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Brownian particles in shear fiow and harmonic potentials: A study of long-time tails

H. J. H. Clercx* and P. P. J. M. Schram
Department ofPhysics, Eindhouen Uniuersity of Technology, P 0 B. o.x 5l3, 5600 MB Eindhouen, The netherlands

(Received 30 January 1992)

In this paper we present the results of a study of the mean-square displacement of a Brownian particle
in a harmonic potential and of a Brownian particle in shear flow. We have focused on the long-time be-

havior of the mean-square displacement. In contrast with earlier results, presented by others who stud-

ied the Stokes limit of these problems, we have studied this problem using the time-dependent linearized

incompressible Navier-Stokes equations to describe the fluid motion. Then we see that the mean-square

displacement is strongly influenced by backflow effects in the fluid, resulting, among other things, in

long-time tails of correlation functions. We have compared our results with those calculated in the

Stokes limit; important differences exist between them. The main differences are the long-time tails in

correlation functions and, related with them, the larger time scales that should be considered to obtain
diffusive behavior in the case of a Brownian particle in a harmonic potential or to obtain the cubic re-

gime in the mean-square displacement of a Brownian particle in shear flow. Furthermore, we have stud-

ied the velocity autocorrelation function of a Brownian particle in a harmonic potential. In the over-

damped case we have shown a ~ ' long-time tail instead of the exponential tail that can be obtained in

the Stokes limit. Also the sign of both tails differ.

PACS number(s): 47.15.Gf, 05.40.+j

I. INTRODUCTION

The theory of Brownian motion has been and still is a
field of intensive research. There are many examples of
present-day research. We can think of the effect of
Brownian motion on the behavior of the low-shear-rate
effective viscosity of suspensions which has been studied
theoretically by, e.g. , Batchelor [1]. Some other aspects
of present-day research have already been mentioned by
the authors in preceding articles such as the study of the
translational and rotational self-diffusion coefficient (see
introduction and references in [2,3]). Also much experi-
mental research has been performed such as measure-
ments of the time-dependent diffusion coefficient of
Brownian particles by Weitz et al. [4]. In the field of
computational physics a subdiscipline has been developed
called Brownian dynamics [5]. This is a molecular-
dynamics-like method to determine the trajectories of
Brownian particles. With this method a system of
Brownian particles can be simulated. In this article we

present some results of a study of correlation functions of
Brownian particles immersed in an unbounded Quid.
First we shall consider the position and velocity correla-
tion functions of a Brownian particle in a harmonic po-
tential. Then we shall consider position correlation func-
tions of a Brownian particle in an externally imposed
shear How. The mean-square displacement of these parti-
cles, under the circumstances described above, can be
studied, and in connection with it the diffusion of the
Brownian particles if a diffusional regime exists. For the
moment we assume that hydrodynamic interactions are
absent. Before we come to these points we give a short
historical review.

In 1827 Robert Brown, a Scottish botanist, observed

where (=6miloa, with bio the shear viscosity of the fiuid

and a the radius of the Brownian particle. Moreover, k~
is the Boltzmann constant and T is the absolute tempera-
ture. This relation has been derived by using thermo-
dynamic arguments. Besides the above-mentioned result,
Einstein defined the following relation between the
diffusion coefficient Do and the velocity autocorrelation
function P(t), although he did not use this relation to ob-
tain Eq. (1.1),

Do= lim
7~ oo

( b,x (t))
2t o

(1.2)

where (hx (t)) is the mean-square displacement. It is
obvious that the long-time behavior should be such that
tg(t)~0 if t~~. In the same period Langevin used
another method to study diffusion of Brownian particles.
He introduced an equation of motion for free Brownian
particles:

m U(t ) = (U(t )+R(t ), — (1.3)

with m the mass of the particle, U(t ) its velocity. R(t ) is

under the microscope the random motion of pollen
grains. This was the starting point of the study of
Brownian motion. In the beginning of this century some

important steps in the development of the theory of
Brownian motion were set by Einstein [6] and Langevin
[7]. Einstein presented a relation between the diffusion
coefficient Dp of a spherical Brownian particle and the
Stokes friction coefficient g, nowadays known as the
Stokes-Einstein relation,

k, z
Do=
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(R, (t)R. (t')) =2gk~T5,"5(t t—'), (1.4)

which means that successive collisions of fluid molecules
are uncorrelated. With the Langevin equation an explicit
expression for the velocity autocorrelation function can
be derived which, in this case, is an exponentially decay-
ing function of time [8],

a random force exerted by the fluid molecules in col-
lisions with the Brownian particle. The random force is
assumed to be Gaussian, (R(t)) =0 where ( ) denotes
an ensemble average. Furthermore,

cules with the Brownian particle are correlated, and con-
sequently the random force autocorrelation function is
not proportional to the Dirac 5 function anymore, al-
though the random force remains Gaussian. Widom was
able to solve this problem analytically and showed the ex-
istence of the long-time tail in the velocity autocorrela-
tion function of the Brownian particle [18]. The follow-
ing result for the velocity autocorrelation function can be
obtained:

k~T
p(t)= [b exp(b t)erfc(b&t )

M(b —a)
k~T

P(t ) = exp —+t (1.5)

with

—a exp(a t)erfc(a&t )], (1.8)

In the years following these important developments
several other authors have presented results of studies of
the behavior of Brownian particles. We think of the
work of Uhlenbeck and Ornstein who studied among oth-
er things the behavior of Brownian particles in a harmon-
ic potential [9]. Much work on the general theory of
Brownian motion has been reviewed by Chandrasekhar
[10]and Wang and Uhlenbeck [11].

In the 1960s several publications concerning computer
simulations to study the behavior of Quid molecules were
published. Both Rahman [12,13] and Alder and Wain-
wright [14—16] found in computer experiments, where
they simulated the motion of a tagged particle in a hard-
sphere fluid, that the velocity autocorrelation function of
that tagged particle has a long-time tail, instead of show-
ing an exponential decay, viz. ,

(1.6)

with rs =(6m.rioa/m )t and C a constant. Equation (1.6)
is valid in the case of a three-dimensional hard-sphere
fluid. In general they obtained a long-time-tail behavior
I, ",with d the dimensionality of the system. In one-
and two-dimensional systems this long-time tail leads to
divergencies in Green-Kubo integrals like Eq. (1.2). Ald-
er and Wainwright were able to explain the long-time tail
in Eq. (1.6) for three-dimensional hard-sphere fluids by
considering the cooperative effect from the surrounding
fluid molecules, which could be described by macroscopic
hydrodynamics [15,16]. This explanation was also given
by Zwanzig and Bixon [17]. Widom studied the behavior
of a spherical Brownian particle in a viscous fluid by us-
ing the generalized Langevin equation, a Langevin equa-
tion with a memory kernel, viz. ,

mU(t) = —f g(t —r)U(r)dr+R(t) . (1.7)

Apart from the different form of the Langevin equation it
is important to note that the collisions of the fluid mole-

a =[z+(z —4(M)'~ ]/2M,
b=[z —(z —4(M)' ]/2M .

In this equation we have introduced the shorthand nota-
tion z=6na Qprto, with a the radius of the Brownian
particle, p the Quid density, and g0 the shear viscosity of
the fluid. Furthermore we have introduced the effective
mass M=m+ —,'m0, with m the mass of the Brownian
particle and m0 =—', ma p, the mass of the fluid displaced
by the Brownian particle. We emphasize that in the limit
t~0 we have

k~T
lim P(t) =

0
(1.9)

P(t) =ks T +0
2g' ~ t t

(1.10)

which shows the famous long-time tail.
In an analogous way one can obtain an expression for

the mean-square displacement:

This result is in contradiction with the equipartition
theorem because the particle mass m instead of the
effective mass M would be expected in Eq. (1.9). This
paradox has been solved by Zwanzig and Bixon [19] (see
in this context also Ref. [20]). They have shown a rapid
initial decrease from kttT/m to ksT/M at very short
time scales by including compressibility effects in the
study of the velocity autocorrelation function. It is easy
to determine the long-time behavior of the velocity auto-
correlation function, using the asymptotic expansion of
the product of the exponential function and complemen-
tary error function (see also Sec. II). We obtain for P(t )

(b,x'(t)) =%'(t)=2D, t — —«+2z — (z —gM )

+ [b 3exp(b2t)erfc(bv't ) —a exp(a t)erfc(a&t )]
M(b —a)
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This expression has already been presented by Paul and
Pusey [21]. Weitz et al. have presented measurements
which support this expression [4]. In the limit of large r

we obtain the familiar result 0'(t ) =2Dot
Since that time several other authors have also studied

this kind of problem [22—24] as well as the rotational
counterpart of this function [25—27]. Ailawadi and
Berne showed the following long-time behavior of the an-
gular velocity autocorrelation function [25]:

P„(&)=c(rs) '" rs»1, (1.12)

with, in the case of spherical particles, ~z = —", ~z. Finally
we want to remark that these long-time tails in correla-
tion functions of microscopic properties have appeared in
many theories and are accepted among statistical physi-
cists (see for a review, e.g. , Pomeau and Resibois [28]).

In Secs. II and III we present the results of a study of
the velocity autocorrelation function and the mean-
square displacement of a Brownian particle in a harmonic
potential and in an externally imposed shear flow, respec-
tively. We shall concentrate on the backflow effects,
which appear explicitly in the generalized Langevin equa-
tions, necessary to solve the problems mentioned above.
We end with a short conclusion.

II. A BROWMAN PARTICLE
IN A HARMONIC POTENTIAL

We present the results of a study of a Brownian parti-
cle in a harmonic potential immersed in an unbounded
fluid. The fluid is at rest at infinity. This model can be
used to describe a Brownian particle in the equilibrium
position of a potential, where small displacernents can be
assumed to be harmonic. We can think of small charged
colloidal particles in a crystal structure. The problem of
a Brownian particle confined to a restricted volume can
also be roughly described by using a harmonic potential.
In this study we have assumed that the particle is of such
a small size that the Reynolds number of the fluid motion
induced by the Brownian particle is small. So we can
neglect the nonlinear term in the Navier-Stokes equa-
tions. The fluid motion is then described by the linear-
ized incompressible time-dependent Navier-Stokes equa-
tions. Furthermore, we introduce a harmonic force in
the x direction: F(t ) = Kx (t ). Apart —from this force
we consider a random force R(t ). As is the case with the
study of the free Brownian particle we can describe the

problem under consideration as a one-dimensional prob-
lem because there is no coupling with positions and ve-
locities of the y and z directions. For that reason we sha11
omit the vector notation. The Brownian particle has ve-
locity U(t) if t )0, and is assumed to be at rest if t ~0.
The velocity of this particle is determined by its velocity
at earlier times via backflow effects in the fluid; the equa-
tion of motion is now, assuming that the particle is at the
equilibrium position xo=O if t=O and at rest for t ~0,
described by the foBowing generalized linear Langevin
equation, which is called the Stokes-Boussinesq equation
(with a harmonic force). It can be derived by solving the
time-dependent Navier-Stokes equations describing the
system under consideration [29,30]:

m U(t ) = 6—~rioa U(t ) ——,'moU(t )

—6a gvrpgof U(r)dr K—x(t)+R(t) .
0 v'r —r

(2.1}

U(s)=A(s)R(s), A(s}=
(Ms +zs&s +gs+K)

(2.3)

with z, g, and M already introduced in Sec. I [below Eqs.
(1.1) and (1.8)]. The Laplace transform of the velocity au-
tocorrelation function is now

( U(s)U(s') }= A(s)A(s')(R(s)R(s')) . (2.4)

Taking x(0)=0 and using the fact that the position x(t )

is the time integral of the velocity of the Brownian parti-
cle, we find for the position autocorrelation function

(x(s )x (s') ) =B(s )B(s')(R (s )R (s') ),
B(s)=A(s)/s . (2.5)

This function is used to determine the mean-square dis-
placernent of the Brownian particle. It is obvious that it
is necessary to know a relation between the Laplace
transform of the random force autocorrelation function
and the functions A (s ) and B(s ) to evaluate the Laplace
inverse of both expressions above [Eqs. (2.4} and (2.5)].
%'e start with the Fourier transform of the random force
autocorrelation function derived by Bedeaux and Mazux.
They used a generalized Faxen theorem and obtained [32]

(R(co)R *(co') ) =4~k' T5(~ co')(g+ —,
'z—&2icoi )

—:2~O(i~i )5(~—~') (2.6)

From the properties of the equation above we can con-
clude that the random force autocorrelation function has
the following form:

(R(t, )R(r, ))=0(ir, —r, i) . (2.7)

The first term of Eq. (2.1) is the ordinary Stokes's fric-
tion, the second is connected with the virtual mass of a
sphere in an incompressible fluid, and the third is a
memory term associated with the hydrodynamic retarda-
tion effects and related to the penetration depth of
viscous unsteady Qow around a sphere. The motion of
the Brownian particle in the y and z directions can be
determined by solving an analogous equation without the
harmonic term. The results for this case are summarized
in Sec. I. The equation of motion of the particle in the x
direction can be solved by either using the theory of
Fourier transforms or the theory of Laplace transforms.
We use the latter method for convenience because it is
the appropriate one if studying Brownian particles in
shear flow (see Sec. III). The Laplace transform of a
function f(t ) has the following form [31]:

f(s)= f e "f(t)dt, Re(s)) 0 . (2.2)
0

Via the Laplace transform of Eq. (2.1) we obtain
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The Laplace transform of Eq. (2.7) is (see Ref. [33], p.
195}

A(U(s)U(s'))=ksT, —MA(s)A(s')
$+$

8(s )+0(s'}
s+s' (2.8) K—B(s )B(s') (2.10)

A simple relation can be derived between 8(s ) and A (s )

[Eq. (2.3)] [33],

The inverse Laplace transformation, with the use of
tables of Laplace transforms [34], results in the following
expression:

(U(t, )U(t, ))=kaT[A(it, —t, i) MA—(t, )A(t, )

A (s )8(s ) =ks T[1—MsA (s ) KB(—s)], (2.9)

KB(ti—)B(t2)], (2.11)

and the Laplace transform of the velocity autocorrelation
function is now with the functions A(t) and B(t),

1 a exp(a t)erfc(av t ) + b exp(b t)erfc(b~t) c exp(c t)erfc(c~t ) d exp(d t)erfc(d&t )

M (a b)(a ——c )(a —d ) (b —a )(b —c )(b —d ) (c —a )(c b)(c ——d ) (d —a )(d b)(d ——c )

(2.12)

1 a exp(a t)erfc( av't ) + b exp(b t)erfc(b&t )

0 M (a b)(a —c—)(a —d) (b —a )(b c)(b —d—)

c exp(c t)erfc(c&t ) d exp(d t)erfc(dVt )

(c —a)(c b)(c —d—) (d —a)(d b)(d ——c)
(2.13)

The function erfc(z) is the complementary error function
as defined in [35]. The (complex) coefficients a, b, c, and
d can be obtained by writing the denominator in the ex-
pression of A (s ) [or B(s ) ] in the following form:

Ms +zs&s +gs+K
=M(~s+a)(&s +b)(&s +c)(&s +d) . (2.14)

We assume for the moment that the coefficients a, b, c,
and d a11 differ from each other. If two or more
coefBcients are equal there are two ways to proceed. We
can come to an expression for the velocity autocorrela-
tion function, in that special case, by taking the appropri-
ate limits in Eqs. (2.12) and (2.13). We may also rederive
Eqs. (2.12) and (2.13) by studying the Laplace inverse of
the function A(s)=sM '[(&s +a) (&s +c)(&s
+d )] ', where we have assumed that a =b. Other com-
binations of equal coefficients may be studied in the same
way.

We are interested in the stationary part of Eq. (2.11),
which can be obtained by studying the limit t, ~00,
t2~00, but t2 —t, =~&0 remains finite. We can con-
clude from Eqs. (2.12) and (2.13) that both A (t )~0 and
B(t)~0 if t~~ by considering its asymptotic expan-
sion via

exp(a t)erfc(a&t )=2 1

a m t
1

2~ma tv t

( U(t, ) U(t, +r) ) "=P(r) =kq T—A (r}, (2.16)

where ( )" denotes the long-time limit described above.
We are now interested in the long-time behavior of this
expression. Replacement of the complementary error
functions in our expression of A (r}by the asymptotic ex-
pansion (2.15) gives

P(r) =ks T +015z 1 1

8K' ~ r' r r4&r

ia ir»1 etc . (2.17)

In the derivation of this asymptotic expansion we have
used the following relations between the coefficients a to
d, which we shall not demonstrate here:

+ 3
4v'7ra 't 'V't

15 +0 1

8&7ra't'&t t4V t

ia'it »I . (2.15)

It should be noted that the coefficient a in Eq. (2.15) can
be complex. Finally we obtain

n gn n d"+ + + =0,
(a —b)(a c)(a —d) (b a)—(b c)(b —d) —(c ——a)(c b)(c —d) (d —a)—(d b)(d c)— —

n E [
—2, 0,2] (2.18)



1946 H. J. H. CLERCX AND P. P. J. M. SCHRAM

and

—4 g
—4 d

—4
+ + +

(a b—)(a —c)(a d—) (b —a)(b —c)(b —d) (c —a)(c b—)(c —d) (d —a)(d b—)(d —c)
zM
Jt

(2.19)

Instead of an exponentially decaying velocity autocorre-
lation function we have obtained again a long-time tail,
although this tail has a lower power in 1/Vr in compar-
ison to the free particle case, viz. , r vs r ~ [see Eq.
(1.10)], respectively. On top of that this long-time tail
has a positive sign. In the Stokes limit the velocity auto-
correlation function has the following form:

a=toe„=7X10 ' (e„=80}the dielectric constant of wa-
ter. The shear viscosity of water is go=10 Pas. In
this case (=10 Nsm ' and &Km =10 ' Nsm
Later we shall show that there exists a maximum value
for 5, and with the data presented above h,„«R.

The position autocorrelation function can be deter-
mined in the same way. The final expression is

P(r) = ka 7 p exp( p~ } —aexp—( —a~)
m p —a (2.20)

Ir

(x(s)x(x')) =k~T +
s s

C(s)+C(s')
s+s

with

m

'2 1/2
K

m m

—MB(s )B(s') KC(s )—C(s')

(2.24)
2

K
m m m

1/2
where C(s)=B(s)/s. The asymptotic part of the mean-
square displacement is

We see that, in the overdamped case (g»&Km ), this
equation has a negative exponentially decaying tail. In
the strongly overdarnped case two separate time scales
can be distinguished. On the smaller the particle does
not feel the harmonic force and the behavior of the veloc-
ity autocorrelation function is comparable to the free-
particle case, including the existence of the ~ long-
tirne tail. Then, at intermediate times, it can be shown by
numerical means that Eq. (2.16) also has a negative part
before the positive ~ tail becomes dominant.

A Brownian particle in a colloidal crystal can be de-
scribed by the overdamped case discussed above. We use
some data of Derksen (Ref. [36], pp. 40,44). Consider a
colloidal crystal in water built up of polystyrene spheres,
with radii a =5 X 10 m, with charge Q =10 ' C, with
a lattice parameter R =9X 10 m, and suppose the par-
ticle is displaced by an amount 5 «R; then the potential
energy changes by

([x(t, +r) —x(t, )] )"—=%(w)=2k TC(r), (2.25)

1 1 exp(a r)erfc(a&~)
K M a(a b)(a —c )(—a —d )

exp(b r)erfc(b&~)
b(b a)(b c—)(b —d)—

exp(c ~)erfc(c&r)
c(c —a)(c b)(c —d)—

exp(d r)erfc(d&r)
d(d —a)(d b)(d —c—)

(2.26)

lim P(r) =2DO+,
7~ oo K ' (2.27)

Using the asymptotic expansion of Eq. (2.26) we obtain

which is the same result as that obtained in the Stokes
limit [9,11]. At this point we can make a remark about
the validity of Eqs. (2.21) and (2.23). With the data of
Derksen [36] we obtain at room temperature
b, ,„=+2DO(/K —=5X10 ((R. From Eq. (2.27) we

may conclude that a diffusion coeScient cannot be
defined, although in case of g»&Km a diffusional re-
gime exists. As mentioned before we can distinguish two
time scales. On the smaller the mean-square displace-
ment of the Brownian particle behaves like the one of the
free Brownian particle and diffusionlike behavior can be
expected. The characteristic time of this scale in the ex-
periment of Derksen is m/g-=6X10 ' s. At the larger
time scale the effects of the harmonic potential become
dominant and the mean-square displacement tends to a
constant value. In the overdamped case, using data of
Derksen [36], the characteristic time of this behavior is
g/K=—3X10 s. These time scales have been discussed

(2.21)

where we have assumed nearest-neighbor interactions
only. g(R ) is the screened Coulomb potential,

e(R) = Q'exp( —KR)
4m.eE

(2.22)

where the screening arises from the counterions in the
ambient Quid. It follows that

2d Q(R } Q exp( —KR) (1+ R+ 2Rz)
dR2 meR3

(2.23)

In the experiment of Derksen: ~R =3. Furthermore

d RP(R+b)+f(R 6) 2$(R)-=b ——= ,'Kb, —
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already in the context of the velocity autocorrelation
function. In the Stokes limit diffusive behavior can be
shown over several decades of the Brownian time
rs = (6nrto. a /m )t if g/&Km ~ 100. This diffusive behav-
ior is shown by the expression g(r)=2Dor for large r,
but ~ small enough so that the correlation functions are
not influenced by the harmonic potential. However, if we
include backflow effects the system does not reach the
diffusional regime unless //&Em ~ 10 . In the colloidal
crystal described above a diffusional regime cannot be ex-
pected because g/&Km = 10, in contrast with the con-
clusions drawn if the quasistatic (Stokes) approach is
used.

A third time scale is that of hydrodynamic interactions
(which are neglected throughout this paper). A charac-
teristic time scale may be defined as the time of propaga-
tion of the flow field to a neighboring particle and back.
This time is, in the experiment of Derksen, of the order
(2R ) /v=-3X10 s (v is the kinematic viscosity). It is
in between the characteristic times mentioned earlier.
Therefore the domain of diffusionlike behavior can hard-
ly be influenced by hydrodynamic interactions; at most it
can be expected that a slight modification of the long-
time behavior of the velocity autocorrelation function
will occur, but this will not change the general con-
clusions drawn above concerning the velocity correlation
function and the mean-square displacement in this
specific case where we apply a one-particle result to a sys-
tern with a finite, but small, concentration of Brownian
particles. Furthermore, the influence of hydrodynamic
interactions in the regime of dominant harmonic poten-
tial can be described approximately by quasistatic theory.
In the experiment of Derksen the volume fraction is of
the order y —= 10 . Hydrodynamic interactions are
therefore not expected to be very important, although it
should be emphasized that in highly ordered systems,
such as colloidal crystals, hydrodynamic interactions are
more important than in random suspensions.

III. A BRO%'NIAN PARTICLE IN SHEAR FLOW

Consequently there is no diffusional behavior in the x
direction any longer. As can be expected isotropy has
disappeared. This behavior can be understood as follows:
the rms displacement b,z is proportional to &t, which re-
sults in rms di~slacement in the x direction proportional
to Athz

=At�ilt.

The mean-square displacement in the x
direction is then proportional to A, t . Derksen has
presented some results of experiments to measure this be-
havior [36]. Bedeaux, Rubi, and Perez-Madrid have
studied a similar problem including the nonlinear term in
the Navier-Stokes equations [38—40]. First they deter-
mined the friction tensor belonging to a spherical particle
in a fluid with elongational flow. This friction tensor is
modified by terms related to the rate of elongation. Con-
sequently this modified friction tensor leads, via the
fluctuation-dissipation theorem, to a modified version of
the random force autocorrelation function. They have
calculated the velocity correlation function and the
mean-square displacement of a Brownian particle in
elongational flow [39], but in the diffusional regime only.
They have not presented results for the convective re-
gime. This section aims at the determination of these
functions in the convective regime for simple shear flow,
but under such conditions that we can linearize the
Navier-Stokes equations. This is possible because we
linearize these equations in the perturbation of the fluid
velocity, caused by the moving particle, and furthermore
we see that (Uo V)UO=O [Eq. (3.1)]. Consequently the
friction tensor remains unchanged [38].

We now present the results of a study of this problem,
where we have used a Stokes-Boussinesq-like equation of
motion. Using the generalized Faxen theorem, derived
by Bedeaux and Mazur [32], we can derive the following
equation of motion of a Brownian particle in shear flow:

MU„(t) = 6mrtoaU„(t—) 6.a Q—nprto f . U„(r)dr
t —r

+A, 6nrtoaz(t).

Uo= (Az, 0,0), (3.1)

We consider a Brownian particle in a shear flow. Sup-
pose this shear flow, denoted by Uo, is in the x direction
with a velocity gradient in the z direction,

+6a gnprto f U, (r)dr

+ ,'m, U, (t) +R„-(t), (3.4)

(x'(t)) = —,'D, A,'t', (y'(t)) =(z'(t)) =2Dot,

(x(t)z(t)) =D,At'.
(3.2)

(3.3)

We see that the mean-square displacement is proportion-
al to t, assuming that at t =0 the particle is in the origin.

with A, the velocity gradient. We assume that I, is very
small. The total fluid velocity field, composed of the
shear flow and the fluid motion induced by the small
Brownian particle, will then satisfy the linear Navier-
Stokes equations. We do not consider rotational motion.
San Miguel and Sancho solved this problem in the Stokes
limit [37]. They showed the following long-time behavior
of the position auto- and cross-correlation functions, re-
spectively:

MU, (t ) = 6~q,a U, (t—)
—6a Qmprjo f U, (r)dr+R, (t) .' o&t r—

(3.S)

x(s ) =8(s )D(s )z(s )+II(s )R (s ),
z(s) =8(s)R,(s),

(3.6)

(3.7)

In the y direction the problem can be described by using
the results of the free Brownian particle. We assume that
U(t)=0 if t ~0. We present the results for the mean-
square displacement only. To obtain that quantity we
solve this set of equations by studying the Laplace trans-
forms of both equations, which are
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where

8(s)= —,D(s) =A(g+zv's +—', mos) .
s(Ms+z&s +g)

(3.8)

Substitution of Eq. (3.7) for z(s) in Eq. (3.6) gives

x(s)=B (s)D(s)R, (s)+B(s)R„(s) .

The position autocorrelation function (x(s)x(s')) now
becomes

(x(s )z(s') ) = (x(s )z(s') )

=Bq(s)B( s')(R, ( s)R, ( s') ) .

We know [see Sec. II, Eq. (2.8)] that

s+s'
Furthermore, we can derive

B&(s )8(s ) =kz T[C&(s ) MsB—&(s )],
Cz(s)=B(s}D(s)js .

(3.12}

(3.13)

(3.14)

(x(s)x(s') ) = (x(s)x(s') )

+B(s)8(s')(R„(s)R„(s')), (3.10)

With both results we come to the following relation
describing the shear flow depending part of the Laplace
transform of the position autocorrelation function:

where the last part of this equation is again a contribu-
tion already known from the study of the free Brownian
particle. The term (x(s }x(s'))z is the pure shear contri-
bution and has the form

Bz(s )Cz(s')+8&(s')Cz(s )
(x(s )x(s') ) &

=ks T s+s'

(x(s)x(s') )&=8&(s)8&(s')(R,(s)R, (s') ), (3.11) MB &(s—)Bz(s' ) (3.15)

with 8&(s ) =8 (s )D(s ). Only this term will be studied.
In the derivation of Eq. (3.10) we have used the property
of the random forces that cross correlations are zero [32].
Furthermore, the following position cross-correlation
function can be determined:

To derive the inverse Laplace transform we refer again to
the review article of Fox (Ref. [33], p. 195). In line with
the derivation shown there to calculate a double Laplace
transform we obtain

f dt, f dt2 exp( st, ) exp( —s'tz) f d—rz f dr f(t, r)g(t ——
2 rz}5(~rz —r, ~)

0 0 0 0

= f dt2 f dtt„exp( st, ) exp(—s't2) f —f(t )g(t+r)dt = g, , (3.16)s+s'

where we assume that r = t2 —t, ~ 0. The function 6(t ) is

the Dirac 5 function. The inverse Laplace transform of
Eq. (3.15) is now

(x(t, )z(t, )),=ksT f 8~(t)dt+ f 8(t+~)C, (t}dt
0 0

—MB,(t, }8(t,) (3.19}

(x(t, )x(t2) )~=ks T f B~(t )C~(t+r)dt

+ f 8„(t+r)C~(t)dt
0

MB~(t, )B,—(t, ) (3.17)

We have now derived some formal expressions for the po-
sition auto- and cross-correlation functions, but must
evaluate the functions B(t), Bz(t), and Cz(t). We
con6ne ourselves to an outline of these derivations only.
They can be obtained with the help of tables of Laplace
transforms [34]. We know [Eq. (3.8)]

In an analogous way the Laplace transform of the posi-
tion cross-correlation function becomes

18(s)=
s(Ms+ z&s +g)

The inverse Laplace transform of 8(s ) is

(3.20)

[Bz(s )/s']+ Cz(s )8(s')
(x (s }z(s'))~

=ks T s+s'

—MB~(s )B(s') (3.18}

B(t)=—1+ [a exp(b t)erfc(b&t )
1 2

(b —a)

bexp(a t)erfc—( &at )]

(3.21)

Finally Laplace inversion gives with a and b defined below Eq. (1.8}. For the moment we
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assume that aXb T. he function 8&(s) is defined as

8&(s)=B (s)D(s)=A[[8(s)ls]+(mo —m)sB (s)] .
C (t ) =A, —g+(m —m )—+C (t )

1
0 t 1 (3.31)

(3.22)

Laplace inversion of the first part of Eq. (3.22) gives, via

8(s)Is =C(s },the function C(t ),

1 2z ~—
+ (z —gM)

+ [b exp(b t)erfc(b&t )
M(b —a)

—a exp(a t)erfc(aV't )]

(3.23)

The Laplace inverse of the second part of Eq. (3.22) can
be obtained using the convolution theorem. The final re-

sult is

8&(t ) =A C(t )+(mo —m )f 8(t r)dr—~dB(r)
0

The long-time behavior is given by asymptotic expansions
of 8, (t), Bz(t), and C, (t). The leading terms of these
functions are O(t ). Substitution of these expressions
for the functions B(t ), Bz(t ), and Cz(t ) in the Eqs. (3.27)

and (3.28), respectively, gives the following expressions:

(x'(t))~=-', D, A,
't' 1—

5g rr t

+ [z —2M/+2(mo —m )g]—3 2 1

22 t

(3.32)

(x(t)z(t))~=D, At' 1—
g7r t

+—[z —2Mg+2(mo —m )g]—1 1

(3.24}

+0 (3.33)

The function Cz(s ) is defined as

C&(s ) =B(s)D(s )Is =—+A(mo —m )8(s ), (3.25)
S

These results can be compared with the expressions ob-

tained by San Miguel and Sancho [37], which are the ex-
pressions above in the Stokes limit,

and the inverse Laplace transform is

C~(t)=A[t+(m, —m)8(t}] . (3.26)

(x'(t))g= 'DOA. t' 1—— +O(t —)
6m 1

0 (3.34)

The position correlation functions can now be deter-
mined and the fina results evaluated both analytically
and numerically, but we restrict ourselves to the long-
time behavior of these correlation functions. If t, =t2 =t
we have

(x (t))q=ktt T 2f B~(r)Cq(r)dr MBq(t)—
0

and

(3.27)

(x(t)z(t))z=kttT f Bz(r)dr+ f 8(r)C&(r)dr
0 0

MB~(t )B(t)—(3.28)

In the long-time limit there is no need to evaluate the
functions 8(t), B&(t), and Cz(t } in detail. These func-

tions can be rewritten as follows:

8(t ) =——

+BI�

(t ),1 z 1 (3.29}

+82(t ) (3.30)

Bq(t ) =A,
— 1 — —+—[z —Mg+ (mo —m )g]—2z 1 1 1

t

(x(t)z(t))~=D, A,t' 1 — +O(t—') . (3.35)
t

These relations can also be obtained by taking the limits
mo~0 and z~0 in Eqs. (3.32) and (3.33). It is clear that
no diffusional regime on these time scales exists. Further-
more, we can estimate the value of ~z for which the ex-
pressions of (x (t))z become nearly cubic in time. In
the Stokes limit this will take place if rtt =O(10 ), but by
including back6ow effects we reach this point if
rs --O(10 ). Finally we want to point out that the term
proportional to t in Eq. (3.32) [or the term proportional
to t in Eq. (3.33)] disappears if rr= —", , with o =ps Ip the
ratio between the density of the Brownian particle and
the fluid density, in contrast with the results obtained by
San Miguel and Sancho [Eqs. (3.34) and (3.35)].

It is also possible to study a combination of both situa-
tions described in Secs. II and III, a Brownian particle in
a harmonic potential and in shear flow. In the Stokes
limit some results are available, obtained by van den
Broeck, Sancho, and San Miguel [41]. With the methods
presented in this section it is possible to include backflow
effects in such a problem. However, we refrain from such
calculation because of the disproportion between the
mathematical complexity and the modesty of insights
gained.
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IV. CONCLUSION
We have been able to extend the theory of Brownian

motion, including backflow effects, to the case of a
Brownian particle in a harmonic potentia1 and of a
Brownian particle in an externally imposed shear flow. A
significant point is that these two problems can be studied
by using the same mathematical tools as used for the
free-Brownian-particle problem. These tools are also use-
ful for the study of a Brownian particle in a combined
shear flow and harmonic potential, although we have not
demonstrated this explicitly. An important conclusion
from this chapter is that the mean-square displacement,
determined with the Stokes-Boussinesq equation of
motion, differs considerably from the same function ob-
tained in the Stokes limit, up to large values of the dimen-
sionless time ~z. We have seen that a Brownian particle
in a harmonic potential, described in Sec. II, cannot
reach the diffusive regime, while in the Stokes limit this

diffusive regime is reached in otherwise comparable cir-
cumstances. We can also see that the velocity autocorre-
lation function of a particle in a harmonic potential
shows long-time-tail behavior, although the algebraic
power of this tail is lower in comparison to the free-
particle case, viz. , t vs t . In the case of shear
flow the leading asymptotic terms of the mean-square dis-
placement functions are the same as in the Stokes limit.
Other terms are quite different, however. Even more
significant is the fact that the relaxation time in which
the asymptotic regime is reached is much larger if
backflow effects are taken into account.

In this chapter we have neglected hydrodynamic in-
teractions. These become important only if the volume
fraction of dispersed Brownian particles becomes large.
In a previous article we have presented results of a study
of the influence of retarded hydrodynamic interactions on
transport coeScients of suspensions [42].
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