (s,x;t,y)dy. 

-oo 

Since 
2 

{X(t): t;::: s} = {W(t) -et: t;::: s}, the transition density 

satisfies the (forward) equation 

d d at q (s,x;t,y) 
I a

2 
a a a 

= 2 --2 q (s,x;t,y) + 2ct ay q (s,x;t,y), 
ay 

if t > s, and a > x,y. Hence we get 

a a a 
at f q (s,x;t,y)dy = 

-oo 

I a a2 a a 

2 
f --

2 
q (s,x;t,y)dy + 2ct lim t q (s,x;t,y) 

-oo ay y a 

= ~ lim y t a a~ q a ( s , x; t, y) , 

d 
q 

since 
d 

lim t qa(s,x;t,y) = O, 
y a 

as is seen from the representation (2.4) of 

q given in Lemma 2.1. D 

Remark 2.2. The interchange of differentiation and integration, used in the 

proof of Lemma 2.2, can be justified in several different ways. One possibil-

ity is to use the representation of 
d 

q in terms of Airy functions, given 

in Corollary 2.1 below (which has a proof that is independent of Lemma 2.2). 

Returning to the representation (2.4) of the transition density 
d 

q • 

it is seen by reflection with respect to the line {(t,a): t E JR.} that we 

can write 

(2.6) 
d 

q (s,x;t,y) = 

d 2 2 3 3 
= pt-s(a-x,a-y)exp{-3c (t -s) + 2ct(a-y) - 2cs(a-x)} 

(O a-x) f t-s I 
•Ea ' {exp(-2c W(u)du) W(t-s) = a-y}, 

0 
,, 

where, with a change of notation, {W(u): u;::: O} denotes Brownian motion, 

starting at a -x > 0 at time 0 ·, killed when reaching zero, with corre

sponding expectation operator E~O,a-x), and where 
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(2. 7) 

denotes the transition density of this process. In (2.6), the time-homo

geneity of Brownian motion is used to translate the origin of the process 

from (s,a-x) to (0,a-x). 

Now let {P!: t ~ 0} be the semigroup of operators, acting on the set 

B of bounded Borel-measurable functions f: (0, 00 ) + lR by 

where E(O,x) 
d . 

corresponds to 

reaching zero. 

(2.8) 

Then, 

x > 0, f E B, 

and in (2.6)' i.e. the semigroup 
d w are as {Pt: 

Brownian motion, starting at a value x > 0, and 
d 

t ~ O} semigroup, acting Let {Qt: be the on B 

= E~O,x)f(W(t))exp(-2cftW(u)du), 
0 

x > 0, 

(2.9) 
00 t 

E~O,x) f f(W(t))exp(-A.t - 2c f W(u)du)dt 
0 0 

t ~ O} 

killed when 

by 

f E B. 

where R~ is the A - resolvent (or A - potential operator) associated with 
d 

{Qt}. By the Feynman-Kac formula (see e.g. Williams (1979), p.158, (39.5)), 

we have 

(2.10) 

-a 
where RA 

function 

d 
[RA f] (x) 

is the A - resolvent associated with {Pt: t 

v: (0,oo) + lR is defined by v(x) = 2cx. 

~ O}, and where the 

The following lemma will enable us to characterize analytically the 
d transition density q of the process X, killed when reaching a , and 

hence, by Lennna 2.2, the density of the first passage time T • 
a 

Lennna 2. 3 • Let f : ( 0, 00 ) + lR be a function with compact support and at 

most afinite number of discontinuities_, and let the resolvent R~ be defined 

by ( 2 • 9) • •Then 

(i) The function R~ f: (0 , 00 ) + lR is the unique continuously differentiable 

solution of the differential equation 
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h" (x) - (A.+ 2cx)y(x) f(x), x > O, 

(where (2.11) holds at aU continuity points x of f), under the 

boundary conditions 

lim x + 
0 

y (x) = 0 , lim 
X +oo y(x) = 0. 

(ii) We ha:ve, for x > O, 

(2.13) 

(2.14) 

(2.15) 

Proof. 

a 
[RA f] (x) 

00 x 

2gl. (x) f hi. (t)f(t)dt + 2 hi. (x) f gA (t)f(t)dt, 
x 0 

where, with t;, (2c2)-l/3I. > O, 

1f(4c)-l/3Ai(E;.)- 1{Ai(E;,)Bi(t;, + (4c) l/3t) - Bi(t;,)Ai(E;, + (4c) l/3t)}, 

Ai(t;, + (4c) l/3t), 

and where Ai and Bi are the Airy functions as defined e.g. in [I], 

p.446. 

Ad (i). It is well-known (and easily verified) that the resolvent ~ has 

transition density 

(2.16) 
-a 
rA(x,y) 

! 
-(21.) 2 (x+y)} 

e ' 

Hence we have, if f satisfies the conditions of the lermna, 

(2.17) 

x,y > O. 

except at discontinuity points x of f (which is, of course, an expression 

of the fact that Brownian motion, killed when reaching zero, behaves locally 

as ordinary Brownian motion during its lifetime). It now follows from (2.10) 

and (2.17) that R~f satisfies the differential equation (2.11), and it 

follows from (2.10) and (2.16) that R~f satisfies the boundary conditions 

(2.12) and is continuously differentiable. Since we are dealing with the 

classical Sturm-Liouville problem on the interval [0,oo) (defining y(O) 

= limx + 
0 

y(x) = O), there is only one continuously differentiable solution 



-I I-

of (2.II), satisfying the boundary conditions (2.I2). 

Ad (ii). A pair of linearly independent solutions of the homogeneous 

equation 

(2.I8) !y" (x) - (A. + 2cx) y (x) o, 

is given by the functions t -+ Ai(~ + ( 4c) I /
3 
t) and t -+ Bi(~ + (4c) I / 3 t), 

where ~ and Ai and Bi are as in (2. 14). The functions gA and hA, 

defined by (2.14) and (2.15), are also linearly independent solutions of 

(2.I8), where gA satisfies the boundary condition gA (O) = 0 and hA 

satisfies the boundary condition lim h, (x) = O. 
x-+oo I\ 

Moreover 

X E 1R, 

by 10.4.10, p.446 of [I]. Hence the unique continuously differentiable 

function y, satisfying (2.11) and (2.12) is given by the right-hand side 

of (2.13), and, by unicity, must be equal to R~f. (For a clear exposition 

of the Sturm-Liouville problem and its solutions, see e. g. Dieudonne (l 969), 

section lI.7. Although he only considers functions on a fixed bounded 

interval, the treatment is not essentially different in the case we consid

er.) 0 

The main purpose of introducing the Bes(3) process (instead of lim

iting our considerations to killed Brownian motion) is to give an interpre

tation to limits of the expectations 

E~O,x) {exp(-2c /w(u)du) fW(t) = Y} 
0 

(see e.g. (2.6)), as x or y tends to zero. This interpretation is given 

in the following lemma. 

Lennna 2.4. Let, for x,y > 0 and c > 0 

H (x,y) = E~O,x){exp(-c /w(u)du) IW(t) =y}, 
t 0 0 

where (w(u): u :e: O} is Brownian motion, starting at x at time 0 and 

killed when reaching 0, with corresponding expectation E~O,x). Then we 

have, if t > 0, 
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(ii) 

(iii) 

(iv) 

Proof. 

x > 0 

to y 

[O,t] 
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t 
H (x,y) = Ex{exp(-cfB(u)du)IB(t)=y}, 

t 0 

where {B(u): u ~ O} is a Bes(3) process., starting at x at time 0, 

with expectation operator Ex. 

lim x + 0 Ht (x,y) 
0 t 

E {exp(-cfB(u)du)IB(t) =y}, 
0 

where {B(u): u ~ O} is as in (i), but starts at 0 at time 0. 

0 t 
lim y + 0 Ht (x,y) = E {exp(-c f B(u)du) IB(t) =x}, 

0 

where {B(u): u ~ O} is as in (ii). 

3/2 
1 

lim 
x + O, 

+ 
0 

H (x,y) = E exp(-ct f e(u)du), 
y t 0 

where {e(u): u E [0,l]} is a Brownian excursion on [0,1]. 

Ad (i). It is intuitively clear that Brownian motion, starting at 

at time 0 ' killed when reaching zero, but conditioned to be equal 

> 0 at time t > 0 (so still alive at time t) has on the interval 

the same distribution as a Bes(3) process, starting at x at time 

0 and conditioned to be equal to y at time t • 

For a formal proof, note that the time-space Brownian motion 

{(u,B(u)) 0 ::; u ::; t}' 

starting at (O,x), killed when reaching the boundary {(u,O): 0::; u::; t} 

and (Doob-)conditioned to converge to (t,y) has the transition function 

where 0 ::; t < t < 
1 2 

(2.7), and h(s,x) = 

if 

if 

is the transition density defined by 

an invariant function for the (killed) 

time-space process. For the concepts of Doob-condi tioning and h - path 
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transforms, see e.g. Doob (1984), section 2.VI,13, and Williams (1979), 

Ch.3. It is easily seen that the Bes(3) process on [O,t], "h-path 

transformed" by the invariant function 

h(s ,x) pt-s(x,y), 

where pt-s(x,y) is defined by (2.2), has the same transition function. 

Part (ii) now follows from part (i) and the fact that a Bessel process, 

starting at 0 at time 0, is the weak limit of Bessel processes, starting 

at a value x > 0, as x + 0. 

Part (iii) follows from (ii) by a time reversal argument. 

For part (iv), we first note that, by Brownian scaling 

I . I 
Ht(x,y) = E~O,x/ t){exp(-ct312 Jw(u)du)jW(I) = y/lt}, 

0 

and next that the weak limit of Brownian bridges between (O,x/lt) and 

(l,y/lt), conditioned to be positive on [0,1], is a BroWilian excursion 

process on [0,1], as x+O and y+O, see e.g. Durrett et al (1977), 

and Blumenthal (1983). D 

As a corollary to Lemma 2.3 and Lemma 2.4.(i) we have the following 
d characterization of the transition density q of the process X, killed 

when reaching a . 

Corollary 2.1. Let the transition densi-ty 

Lerrona 2.1. Then we have, for a> x,y and 

d 
q be defined as in (2.4), 

t > s, 

(i) 

(ii) 

(2.19) 

d 2 2 3 3 
q (s,x;t,y) = exp{-3c (t -s) + 2ct(a-y) - 2cs(a-x)} 

t-s 
a a-x J I • pt-s (a-x,a-y) E {exp(-2c B(u)du) B(t-s) = a-y}, 

0 

where {B(u): u 2::: O} is a Bes(3) process starting at a - x at 
d 

time O, and pu(x
1
,x

2
) is defined by (2.7). 

Let, for c,x,y > 0, the function 

by 

t ~ r (t;x,y), 
c 

t 2::: 0, 

r (t;x,y) 
c 

d t 
= pt(x,y) Ex {exp(-2c f B(u)du) jB(t) =y}, 

0 

be defined 
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where {B(u): u ;;:: O} are defined as in (i). Then the func-

(2.20) 

tion r (··x y) has Laplace transform c , ' 

where x A y = min(x,y), xv y = max(x,y), and g>.. and h>.. are 

defined by (2.14) and (2.15). 

Proof. Part (i) of the corollary is innnediate from (2.6) and Lennna 2.4.(i). 

We prove (ii) by using a method which is similar to that used by Shepp 

(1982) in his computation of the distribution of Ib jBr(t)ldt, where 

{Br(t): t E [0,1]} is a Brownian bridge on [0,1]. 

Let fE = (2i::)-ll[y-i::,y+E]' where y-i:: > 0. By Lennna 2.3.(ii), we 

have 

00 x 

= 2g;\ (x) !h;\ (t)fE(t)dt + 2h;\ (x) jg;\ (t)fE(t)dt, x > o, 

a 
where g;\ and h;\ are defined by (2.14) and (2.15) and RA is the resol-

a 
vent of the semigroup {Qt: t :2: O}, defined by (2.8). Hence 

(2.21) 

We also have, proceeding as in the proof of Lennna 2.1 and using Lennna 

2.4.(i) 

(2.22) 
00 t 

E~O,x) I exp(-A.t - 2c Iw(u)du)f (W(t))dt 
a 0 0 E 

I
m -At a x It I 

+ e pt(x,y) E {exp(-2c B(u)du) B(t) =y}dt, 
0 0 

as E + 0. Part (ii) now follows from (2.21) and (2.22). 0 

Proof of Theorem 2.1. 

Ad(i). Let c,t > 0 and x > y > 0. By Corollary 2.1.(ii) we can write 

(2.23) ~ 

t 

Ex{exp(-2c IB(u)du) IB(t) =y} = 
0 

where r (t;x,y) has the representation 
c 
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r (t;x,y) = 
c 7T 
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00 • 

I 
1st 

e g. (y)h. (x)ds, 
1S 1S 

-oo 

where i = /:T, and the Laplace transform (2.20) is inverted, using the 

imaginary axis as integration road (in fact we can take any road, parallel 

to the imaginary axis, of the type c + iJR, with c > a
1 

R1 -2.3381, a
1 

being the largest zero of the Airy function Ai on the negative real axis, 

see [I], p.478). 

Using properties of Airy functions, it is easily seen from (2.24) that 

r (t;x,y) has the following properties: 
c 

(2.25) lim y + 
0 

r c ( t ; x, y) = 0, 

(this also follows directly from (2.23)), 

(2.26) 
00 • 

= .!. f e 1
stAi(is + (4c) 113x)/Ai(is)ds, 

7T 
-oo 

(2. 27) 0 • 

It is also clear from the representation (2.24) that for each positive 

integer k and each x > 0 the limits 

exist and are finite. 

By 1' Hopital's rule we now obtain from (2.23) and (2.25) to (2.27) 

(2.28) 

O, 
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(in fact, we only need that the limit at the left-hand side of (2.28) is 

finite). Thus we get from Corollary 2.1.(i), Lennna 2.4.(iii) and (2.28), 

lim 
d d 

t 
-;:;--- q (s,x;t,y) 

y a oy 
2 2 3 3 

exp{--c (t -s) - 2cs(a-x)} • 
3 

t-s 
• EO{exp(-2cf B(u)du)IB(t-s) =x} • 

0 

d d 
• lim yta ay pt-s(a-x,a-y), 

• d d d d 
for x < a. Since lim ~ p (a-x a-y) = ~ p (a-x a-y) I = 

y ta ay t-s ' ay t-s ' y=a 
= -2 ~ (t-s) (with the notation of the statement of Theorem 2.1), the 

a-x 
result now follows from Lemma 2.2. 

Ad (ii). As in the proof of part (i), we have that the density of 

t is given by 

• lim 2- r ( t - s • a - x a - y) 
y ta ay c ' ' 

T at 
a 

But by (2.26), the Laplace transform of - 1 lim 2- r ( • ·a-x a-y) 2 y ta ay c ' ' 
is 

given by the function h 
c,a-x 

0 
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3. The maximum and the location of the maximum of 
2 

{W(t)-ct: t~s}. 

Throughout this section, we will use the same notation as in section 2; 

in particular, the process {X(t): t ~ s}, with corresponding probability 

measure Q (s ,x) on the Borel a - field of C ([s ,oo); JR.), will denote the 
c 2 

process {W(t) - et : t ~ s}, where {W(t): t ~ s} is Brownian motion, 
2 

starting at x + cs at time s . 

Consider the probability 

(3. 1) Q(s,x){X(t) 
c 

< a, for all t ~ s}. 

It follows from the space-homogeneity of Brownian motion that 

< a, for all t ~ s} 

Q(s,x-a){X(t) < O, f 11 t > } or a _ s . 
c 

Hence, defining 

(3.2) K (s,x) = Q(s,-x){X(t) < 0, for all t ~ s}, 
c c 

we can denote (3.1) by K (s,a-x). 
c 

The following theorem determines analytically the function 

s + K (s,x), for each x > 0 (clearly K (s,x) 0, for each x ~ 0). 
c c 

Theorem 3.1. Let K (s,x) be defined by (3.2). Then, for each x > 0 
c 

and SElR., 

(3.3) K (s ,x) 
c 

where the function $x : JR. + lR.+ has Fourier transform 

.... 
(3.4) $ ().) 

x 

= 1T(2c
2
)-

1 
/
3
{Ai(is)Bi(is+z) - Bi(iOAi(is+z) }/Ai(is), 

where s 
tions defined on p.446 

z = (4c) 113x, 

of [l]. 

and Ai and Bi are the Airy func-
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The somewhat technical proof of Theorem 3.1 is given in the Appendix. 

Functions of the type K (s ,x) 
c 

were studied in Chernoff's (1964) paper 

on estimators of the mode of a distribution, and apparently Theorem 3.1 

solves a long -standing question concerning the analytical characterization 

of these functions. As an innnediate corollary to Theorem 3.1 we obtain the 

joint distribution of the maximum and the location of the maximum of the 

process X , starting at x at time s . 

COROLLARY 3.1. Let Q(s,x) 
c 

be the probability measure, corresponding to 

the process {X ( t) : t ~ s}, starting at x at time s , where X( t) 

2 2 
= W(t) - et , and {W(t): t ~ s} is Brownian motion, starting at x + cs 

at time s. Let M and TM denote the maximum and the location of the 

maximum, respectively, of the process {X(t): t ~ s} (note that M is a.s. 

finite and TM is a.s. finite and unique under Q~s,x)). Then we have, 

for a > x and t > s, 

(3. 5) 

Q(s,x){T E dt}k (t)da 
c a c 

2 2 3 3 
exp{--

3
c (t -s) - 2cs(a-x)}•h (t-s)k (t)dtda, 

c,a-x c 

a 
where kc(t) = lim x i-

0 
ax Kc(t,x) (see (3.2)}, and where the function 

u + h (u), u ~ 0, has Laplace transform 
c,a-x 

(3. 6) 
.... 
h (A.) 
c,a-x 

Ai ( (4c) l /
3 (a-x) + s) /Ai(O, 

The function t + k (t), 
c 

t E JR. can be written 

(3. 7) 
2 2 3 

kc(t) =exp( 3c t )gc(t), t E JR., 

where the function gc: JR. + JR.+ has the Fourier transform 

(3.8) g (A) = 
c 

-oo 

A E JR.. 

PROOF. 

and 2.2; 

Let the transition density qa(s,x;t,y) be defined as in Lennna 2.1 
a 

i.e. q is the transition density of the process X, killed when 

reaching a. Then, by a similar argument as used in Lemma 2.2 we can write 
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if a > x,y, 

where 

Q~s,x){TM > t, ME da} 

a a 
= { f q (s,x;t,y)k (t,a-y)dy}da, 

c 
-oo 

a 
k (t,z) =-;;-- K (t,z). 

c oz c 

Hence the joint density of (TM,M) at (t,a) is given by 

(3.9) 
a a 

at I 
-oo 

a 
q (s,x;t,y)k (t,a-y)dy 

c 

if a > x and t > s. 

Since {X(t): t ~ s} = {W(t) - ct
2

: t ~ s}, 

satisfies the (backward) equation 

the function k (t,z) 
c 

and 
a 

q 

I a2 
Cl 

- -
2
--2 kc(t,z) + 2ct-;;-- k (t,z) 
az oz c 

satisfies the (forward) equation 

a a 
at q (s,x;t,y) 

1 a a a a 2 --2 q (s,x;t,y) + 2ct Cly q (s,x;t,y), 
Cly 

if t > s and a > x, y. Hence we get, after a straightforward computation, 

using integration by parts, 

where 

a 
- at 

a a 
J q (s,x;t,y)k (t,a-y)dy 

c 
-oo 

a a a a a a 
J kc(t,a-y) atq (s,x;t,y)dy - J q (s,x;t,y) atkc(t,a-y)dy 

-oo -oo 

= 1 im t ~ q a ( s , x; t , y) • 
y a oy 

I Cl - 2 a
4

q (s,x;t,a)dt, 

Since, by Lemma 2.2, 

(3.5) now follows from (3.9). The Laplace transform h (A) in (3.6) is 
c,a-x 
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given by part (ii) of Theorem 2.1. 

Finally, the Fourier transform of the function gc: lR + lR + can be 

computed using Theorem 3.1. By Theorem 3.1, we can write 

Furthermore, we have by (3.4), 

(3. 10) 

where 

Since 

1 . a :r: (') (2/c) 113 JA1' (1· c), 
im z + 0 az 'I' z /\ = "' 

using the relation Ai(z)Bi'(z) - Ai'(z)Bi(z) 

2 2 3 a 
lim z + 0 kc ( t 'z) = exp ( 3 c t ) lim z + 0 az ljJ z ( t) , 

(3.8) now follows from (3.10). D 

= 1T 

The following corollary gives the corresponding result for two-sided 

Brownian motion 

-I 

COROLLARY 3.2. Let {W(t): t E lR} be -two-sided Brownian motion, originat

ing from zero. Define 

and 

2 
M = sup{W(t) -et: t E lR} 

2 
T = sup{ t E lR : W( t) - et is maximal}, 
M 

i.e. TM is the a.s. unique location of the (a.s. finite) ma.ximum M. The 

joint density of (TM,M) at (t,a), t E lR, a > O, is given by 

(3. 11) f (t,a) = g Cltl)h <ltj)ip (O), 
c c c,a a 

where the functions 

tion ip:: lR + lR+ 

g and h are as in Coro i Zary 3. I, and the func-
c c,a 

is defined as in Theorem 3.1. 

2 
PROOF. Let t > O, a > O, let M+ = max{W(t) - et : t ~ O} be the maximum 

of the process {W( t) - ct
2

: t E lR}, restricted to [O , 00), and let TM be 
+ 
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the location of this maximum. By Corollary 3.1, we have 

Q(O,O){M E da, TM E dt} 
c + h (t)g (t)dadt c,a c 

We also have 

Pr{W(s) - cs 2 <a, for all s < O} 

= Pr{W(s).-cs 2 <a, for all s > O} 

Q(O,O){~(s) 
c 

< a, for all s > O} 

= K (O,a) = $ (0), 
c a 

by (3.3) in Theorem 3.1. Relation (3.11) now follows, for the case t > 0. 

The case t < 0 is treated in a completely similar way. D 

The particularly simple form of the marginal density of the location 

of the maximum of the process {W(t) - ct
2

: t E lR} is given in the follow

ing corollary. 

COROLLARY 3.3. The density of the random variable 

Z = sup{ t E lR: W(t) - ct
2 

is maximal} 

is given by 

(3. 12) 

where the function gc has the Fourier transform given by (3.8). 

PROOF. By Corollary 3.2 we have 

00 

(3.13) = g ( I t I ) J h ( I t I H ( 0) da. c 
0 

c,a a 

Suppose t > O. By part (ii) of Theorem 2.1 the density of 

under the probability measure Q(O,O) is given by h (t). 
c c,a 

Lemma 2.2, 

T at t, 
a 
Hence, by 

2 2 3 
exp (- -

3 
c t ) h ( t) 

c,a 
= Q(O,O){T E dt}/dt = 

c a 
1 a - 2 a

4
q (O,O;t,a). 
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Since l/J (O) = Q(O,O) {X(s) < a, for all s ~ O} = Pr{W(s) - cs
2 

<a, for 
a c 

all s ~ O}, we get 

00 00 

223 f If 2 exp{- -
3 

c t } h (t)lji (O)da = - -
2 

Pr{W(s) - cs <a, 
0 

c,a a 
0 

all s ~ 0} 

00 

I a · 2 
= 2 f a2q (-t,a;O,O) • Pr{W(s) - CS <a, all s ~ O}da, 

0 

where the last equality follows from a simple time reversal argument. We 

also have 

00 

I f a 2 
2 

a
2
q (-t,a;O,O) • Pr{W(s) - cs <a, 

0 

all s ~ O}da 

00 

; lim y t 
0 

a~ J qa (-t,y;O,-a) • Q~O,-a) {X(s) < 0, all s ~ O}da 

= 
2
1 lim ~ Q(-t,y){X(s) < O, all s ~ -t} 

y t 0 Cly c 

Hence, by (3.7) and (3.13) 

00 

= g (t) f h (t)l/J (O)da 
c 

0 
.c,a a 

I 
-2 g ( t) g (-t) . 

c c 

The case t < 0 follows by symmetry. D 

The tail behavior of the random variable Z = sup{t E 1R: 

is maximal} is given in Corollary 3.4. 

2 
W(t) - et 

COROLLARY 3.4. The function gc, defining the density f
2 

in Corollary 

3.3, has the following properties 

(i) g (t) 
c 

00 

(4c)113 I 
n=l 

exp((2c
2

)
1
/
3

a t)/Ai'(a ), 
n n 
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if t < O, where the a are the zeros of the Airy function Ai 
n 

on the negative real a.xis. 

2 2 3 
gc ( t) ,...., 4ct exp (- 3 c t ) , as t -+ co • 

Hence we have 

(iii) 

PROOF. 

(3.14) 

as ltl -+co, where a
1 
~ -2.3381 is the largest zero of the Airy 

function Ai and where Ai'(a
1
) ~ 0.7022 (see [l], p.478). 

By (3.8) we can write 

g (t) 
c 

where c
1 

> a
1

, a
1 

being the largest zero of the Airy function Ai. Here 

we use the fact that Ai is an analytic function and that 

! 

I I 
, I 

1
1I4 2 

2

1 
I 3 I 2 .m 1 /Ai ( c I + is ) "' 2 V1r s exp { - 3 s + c 

1 
• ! I s I } , 

as lsl +co, s E JR. 

If t < 0, we can shift the integration road to the left, obtaining 

the series of residues given in (i). 

Ad (ii). Again using the representation (3.14) of 

the integrand has a saddlepoint at (approximately) 

using the relation 

g (t), it is seen that 
c 2 2 
u = 2c t , as t -+ co, 

2 3/2 l I I 4 
Ai(z) ,...., exp(- 3 z )/27r 2 z , Re z -+ co. 

2 2 
Hence, taking c

1 
= 2c t , we obtain by Laplace's method (see e.g. 

Olver (1974), section 3.7) 

2 2 3 2 3/ 2 2 ico 1 2 3 2 
exp( 3 c t )gc(t) ,...., 27fi c r 2hexp( 2 c t y )dy 

-ico 

co I 2 
= 4ct -

1
- J e- 2y dy = 4ct 

rz; -oo 

Finally, part (iii) of the corollary follows innnediately from (i) and (ii). 

D 
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REMARK. It is clear from part (iii) of Corollary 3.4 that the density of 

z has a very thin tail. Using the ~xpansion 10.4.59 in [I], it is possible 

to give a complete asymptotic expansion of the density fz(t), as t + oo, 

just by plugging in this representation of Ai in the proof of (ii) in 

Corollary 3.4 and using Watson's lemma (see e.g. Olver (1974), p.71). We 

shall, however, not go into this. 

The representation of g (t), for t < O, given in Corollary 3.4.(i), 
c 

has been derived from Theorem 4.3 in Groeneboom (1984), using different 

methods, by N.M. Tennne (personal connnunication). 
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4. Excursion integrals and the Grenander estimator. 

Let {W(t): t E JR.} be two-sided standard Brownian motion on JR., 

originating from zero, and let the process {V(a): a E JR.} be defined by 

( 4. l) V(a) = sup{ t E JR.: 
2 

W(t) - (t-a) is maximal}. 

It is easy to see that V is an increasing pure jump process, generated by 

Brownian motion sample paths. A picture of the situation is shown in figure 

4. 1. 

0 

Figure 4. I. 

V(a) is the location of the point where the parabola f(t) = (t-a) 2 + c, 

sliding down along the line t =a, hits two-sided Brownian motion, 

originating from zero. 

The process {V(a): a E JR.} plays a fundamental role in describing 

the global behavior of the Grenander maximum likelihood estimator (MLE) of 

a monotone density. In particular, if F is the class of nonincreasing left 

continuous densities on the interval [O ,oo)' and 

generated by a density f E F' then the Grenander 

the restriction that f should belong to F , is 
~ n 

ous version of the slope of the concave majorant 

xl, .•. ,xn is a sample 

MLE f of f , under 
n 

given by a left continu-... 
F of the empirical 

n 
distribution function F , 

n 
based on x

1
, ••• ,Xn, and the asymptotic vari-

ance of the L
1 

- distance can be expressed in terms of 



-26-

covariance structure of the process {V(a): a E JR.} (under some regularity 

conditions on the density f).For details (and pictures) we refer to 

Groeneboom (1984). 

It is clear that the process {V(a): a E JR.} generates the endpoints 

of "excursions below parabolas", so it is perhaps no surprise that the 

structure of the process {V(a): a E JR.} can be described in terms of 

functionals of ordinary Brownian excursions (with the help of the Cameron

Martin-Girsanov formula). 

We recall the definition of a Brownian excursion. A Brownian excursion 

on [0,1] is a nonhomogeneous Markov process {e(t): t E [0,1]} with mar

ginal densities 

(4. 2) 
2 2 3 3 1 

fe(t)(x) = 2x exp{-x /(2t(l-t))}/{2nt (1-t) }2
, 

and transition densities 

(4.3) 

3/2 2 
= {nt-s(y-x) - nt-s(y+x)} • (1-s) yexp{-y /(2(1-t))} 

•{(I -t) 312 xexp{-x
2
/(2(1-s))}}-

1
, x, y > O, 

I 

where n (x) = u - 2<1>(x/ru) and <j> is the standard normal density (see e.g. 
u 

Ito & McKean (1976), p. 76). Intuitively speaking, a Brownian excursion is 

a Brownian bridge, "conditioned to be positive" (see e.g. Durrett et al 

(1977) and Blumenthal (1983)). More generally, we can consider excursions 

e on an interval [a,b], which are obtained from the excursions defined 

by (4.2) and (4.3) by putting 

(4.4) 

(4. 5) 

where 

~(t) 
1 

= (b - a) 2 e( (t-a) I (b-a)), t E [a,b]. 

Now let v(t,x,w) be defined by 

v(t,x,w) = Q~t,x){, 0 E dw}/dw, 

•o and Q (t ,x) 
I 

are defined as in Theorem 2.1. We will show that 

the infinitesimal generator of the time-space process {(a,V(a)): a E JR.} 

can be expressed in terms of the function 
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(4.6) 
a 

v 
2 

( t , w) = - lim x t 
0 

a x v ( t , x, w) 

and the function 

(4. 7) 
a 

k 1(t) = lim x+O ax K 1(t,x), 

where K
1 
(t,x) is defined by (3.2), with c =I. We will first show that 

v
2

(t,w) can be expressed in terms of an expectation of a function of a 

Brownian excursion integral (Lemma 4.1) and we will compute the Laplace 

transform of the density of this Brownian excursion integral (Lemma 4.2). 

LEMMA 4.1. Let v
2

(t,w) be defined by (4.5) and (4.6). Then we have 

(4.8) 
3 - 1 2 3 3 w 

v
2

(t,w) = {2TI(w-t) } 2 exp{-3 (w -t )} •E exp{-2f e(u)du}, 
t 

where {e(u): u E [t,w]} is a Brownian excursion on [t,w] (see (4.2) 

to (4.4); we write e(u) also for excursions defined on intervals different 

from [0,l ]) . 

PROOF. By part (i) of Theorem 2.l we have, for x > 0, 

= exp{-~ (w
3 

- t
3

) -2tx}l/J (w - t) • 
3 x 

where 1/1 (u) = 
z 

w-t 
• EO{exp(-2 f B(u)du) jB(w-t) =x}dw. 

0 

3 - 1 2 
(21fu ) 2 

z exp(-z /2u), u, z > O, and {B(u): u ~ O} is 

a Bes(3) process, starting at zero at time 0 • Moreover, by part (ii) of 

Theorem 2.1, we have, for u > O, 

0 u 
1/1 (u)E {exp(-2fB(z)dz)IB(u) =x} 
x 0 

where s = 2-l/JA. Define, for x, u > O, 

00 

(4.9) Fu (x) -
2

1f f eiAuAi (2213x + iS) /Ai (i~)dA. 
-oo 
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The function F (x) can be represented as the series of residues 
u 

F (x) 
u 

oo Ai(22/ 3x.+a) 
= 21;3 I n 

n=l Ai' (a ) 
n 

1 /3 
exp(2 a u) 

n 

where the a are the zeros of the function Ai on the negative halfline. 
n 

Hence we have 

00 

1/3 
exp(2 a u) 

n 
(4.10) lim x + 0 F ~ (x) = 2 I 

n=l 

lim x + 0 F~ (x) = 0, 

and 
00 

lim x + 
0 

F"' (x) = 2
7
1

3 l a exp(2
1

/
3

a u). 
n=l n n 

Thus we get, applying l'Hopital's rule, 

a o u 
lim x+O ax E {exp(-2JB(z)dz)IB(u) =x} 

a 
= lim .. 0 ~{F (x)/1/1 (u)} 

x y ox u x 

= 

a a2 

1 
~{F"(x)ijJ (u) - F (x) ~2 1jJ (u)} 

1
. ox u x u ox x 
im 

2 x + 0 (.1_ 1jJ (u)) 2 
dX X 

= 0. 

We therefore obtain, by Lemma 2.4, 

v
2

(t,w) =exp{-~ (w
3
-t

3
)} • 

0 w-t a 
• lim ... 

0 
E {exp(-2 J B(z)dz) I B(w-t) = x} • ~ 1jJ (w-t) 

x y 0 ox x 

3 - 1 2 3 3 w 
= {21f(w-t)} 2 exp{-3(w -t )} •E exp{-2fe(z)dz}, 

t 

noting that 
w 3/2 1 

E exp{-2 J e(z)dz} = E exp{-2(w-t) J e(z)dz}. 0 
t 0 
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The following lennna gives an analytic characterization of the function 

v
2

(t,w) and also gives the Laplace_transform of the excursion integral 
l of e(u)du. 

Lennna 4.2. Let v
2

(t,w) be defined as in Lerrona 2.1. Then we have 

(i) 
2 3 3 v

2
(t,w) = exp{- 3 (w - t ) }p(w-t), 

where the function u + p(u), u ~ O, satisfies the relation 

(4.11) 

00 

A 3 - 1 2/3 f e- u{p(u) - (27fu) 2 }du = 2 Ai'(.;)/Ai(.;) +ill, 
0 

(ii) The function p: lR+ + lR, defined in (i) has the following repre

sentation 

(4.12) 

(iii) 

(4.13) 

00 

p(u) = 2 l 
n=l 

1/3 
exp(2 au), 

n 
u > O, 

where the a are the zeros of the function Ai on the negative n 

halfline. 

The density of the random variable 

transform 

l 

0
f e(u)du has the Laplace 

l 

E exp(-A. f e(u)du) = 
0 

where the a are defined as in (ii). 
n 

A. > 0, 

Proof. Ad (i). By part (ii) of Theorem 2.1 we have (arguing as in the proof 

of Lennna 4.1), 

where F (x) is defined by (4.9), for x, u > 0. Hence 
u 

For x > 0, 

p ( u) = lim x i-
0 

F ~ (x) , u > 0. 

the function u + F'(x) has the Laplace transform 
u 

fe-A.u F'(x)du = 2213Ai'(.; +22/ 3x)/Ai(.;), 
0 u 
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Thus we get 

00 

A d 3 - 1 2 
lim x ,

0 
f e- u{F'(x) - - (21Tu) 2 x exp(-x /2u)}du 

y 0 u ax 

lim x + 
0 

{ 2
213 

Ai' (F;, + 2
213

x) I Ai (F;,) + ill exp (-xill} 

22f 3Ai'(F;,)/Ai(F;,) +ill. 

Since we also have 

co 

f e-A.u{F' (x) a ( 3)-! ( 2/ ) } lim X .j, 0 O U - dX 21TU X exp -x 2u du 

oo A 3 -1 
= fe- u{p(u) - (21Tu) 2 }du, 

0 

(4.11) follows (noting that 
3 -1 

p(u) - (21Tu) 2 = 0(1), u + 0). 

Ad (ii). This is just relation (4.10). 

Ad (iii). By Brownian scaling, we have 

t 3/2 I 
E exp{-2 f e(u)du} = E exp{-2t f e(u)du}. 

0 0 

Thus (4.13) follows from part (ii) by taking A.= 2t
3

/
2

• 0 

The structure of the jump process {V(a): a E JR.}, defined by (4.1), 

is determined in the following theorem. 

Theorem 4. I. 
2 

f: JR. +1R, 

Let B denote the set of bounded Borel measurable functions 

and let {Pt: t ~ O} be the semigroup of linear operators 

on B defined by 

(4.14) [Ptf](a,x) = E{f(a+t,V(a+t))!V(a) =x}. 

Let C
00 

(1R
2

) be the space of functions f: 1R
2 

+ 1R ,which have compact 
c 

support and continuous derivatives of all orders3 and let C(JR.
2

) be the 

space of continuous functions 
2 

f: JR. +1R. Then the semigroup 
'"' {Pt: t ~ O} has the infinitesimal generator G: C

00

(1R
2

) + C(R
2
), 

c 

defined by 
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[Gf](a,x) = :a f(a,x) + 

00 

+ 2 J (y-x){k
1 
(y-a)/k

1 
(x-a) }{f(a,y) - f(a,x) }v

2
(x-a,y-a)dy 

x 

a 
= - f(a x) + aa ' 

00 

+ 2 J (y-x){g
1 
(y-a)/g

1 
(x-a) }{f(a,y) - f(a,x) }p(y-x)dy 

x 

functions kl and gl are defined as in Coro Uary 3. I and the where the 

function 

function 

p: lR+ + lR+ is defined as in Lerrona 4.2. In particular the 

gl has Fourier transform 

(4.16) A E lR' 

(see (3.8)), and the Laplace transform of the function p
0

: lR+ + lR, 

defined by 

(4.17) 
3 _! 

p
0

(u) = p(u) - (2nu) 2
, u > 0 

(the regularization removes the singularity of the function p of order 

(2 .,,.u 3 )-~ ) · · b .. at zero ~s g~ven y 

(4.18) 

(see ( 4. 11)) . 

Proof. First we note that for the process {V(a): a E lR} of locations of 

maxima the "pinning down" of two-sided Brownian motion at zero is immaterial; 

we could just as well pin down Brownian motion at another place, without 

changing the structure of the process {V(a): a E lR}. Now consider the 

process {X(t): t ~ t
0

}, 

= W(t) - t
2

, and {W(t): 
2 

at x
0 

+ t
0 

at time t
0

• 

{X(t): ~. ~ t
0

}, and let 

starting at x
0 

at time t
0

, where X(t) = 
t ~ t

0
} is (one-sided) Brownian motion, starting 

Let M denote the maximum of the process 

'M denote the (a.s. unique) location of this 

maximum. Then 'M is a last-exit time for the process 

{(X(u),M(u)) 
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where M(u) = max{X(z): t
0 

~ z ~ u}, since TM is the time of the last 

visit to the set {(x,x): x ~ x
0

} •. From the results on the decomposition 

of Markov processes at last-exit times in Meyer, Smythe and Walsh (1972) 

it then follows that, conditionally, given TM= t
1 

and M = a, the pro

cess {X(t): t ~ t
1
} is a (nonhomogeneous) diffusion, which we will denote 

by {Y(t): t ~ t
1
}, with transition probabilities 

(4.19) Pr{Y(w) E dyjY(t) x} 

-1 a 
K

1
(t,a-x) q (t,x;w,y)K

1
(w,a-y), t

1 
< t < w; x, y < a, 

where K
1 
(u,z) is defined by (3.2), and where 

a 
q (t,x;w,y) is the transi-

tion density of the process X, killed when reaching a (see (2. 3)). The 

marginal densities of the process Y are given by 

(4.20) Pr{Y(w) E dy} = 

where the functions v and k
1 

are defined by (4.5) and (4. 7), respectively. 

This follows from (4. 19), by taking the limit as t .J- t
1 

and x ta, notic-
a a 

ing that q (t,x;w,y) = q (-w,y;-t,x) and that, by Lemma 2.2, 

v(-w,y-a,-t
1
) 

1 a 
= - 2a

4 
q (-w,y;-t,a). 

Define, for b > 0, 

T (b) = sup{ t ~ t 
1

: Y ( t) + 2b ( t - t 
1
) is maximal}. 

It is easily seen that we have 

(4.21) 

A sample path of the process {Y(t) + 2b(t - t
1
) : t ~ t

1
} can only have a 

maximum at t
2 

> t
1

, if the sample path is ·of the form shown in Figure 

4.2. 
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Figure 4.2. 

The sample path in Figure 4. 2 attains its maximum value m at time t
2

; 

the point ( t
0 

,m) is the intersection of the lines f (u) = a+ 2b (u - t 
1

) 

and f(u) = m, hence t
0 

= t
1 

+ (m-a)/(2b). 

Let {Z(t): t ~ t
1

} be the process defined by Z(t) 

By (4.20) we have 

(4.22) Pr{Z(t
0

) E dy}/dy = Pr{Y(t
0

) E -2b(t- t
1

) +dy}/dy 

Let ~ denote the maximum of the process {Z(t): t ~ t
1

} and let T(b) 

be the (a.s. unique) location of this maximum (see (4.21)). We will show 

(4.23) Pr{~ E dm, T(b) E dt2} 

-1 m 
= 2k

1 
Ct

1
) J v(-t

0
,y-m,-t

1
)v(t

0
-b,y-m,t

2
-b)dy k

1 
(t

2
-b)dmdt

2 -oo 

For the proof of (4.23), we consider the process {U(t): t ~ t
0

}, 

starting at y at time t
0

, with corresponding probability measure R(tO,y) 

on the Borel field of C([t
0

,oo); JR.), where 

" 

(4.24) U(t) W(t) - t
2 

+ 2b(t - t
1
), 
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and {W(t): t ;;:::: t
0

} is Brownian motion, starting at at 

time 

Let 

to. 
a 

r (s,x;t,y) be the transition density of the process U, killed when 

reaching m, let L(t,x) be defined by 

L(t,x) = R(t,-x){U(z) < 0, for all z 2::: t}, x > 0, 

and let 

a 
l(t,x) = Clx L(t,x). 

Furthermore, let M denote the maximum of the process {U ( t) : t ;;:::: t
0
}, and 

let TM be the (a.s. unique) location of this maximum. Then we have, argu

ing as in the proof of Corollary 3.1, 

R(t0,y){T 
M > t2' ME dm} 

m a 
= { f r (t

0
,y;t

2
,z)l(t

2
,m-z)dz}dm, 

-co 

and the joint density of (TM,M) at (t
2

,m) is given by 

(4.25) 

where 

l(t) = lim x + 
0 

l(t,x). 

But by (4.24), we can write 

(4.26) U(t) 
2 

W(z) - z , z = t -b, 

where {W(z): z 2::: t
0 

- b} is Brownian motion, starting at 

time t
0 

-b. Hence we get from (4.25) and (4.26) 

2 
y+(t

0
-b) at 
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Relation (4.23) now follows, since by (4.22) 

m -I 
= f (2k

1 
(t

1
) v(-t

0
,y-m,-t

1
)K

1 
(t

0
,m-y)) • 

-oo 

-I (t ,y) 
• (K

1 
(t

0
,m-y) R O {TM E dt

2
, ME dm})dy 

Furthermore, since a :::; m :::; a+ 2b(t
2
-t

1
), if -r(b) = t

2
, (see Figure 

4.2), we obtain from (4.23) by integration with respect to m 

Pr{-r(b) E dt
2
}/dt

2 

-I a+2b(t
2
-t

1
) 

= 2k
1 

( t I) { f 
m 

J v(-t
0

,y-m,-t
1
) • 

a -oo 

• v(t
0 

-b,y-m,t
2 

-b)k
1 
(t

2 
-b)dy}dm 

Letting b tend to zero, we obtain 

(4. 27) 
-1 

4bkl (tl) kl (t2) • 

t2 0 
• J { J v(-to,y,-tl)v(to,y,t2)dy}dto 

tl -oo 

+ o(b), 

making the change of variables m = a + 2b ( t
0 

- t 
1 

) • 

By Theorem 2.1.(i) and (4.5) we have 

v(-t
0
,y,-t

1
)v(t

0
,y,t

2
) 

1 t2 
= 2 E {exp(-2 J e(u)dul e(t

0
) = 

t] 

-y}•f (-y)· 
e(to) 

as b + 0, 

where f'e(u): t
1

:::; u:::; t
2

} is a Brownian excursion on [t
1
,t

2
J, and 

fe(t )(-y) is the density of e(t
0

) at -y (> O). This is easily seen 

by O gluing the two (conditioned) Bessel processes of Theorem 2.1, on 
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[-t
0
,-t

1
J and [t

0
,t

2
J respectively, together at t

0 
(not unlike the 

construction in section 2.10 of Ito_& McKean (1974)), applying time rever

sal and translation on the Bessel process on [-t
0
,-t

1
J. Hence we get 

0 

(4.28) f v(-to,y,-tl)v(to,y,t2)dy 
-co 

Thus we obtain, from (4.27), (4.28) and (4.8) 

(4.29) 

2bk (t )-
1
k

2
(t

2
){27T(t

2
-t

1
)}-! exp{-~(t~-t~)} 

t2 
• E exp{-2 f e(u)du} + a(b) 

tl 

The first equality in (4.15) now follows from (4.21) and (4.29), noting that 

the distribution of V(a) - a is independent of a (and hence equal to that 

of V(O)). The second equality follows from Lemma 4.2.(i) and (3.7). 

Finally, (4.18) also follows from Lemma 4.2.(i). 0 

A different version of Theorem 4. I is given in section 4 of Groeneboom 

(1984) (see Theorem 4.1 of that section), where also a different approach, 

based on integral equations is given. The integral equations are further 

analyzed in Tennne (1984). 

We finally want to note that the process {V(a): a E JR.} not only 

describes the limiting global behavior of the Grenander maximum likelihood 

estimator of a (smooth and strictly decreasing) density (see Groeneboom 

(1984)), but also describes the limiting behavior of certain "isotonic" 

estimators of distribution functions and hazard functions. In particular, 

by using the properties of this process, a simple proof of results in Kiefer 

& Wolfowitz (1976) can be given, which at the same time clarifies the con

nection between these results (on the estimation of concave distribution ,, 

functions) and results on the estimation of a monotone density. These 

statistical applications will be discussed elsewhere. 
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5. Appendix 

Proof of Theorem 3.1. We have, for x > 0, 

K (s,x) = Q(s,-x){X(t) < 0 t ~ s} = 
c c ' 

= lim Q(s,-x){X(u) < O, s $ u $ t}. 
t-+ 00 C 

Furthermore, by Corollary 2. I, 

where 

(5. I) 

Q(s,-x){X(u) < 0, s $ u $ t} = 
c 

o a 
f q (s,-x;t,y)dy 

-oo 

00 

= exp{-33 c
2
(t

3
-s

3
)- 2csx}• f exp(2cty)r (t-s;x,y)dy, 

0 c 

a u 
r (u;x,y) = p (x,y) Ex {exp(-2c f B(z)dz) I B(u) = y}, 

c u 0 

see (2. 19). We will show that 

(5. 2) 

00 

lim t exp{- -
3

2 
c

2
t

3
} f exp(2cty)r (t-s;x,y)dy 

+oo O C 

from which (3.3) and (3.4) innnediately follow. 

First of all, since, by (5.1), r (t-s;x,y) ~ I, we have for each 
c 

M > O, 

2 2 3 M 
lim exp{- -

3 
c t } f exp (2cty) r ( t-s ;x,y )dy 

t+oo 0 C 

2 2 3 
$ lim exp{- -

3 
c t + 2ctM} = O. 

t +oo 

Taking M > x, we obtain from (2.20) 

(5 .3) 

00 

f e
2
ctyrc(t-s;x,y)dy = 

M 
00 co 

f e 2cty{_I f i(t-s);\ } 
= 2 ~ e 2gi;\(x)hi;\(y)d;\ dy 

M -co 
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where giA. (x) and hiA (y) are defined by (2. 14) and (2. 15) (with .A re

placed by i.A). We note that, if y > x > 0, the Laplace transform 

can be inverted along any line of the form c 
1 

+ iJR. , parallel to the imag

inary axis, with c
1 

> a
1

, and a
1 

the largest zero of the Airy function 

Ai on the negative halfline (this will become clear from the computations 

below). 

We now show that we can interchange the order of integration in the 

expression at the right-hand side of (5.3). We have, by (2.14) and (2.15), 

(5. 4) 

• {Ai(il;)Bi(il; +x
1
) - Bi(il;)Ai(il; +x

1
)}, 

where 
1/3 

and y
1 

= (4c) y. 

that i; > O. By 10.4.9 in [l], we can write 

(5.5) Bi (z) = iAi(z) - 2ie 1Ti/3 Ai (z e - 21Ti/3) 

Hence we have 

and therefore 

(5. 6) 

_1 -1/4 I ~ 
,...., 1T 

2 i; exp ( 2 x 
1
v21;) , as i; -+ 00 

using the asymptotic equivalence 

First suppose 

(5. 7) 
I _! -1/4 2 3/2 

Ai ( z) ,...., 21T 
2 z exp ( - 3 z ) , Jzl-+ 00

, larg(z)j < 1T, 
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(see 10.4.59 in [1]), and the expansion 

as F;. + 00
• A similar analysis shows 

(5. 8) 

2 3/2 3 -! 3/2 
= O(exp{-3r (cos 2e + 2 sin e)}), 

as where r = I y 
1 

+it;. I , y 
1 

= r cos e and F;. = r sine, O :,;; e :,;; 

Since 3e 2-! . 3/2e -3/2R {('C )3/2 ('C)3/2} cos 2 + sin = r e l.s + y - l.s , the 

function f: e +cos ~e + 2-!sin
312

e is strictly positive on the interval 

[O, !'IT), and is zero at e = !'IT. A Taylor expansion of the function f in 

a neighborhood of 6 = !'IT shows 

(5.9) 
3 _1 

f ( e) ,...., 2 • 2 2 cos e, as 6 t !'IT, 

and hence 

(5. 10) 

as F;, + oo and y
1

/t;. + 0. 

Thus, by (5.4) to (5.10) and the choice of M > x, we have, if y ~ M, 

for a fixed constant . c
1

> 0, as A + 00 and/or y + oo, implying that the 

function 

(5. 11) 

is absolutely integrable on [M,oo) x (O,oo). 
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Similarly, using the representation 

Bi(z) = -iAi(z) + 2ie-rri/3Ai(zeZrri/3), 

instead of (5.5) (see 10.4.9 in [I]), it is seen that the function (5.11) 

is absolutely integrable on [M, 00 ) x (-00 ,0). Hence we can apply Fubini 's 

theorem, yielding 

00 00 

f 
i(t-s):\ f 2cty 

e g.,(x){ e h.,(y)dy}d:\. 
-co l.A M l.A 

Fix :\ E JR.. Then, as t -+ co, 

00 

(5. 12) f exp(2cty)h., (y)dy 
M l.A 

00 

f exp(2cty)Ai(is +y
1
)dy 

M 

-I /3 2 2 3 
(4c) exp{3c t - it:\}. 

This asymptotic relation can be derived by first writing (using the change 

of variables y = ct
2
u) 

00 

f exp(2cty)Ai(is +y
1
)dy 

M 

= ct
2 j 

2 
exp(2c

2
t

3
u)Ai(is + (2c

2
)

2
/\

2
u)du 

m/ct 

and next, using (5.7), by expanding the integrand at u =I, which is the 

approximate location of its saddle point for large t. This yields 

00 

f exp(2cty)Ai(is +y
1 
)dy 

M 

,..., 2-?/6rr-!c213 t 312exp( ~ 3 c 2 t 3 - itA) • jexp{-!c
2
t\u-1)

2
}du 

0 2 

-1/3 2 2 3 
(4c) exp( 3 c t - it:\), t -+ 00 

Thus we obtain, for fixed a > 0, 

(5. I 3) 

a oo 

; exp(-~ c
2

t
3

) jaexp(i(t-s):\)giA (x){J exp(2cty)Ai(is +y
1
)dy}d:\ 
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a 
f exp(-isl.)l/i (t,)d/., 

x 
-a 

as t -+ 00 

Hence we are through, if we can show that we can take a= 00 in (5.13), 

or, stated differently, that 

(5.14) 2 2 3 f lim exp(- -
3 

c t ) exp(i(t-s)/.)gi/. (x) • 
t,a+oo /.>a 

00 

• f(2cty)Ai(is+y
1
)dydt. o, 

M 

and similarly that the integral over the region (-00 ,-a) x [M, 00 ) tends to 

zero as t -+ 00 and a -+ 00 • We wi 11 only show (5. 14) , since the other case 

can be treated in a completely similar way. 
2 2 2 

By the change of variables y = et u and A = 2c t v, we get 

co 

f I exp (i ( t-s) !.) giA (x)Mf exp (2cty)Ai (is + y 
1
) I dyd/. = 

/.>a 

-3/2 -1 2 3 f 1 2 1/3 r;:;;--c 2 1T et 
22

exp(2x
1
t(2c) v2v)dv• 

v > a/2c t 

• f 
2 

exp{2c
2

t
3

(u -~Re{(u+iv) 3 / 2 - (iv)
3

/
2

})}du, 
u > M/ct 

as a -+ oo. If 0 ~ v < 2, we have 

(5. 15) 

co 

f 
2 3 2 . 3/2 3/2 

2 
exp{2c t (u - 3 Re{ (u +iv) - (iv) } ) }du 

M/ct 
co 

2 3 
0( f 

2 
exp{2c t (f(v) -g(u,v))}du), 

M/ct 

uniformly in v E [0,2), where 

and is the unique solution of the equation (in u) 

! 
(5.16) Re{(u+iv) 2

} = 1. 

It is clear that the root u
1 

of the equation (5.16) is a strictly 
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decreasing function of v E [0,2], with u
1 

= I, if v = 0, and u
1 

= 0, 

if v = 2. · The function f is also .strictly decreasing in v, with 

f(O)=~ and f(2)=0. Fortheproof,wewrite u
1

=rcos8, v=rsin8, 

which yields 

(5. 17) 2R {( . )3/2 (. )3/2} 
u

1 
- 3 e u

1 
+iv - iv 

r cos 8 - ~ r 312{cos ~ 8 2-! · 31
2

8} 
3 2 

- sin 

I 2 I 
- + tg - 8 
3 2 

4 3/2 I 
8 - tg -

3 2 

if 
! I l 

r
2
cos z 8 Re(u

1 
+iv) 

2 1, as can be verified by writing cos 8 = 

2 I , 2 I 3 
8 = cos 2 e - s 11i. 2 e , cos 2 

2 • 3/ 2 
I 8 3 / 2 

I 8 Si·nce 

3 I 1 • 2 I - 1 3/2 
cos 28 - 3cos28sin 

2
8 and 2 2sin 8 

= sin 2 cos 2 • 

tion of v , it is seen from 

tg 8 = v/ul' and ul is a decreasing func

(5. l 7) that f(v) is a strictly decreasing 

function of v 

0 ~ 8 ~ !TI). 

(using that 
2 1 4 3/2 1 8 

. . d . . 
tg 28 3 tg 2 is strictly ecreasing in 8 , 

If v ~ 2, we have 

(5. 18) 

00 

J 
2 3 2 . 3/2 . 3/2 

2 
exp{2c t (u - 3 Re{ (u +iv) - (iv) } ) }du 

M/ct 

00 

! 2 3 l 
= 0{ J 

2 
exp{-2 2 c t v 2 u}du} 

M/ct 

0{ 
2 

; exp ( - ctMfu)}, 

c t & 

as t -+ 00 uniformly in v E [2, 00), since in this case the function 

2 . 3/2 
u-+ u- 3Re(u+iv) , u ~ O, is decreasing on [O,oo). 

Thus we obtain, from (5.15), (5.17) and (5.18) 

00 

J 
2 

exp{2c
2

t
3 

(u - ~Re{ (u +iv) 
3

/
2 

- (iv) 
3

1
2
)}) }du 

M/ct 

= 0(exp(c
1 

t
3 

- ctMfu)), 

if v ~~o > 0, uniformly in 

(depending on o ) such that 

v E [o,oo), where 

2 
c

1 
< 3· This shows 

is a positive constant 
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(5. 19) 2 2 3 f l 2 l/3r,::-, 
exp(-3c t) exp(2x

1
t(2c) v2v)dv • 

. v;;::: 0 

f 2 3 2 . 3/2 3/2 
2 

exp{2c t (u - 3 Re{ (u +iv) - (iv) } ) }du 
u > M/ct 

+ 0, as t + oo, 

since x = 
l 

(4 ) l/
3 

d h M l l t(2c2) l/3 r;;--2v ( . ) c x an ence et > 2 x vzv using M > x • 
2 2 

v + O, but A = 2c t v + 00 , we get Finally, if 

(5. 20) 3 f 2 3 2 . . 3/2 
t 

2 
exp{2c t (u - 3 Re{ (u +iv) 

M/ct 
- (iv)

3/ 2
})}du 

= O{exp( ~ t
3 

- ~ c
2 

t
3

(2v)
312

)}, 

using the same techniques as in the derivation of (5.12). 

Relation (5.14) now follows from (5.19) and (5.20). D 
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