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Abstract. It was recently shown that remarkably accurate fission-fragment mass distri-
butions can be obtained by treating the nuclear shape evolution as a Brownian walk on
previously calculated five-dimensional potential-energy surfaces; the current status of this
novel method is described here.

1 Introduction

As discussed already in the pioneering works by Meitner and Frisch [1] and Bohr and Wheeler [2,3]
in 1939, nuclear fission can be viewed qualitatively as an evolution of the nuclear shape from that of
a single compound nucleus to two receding fragments. The character of the shape dynamics is still
not well established but, as a step away from a purely statistical approach toward a full dynamical
treatment, it is interesting to explore scenarios in which the evolution is strongly dissipative [4,5].

We therefore picture the nuclear fission process as an evolution of the nuclear shape from a rela-
tively compact mononucleus to a dinuclear configuration. In the present study, the shape is composed
of three smoothly joined quadratic surfaces [6,7] which are described by a set of parameters, χ = {χi},
whose time development is the result of a complicated interplay between a variety of effects.

Most basic is the potential energy associated with a given shape, U(χ), for which a number of rel-
atively mature models have been developed. We employ potential-energy surfaces that have been cal-
culated with the macroscopic-microscopic method in which the potential energy is the sum of shape-
dependent macroscopic (liquid-drop type) terms and a microscopic correction that reflects the structure
of the single-particle levels in the effective potential associated with the specified nuclear shape [8,9].
(Such potential energies have been calculated for 5,254 even-even nuclei with 170 ≤ A ≤ 330 and
tabulated on a five-dimensional Cartesian lattice containing over five milllion different shapes.) The
potential energy provides the driving force, Fpot(χ), which has the components Fpot

i = −∂U/∂χi.
The driving force seeks to change the nuclear shape towards lower energies and the associated

matter rearrangement gives rise to a collective kinetic energy, 1
2 χ̇ ·M · χ̇. When the damping is strong,

as we are assuming, the resulting motion is slow. In that scenario, the acceleration terms, {
∑

j Mi jχ̈ j},
as well as terms of second order in the velocities {χ̇i} may be neglected. As a result, the inertial masses
{Mi j} play no role for the shape evolution and they shall henceforth be neglected.

Furthermore, the shape degrees of freedom are coupled dissipatively to the internal degrees of
freedom in the nuclear many-body system. As a result, the shape evolution is both damped and dif-
fusive and it must therefore be treated by transport methods that allow for the stochastic elements
of the dynamics. The dynamics is then akin to Brownian motion: The Brownian particle is the (five-
dimensional) nuclear shape, while the fluid into which it is immersed is represented by the internal
(nucleonic) degrees of freedom to which it is coupled.
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2 Brownian shape motion

The average dissipative force provides a friction of the standard form, 〈Fdiss〉 = Ffric = −γ · F, and
we assume that the random remainder, Fran(t), is Markovian, 〈Fran

i (t)Fran
j (t′)〉 = 2Tγi jδ(t − t′), where

T is the nuclear temperature at the particular shape χ. The dissipation tensor γ is positive definite and
so is its inverse, the mobility tensor µ ≡ γ−1, which can be conveniently expressed in terms of its
eigenvectors χ̃(n),

µ · χ̃(n) = µ(n)
χ̃

(n) ,
∑

i

χ̃
(n)
i · χ̃

(n′)
i = µ(n) δnn′ , µi j =

∑

n

χ̃
(n)
i χ̃

(n)
j . (1)

The shape evolution χ(t) is governed by the Smoluchowski equation of motion which balances the
driving force from the potential against the full dissipative force: Fpot+Ffric+Fran

� 0. This condition
immediately yields the instantaneous velocity,

χ̇(t) � µ · [Fpot + Fran(t)] , δχ =
∑

n

χ̃
(n)
[

∆t χ̃(n) · Fpot +
√

2T∆t ξn
]

. (2)

The expression on the right-hand side shows how the change in χ accumulated during a brief time
interval ∆t consists of an average displacement proportional to (but generally not aligned with ) the
driving force and a stochastic term arising from the random force. On the basis of this expresison, it
is straightforward to solve the Smoluchowski equation by direct numerical simulation. This type of
evolution is exactly characteristic of Brownian motion.

In order to explore the dependence of the calculated mass distribution P(Af) on the specific friction
employed, we proceed as follows. We first invoke the simple wall formula for the one-body dissipation
rate caused by the nuclear shape change [10] and calculate the associated dissipation tensor γ(χ),

Q̇ = mρv̄
∫

ṅ2dσ =
∑

i j

χ̇i γi j(χ) χ̇ j =
∑

µν

q̇µgµν(q)q̇ν , γi j(χ) =
∑

µν

∂qµ
∂χi

gµν(q)
∂qν
∂χ j
. (3)

The coefficients gµν(q) can be directly evaluated in terms of the parameters {qν} characterizing 3QS
shapes [6,7] employed for the calculation of U(χ) [8,9] and the needed elements γi j can then be
obtained by the appropriate transformation. Because we are not interested in the time evolution but
merely in the path of the shape, the overall strength of γ is immaterial, so we renormalize it at each
lattice site so its eigenvalues are unity on average. Subsequently we generate an entire family of dis-
sipation tensors, γ̃( f ), by modifying the eigenvalues, γ̃( f )

n (χ) ≡ (γn(χ) + f )/(1 + f ), so the friction
becomes ever more isotropic as the parameter f is increased from 0 to ∞.
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Fig. 1. Fragment charge distributions extracted from Metropolis walks on the respective 5D potential-energy
surfaces [8,9], together with the corresponding experimental data [11,12]. (From Ref. [4].)
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Fig. 2. The fragment charge distribution obtained by solving the Smoluchowski equation (2) for dissipation tensors
having various anisotropies as specified by f , together with the experimental data [11,12]. (From Ref. [5].)

3 Calculated mass distributions

Once the dissipation tensor γ has been specified, the Smoluchowski equation (2) is solved by numerical
simulation starting from a suitable initial shape. In principle, the intial shape should be at (or near) the
ground-state minimum, but the calculational effort can be reduced significantly by starting from a more
distorted shape, without unduly influencing the results, and we normally start from the outer minimum,
since all paths from the ground state to fission lead through that region. The calculation is then stopped
when the neck radius has shrunk below a specified critical value c0 and the mass asymmetry of the
shape is assumed to give the final mass split. Several thousand such “events” suffice to obtain P(Af) to
within an acceptable tolerance; as shall be demonstrated, the resulting distribution is quite insensitive
to the precise value of c0.

In the original study [4], the fission-fragment mass distributions were obtained by performing
a simple random walk by means of the Metropolis procedure, which provides an exact solution to
the transport problem in the idealized (and unrealistic) case when the dissipation tensor is isotropic.
Figure 1 shows the resulting charge distribution P(Zf) = P(Af)A0/Z0 for eight different cases, for
which experimental data exist; for the thorium sequence, P(Zf) changes qualitatively from symmetric
to asymmetric. The overall agreement with the data is remarkably good, especially considering that no
parameter was fitted. Even though the agreement for the thorium isotopes is not as perfect as for the
plutonium and uranium cases, the deviations of the model results from the data are smaller than the
differences between neighboring data sets, which in turn differ by just a single neutron orbital.
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Fig. 3. Charge yields resulting from Metropolis walks on the 5D potential-energy surfaces, together with the
corresponding results obtained with 3D surfaces generated by minimizing the 5D surfaces with respect to the
individual fragment deformations, ǫf1 and ǫf2; the experimental data are from [11,12]. (From Ref. [5].)

The sensitivity of the calculated charge yields to the degree of structure in the mobility tensor is
illustrated in Fig. 2. In addition to the experimental data, which are shown for reference, each plot
shows the result of three different mobility scenarios: the idealized scenario (labeled f ≫ 1) where
the mobility tensor is isotropic, an intermediate scenario ( f =1) in which the dissipation tensor is the
average of the one calculated with the wall formula (see Eq. (3)) and the corresponding directional
average, and a more structured scenario ( f = 0.2) in which the isotropic admixture is only 20%.

3.1 Shape family

The three-quadratic-surface (3QS) shape family [6,7] can be described in terms of the overall elon-
gation (corresponding to the quadrupole moment Q2), the degree of constriction (which becomes the
neck radius for binary shapes), the reflection asymmetry (determining the fragment mass Af), and the
individual deformations of the two spheroidal parts (ǫf1 and ǫf2) [8].

In order to illustrate the importance of employing a shape family that has a sufficient degree
of flexibility, we construct three-dimensional potential-energy surfaces by minimizing the full five-
dimensional 3QS surfaces with respect to ǫf1 and ǫf2 (corresponding to the lattice indices K and L).
Thus the shapes in the lower-dimensional space are characterized by only their overall elongation (rep-
resented by the lattice index I), their constriction (represented by the lattice index J), and the degree
of reflection asymmetry (represented by the lattice index M).

08006-p.4



Figure 3 shows the resulting charge distributions, together with the experimental data and our
standard results based on the full 5D 3QS shape family. We see that the although the 3D calculations
occasionally reproduce the qualitative appearance of P(Zf) reasonably well, the reproduction of the ex-
perimental data is generally far inferior to the results obtained with the 5D shape family. This suggests
that it is of utmost importance to employ a shape family that has sufficient flexibility.

3.2 Scission model

As already recognized in the very earliest discussions of fission theory [2,3], induced fission involves
as an intermediate stage the formation of a compound nucleus in which the excitation energy is dis-
tributed among the various degrees of freedom in a statistical manner. However, the compound equi-
librium is established only among those relatively compact shapes that are situated inside of the fission
barrier, and the ensemble experiences a continual leakage as some nuclei accidentally acquire a shape
far enough beyond the saddle point that they then undergo an irreversible evolution towards scission.
(Elementary phase-space estimates of the leakage rate form the basis for the familiar transition-state
theory of fission.) Thus the resulting fission-fragment mass distribution bears no particular relationship
to the distribution of the asymmetric modes of the compound-nuclear shapes. Furthermore, because of
the non-equilibrium nature of the post-barrier evolution there is no reason to expect that the resulting
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Fig. 4. Results of our scission model (see text) for 240Pu and 222,224,228Th for the scission neck radii csc =

2.5, 2.0, 1.5 fm (left) and results of the Metropolis walk [4] for the same cases obtained with the same values
of the critical neck radius c0 (right); the experimental data are from [11,12]. (From Ref. [5].)
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mass distribution should have a statistical form. Nevertheless, a variety of statisical scission models
have been studied. Indeed, models based on such considerations were among the earliest developed
[13,14] and, for each specific case, the details can often be adjusted to yield reasonable agreement with
observed mass distributions. The importance of the pre-scission shape evolution can be illustrated by
comparing the transport results with what a statistical population of the scission shapes would yield.

For this purpose, we define a four-dimensional scission hypersurface as consisting of those shapes
{χ̃} for which the neck radius equals a specified value, c(χ̃) = csc, and we then assume that these scis-
sion configurations are populated in proportion to their statistical weight, W(χ̃) ∼ exp(−U(χ̃)/T (χ̃)).
As in the transport calculations, we use the shape-dependent temperature which ensures that the sta-
tistical weight drops rapidly to zero at the boundary of the energetically accessible region of shapes,
namely those for which U(χ) ≤ Ugs + E∗.

The results of such scission-model calculations are shown in Fig. 4 (left) for four representative
cases, while Fig. 4 (right) shows the corresponding results obtained with the simple Metropolis walk
[4]. For the scission model the character of the fragment mass distribution changes qualitatively as
csc is decreased, whereas Metropolis walks yield mass distributions that are remarkably robust against
the changes in the critical neck radius c0. These results suggest that the mass split is not determined
primarily by the energetics in the scission region but rather by the broader potential-energy landscape
encountered by the shape during its pre-scission evolution.

3.3 Specific illustrations

The formal framework for the present treatment is considerably simpler than that used in a conven-
tional Langevin-type dynamical treatment (for reviews, see Refs. [15,16]). Accordingly, the informa-
tion that can be extracted is correspondingly reduced. The key assumption of strong dissipation allows
us to neglect the inertial masses and this in turn reduces the equation of motion from second to first
order in time. The resulting transport equation pertains to the limit of creeping motion and thus pro-
vides only the path of the fissioning nucleus in the shape space, rather than its full temporal evolution.
Furthermore, on the basis of our studies, it appears that the Metropolis walk, which is significantly
faster than the Smoluchowski simulation (by 1–2 orders of magnitude), offers a very quick and easy
means for obtaining practically useful fission-fragment mass distributions.
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towards scission is illustrated by the charge distribution P(Zf; I) for increasing values of I (the lattice index giving
the quadrupole moment Q2 of the nuclear shape), as obtained for 222Th(11 MeV) from 10,000 Metropolis walks.
Right: The sensitivity of the charge yields to the shape dependence of the Wigner term is illustrated for 226Th,
using either the standard potential-energy surface [8,9], in which the Wigner term changes gradually as the shape
evolves, or a modified energy surface obtained with a Wigner term that remains constant until scission occurs;
calculated with an isotropic mobility tensor ( f → ∞); the experimental data are also shown [12]. (From Ref. [5].)
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3.3.1 Saddle shape

Because our calculational method emulates the actual equilibration process it is possible to gain insight
into the shape evolution during fission. A particularly instructive case is presented by 222Th for which
the transport calculations yield a symmetric mass distribution, in agreement with the experimental
data, even though they are based on a potential-energy surface whose fission saddle point corresponds
to a nuclear shape that is reflection asymmetric. This result invalidates the commonly made assumption
(see e.g. Refs. [17–20]) that the character of the mass distribution, whether symmetric or asymmetric,
is determined by the character of the saddle shape. Rather, the structure of the potential-energy land-
scape in the entire region between the isomeric minimum and scission plays a role in determining the
fragment mass distribution.

Detailed insight into this evolution can be obtained by considering the distribution of the charge
asymmetry at specified values of the lattice index I which is a measure of the overall quadrupole
moment of the fissioning shape, P(Zf; I). This conditional distribution is shown in Fig. 5 (left) for in-
creasing elongations. Because it is energetically favorable for the system to traverse the barrier with
an asymmetry close to that of the saddle shape, P(Zf; Isaddle) is concentrated around that asymmetry.
However, beyond the saddle the preferred asymmetry tends to become smaller (I = 24) and the distri-
bution eventually becomes peaked at symmetry (I = 28). As the shape evolves further towards scission
(I = 32), P(Zf; I) developes a minor asymmetric component that presumably reflects the detailed (and
possibly inaccurate) structure of the potential-energy surface in the scission region.

3.3.2 Wigner term

The generality of the treatment makes it possible to exploit any remaining differences between calcu-
lated results and experimental data to gain novel insight into aspects of the fission process that would
not otherwise be readily accessible. As an example, we consider the shape dependence of the Wigner
term in the macroscopic nuclear energy [21–26].

The macroscopic nuclear energy contains the so-called Wigner term proportional to |N − Z|/A. Its
presence is clearly visible in the systematics of nuclear masses which exhibit a V shape near isosym-
metry, but its microscopic origin is still not well understood, so it is normally modeled as a phenomeno-
logical macroscopic term. In commonly employed models for nuclear masses [27,28] the Wigner term
is usually introduced without a shape dependence. However, such an ansatz presents a significant (but
often ignored) problem in fission where a single nucleus is transformed into two separate nuclei, each
having its own Wigner term. (That each fragment nucleus must give a Wigner contribution similar to
that of the original nucleus is evident from the phenomenological form of the term [22,23].) Thus the
Wigner term must double in magnitude during the evolution from a single compound system to two
separated fragments, so, consequently, it must depend on the nuclear shape.

Since 1989 the calculations of fission barriers (see e.g. Refs. [9,22,26]) have employed a postu-
lated shape dependence that relates the increase of the Wigner term to the decrease in the amount of
communication between the two fragments due to the shrinking of the neck. The resulting Wigner term
changes gradually as the nuclear shape evolves and affects the potential-energy landscape correspond-
ingly (an illustrative figure was given in Ref. [26]). However, it may be argued that the change in the
character of the fissioning system from mononuclear to dinuclear occurs more abruptly than implied
by the currently prescribed shape dependence. To elucidate the importance of the shape dependence
of the Wigner term, we have considered an alternate form in which the term is kept constant up to the
scission configuration, i.e. until the neck radius has shrunk below the specified critical value c0.

Figure 5 (right) illustrates how such a modification of the potential-energy surface affects the
calculated charge distribution of 226Th, for which the impact is particularly noticeable. There are two
significant differences between the results of the two sets of calculations. One is a change in the
relative importance of symmetric and asymmetric fission, with the constant Wigner term leading to
more asymmetric yield. The other is a shift in the location of the asymmetric yield peaks, from being
several units on the outside of the observed values towards a better agreement with the data. Both
effects depend significantly on the structure of the mobility tensor (see Ref. [5]) and could, in principle,
be of help in discriminating between different forms of the dissipation.
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4 Concluding remarks

In conclusion, our studies suggest that the simple Metropolis walk [4] on the previously calculated
potential-energy lattice [8,9] indeed presents a useful calculational tool for obtaining the approximate
form of fission-fragment mass distributions for a large range of nuclei. For more accurate results it is
necessary to invoke also the dissipative features of the shape evolution as represented by the shape-
dependent mobility tensor. The shape evolution then resembles Brownian motion in an anisotropic
(and non-uniform) medium. However, because the dissipation mechanism is not yet as well under-
stood as the potential energy, we propose to make a series of calculations with mobility tensors that
display different degrees of anisotropy and then use the ensuing spread in the results as an indication
of the uncertainty of the predicted mass yield. The results obtained in this manner are often remark-
ably robust. Consequently, the method may be of practical use for calculating fission-fragment mass
distributions for any of the thousands of nuclei for which the required 5D potential-energy surface is
already available.

This work was supported by the Office of Nuclear Physics in the U.S. Department of Energy’s
Office of Science under Contract DE-AC02-05CH11231 (JR) and JUSTIPEN/UT grant DE-FG02-
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