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We introduce a class of interesting stochastic processes based on
Brownian-time processes. These are obtained by taking Markov processes
and replacing the time parameter with the modulus of Brownian motion.
They generalize the iterated Brownian motion (IBM) of Burdzy and the
Markov snake of Le Gall, and they introduce new interesting examples.
After defining Brownian-time processes, we relate them to fourth order
parabolic partial differential equations (PDE’s). We then study their exit
problem as they exit nice domains in �d, and connect it to elliptic PDE’s. We
show that these processes have the peculiar property that they solve fourth
order parabolic PDE’s, but their exit distribution—at least in the standard
Brownian time process case—solves the usual second order Dirichlet prob-
lem. We recover fourth order PDE’s in the elliptic setting by encoding the
iterative nature of the Brownian-time process, through its exit time, in a
standard Brownian motion. We also show that it is possible to assign a for-
mal generator to these non-Markovian processes by giving such a generator
in the half-derivative sense.

0. Introduction. Let B�t� be a one-dimensional Brownian motion start-
ing at 0 and let Xx�t� be an independent �d-valued continuous Markov pro-
cess started at x, both defined on a probability space (��� � ��t���). We call
the process �xB�t��Xx��B�t��� a Brownian-time process (BTP). In the special
case where Xx is a Brownian motion starting at x we call the process �xB�t�
a Brownian-time Brownian motion (BTBM). Excursions-based Brownian-time
processes (EBTP’s) are obtained from BTP’s by breaking up the path of �B�t��
into excursion intervals—maximal intervals �r� s� of time on which �B�t�� >
0—and, on each such interval, we pick an independent copy of the Markov
process �x from a finite or an infinite collection. Brownian-time processes and
their close cousins EBTP’s may be regarded as canonical constructions for sev-
eral famous as well as interesting new processes. To see this, observe that the
following processes have the one-dimensional distribution ���xB�t� ∈ dy�:
1. Markov snake—when �Bt� increases we generate a new independent path.
See Le Gall ([13–15]) for applications to the nonlinear PDE �u = u2.

2. LetXx�1�t�� � � � �Xx�k�t� be independent copies of �x�t� starting from point
x. On each excursion interval of �B�t�� use one of the k copies chosen at
random. When x = 0, Xx is a Brownian motion starting at 0, and when
k = 2 this reduces to the iterated Brownian motion (IBM). See Burdzy [2, 3].

Received October 1999; revised January 2001.
AMS 2000 subject classifications. Primary 60H30, 60J45, 60J35; secondary 60J60, 60J65.
Key words and phrases. Brownian-time processes, excursion-based Brownian-time processes,

iterated Brownian motion, Markov snake, half-derivative generator.

1780



BROWNIAN-TIME PROCESSES AND PDE’S 1781

We identify such a process by the abbreviation kEBTP and we denote it by
�x� kB� c�t�. Of course, when k = 1 we obtain a BTP.

3. Use an independent copy of Xx on each excursion interval of �B�t��. This
is the k→∞ limit of process 2 (for a rigorous statement and proof, see the
Appendix). It is intermediate between IBM and the Markov snake. Here,
we go forward on a new independent path only after �Bt� reaches 0. This
process is abbreviated as EBTP and is denoted by �xB� c�t�.

In Sections 1 and 2 we connect �xB�t���x� tB� c�t� and �xB� c�t� to new fourth order
parabolic PDE’s and to second and fourth order elliptic PDE’s. As a special
case of our results, we get the missing connection of the IBM of Burdzy to
PDE’s. There are of course other iterated processes that have been linked to
different PDE’s (see [8], [10] and the references therein), but none solves the
IBM PDE. In Section 3 we show that, even though �xB�t� is not Markovian,
we can still assign to it a “generator” in the half-derivative sense, which we
therefore call the half-derivative generator.
In Section 1 the PDE connection is given by the following theorem.

Theorem 0.1. Let �sf�x� = Ɛ�f��x�s�� be the semigroup of the continuous
Markov process �x�t� and let � be its generator. Let f be a bounded measur-
able function in the domain of � � with Dijf bounded and Hölder continous

for all l ≤ i� j ≤ d. If u�t� x� = Ɛ�f��x� kB� c�t�� for any k ∈ � �as stated before
�x�1B� c�t� = �xB�t��, or if u�t� x� = Ɛ�f��xB� c�t��, then u solves the PDE

∂

∂t
u�t� x� = � f�x�√

2πt
+ 1
2
� 2u�t� x�� t > 0� x ∈ �d�

u�0� x� = f�x�� x ∈ �d�

(0.1)

where the operator � acts on u�t� x� as a function of x with t fixed. In partic-
ular, if �xB�t� is a BTBM and � is the standard Laplacian, then u solves

∂

∂t
u�t� x� = �f�x�√

8πt
+ 1
8
�2u�t� x�� t > 0� x ∈ �d�

u�0� x� = f�x�� x ∈ �d�

(0.2)

Remark 0.1. The inclusion of the initial function f�x� in the PDE’s (0.1)
and (0.2) is a reflection of the non-Markovian property of our BTP. Thus the
role of f here is fundamentally different from its role in the standard Markov–
PDE connection.

In Section 2, we focus on BTBM’s and we take up the exit problem for
�xB�t�. Toward this end, let G be a bounded open subset of �d with regular
boundary ∂G. Each time, we start �xB�t� at a point x ∈ G ∪ ∂G, and we let
TxG �= inf�t ≥ 0� �xB�t� /∈ G�. Our first result says that if we look at the exit
distribution of our iterated process, we solve the usual second order Dirichlet
problem. This might seem surprising at first, but upon reflection, we see that
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the iterated nature of both our process �xB�t� and its exit time TxG “cancel” each
other, and we are effectively reduced to the exit distribution of an ordinary
Brownian motion. For a precise explanation of this phenomenon see the Proof
of Theorem 0.2. In Theorem 0.4 we show how to “recover” the fourth order
PDE in this elliptic setting.

Theorem 0.2. Let G and TxG be defined as above. If u�x� = Ɛ�f��xB�TxG��,
then u satisfies the Dirichlet problem

�u�x� = 0� x ∈ G�
u�x� = f�x�� x ∈ ∂G�

(0.3)

The next result links the first exit time TxG of the BTP �xB�t� to fourth order
PDE’s.

Theorem 0.3. Let G and TxG be defined as above. If u�x� = Ɛ�T
x
G, then u

satisfies

�2u�x� = 8� x ∈ G�
u�x� = 0� x ∈ ∂G�

(0.4)

We now show how to “encode” the iterated nature of our BTBM process in
a Brownian motion so as to recover a fourth order elliptic PDE. The idea is to
look at the Brownian motion Xx evaluated at the iterated exit time TxG [the
first exit time for the iterated process Xx��B�t���], that is, Xx�TxG�. Note that
this is not the exit distribution of Xx (since TxG �= τxG = inf�t ≥ 0�Xx /∈ G� in
general). The fact that TxG is not a stopping time with respect to the natural
filtration of Xx makes it inconvenient to deal with directly, so we are led
to the deterministic time that captures the desired properties of TxG, namely
� x = Ɛ�T

x
G.

Remark 0.2. If x ∈ ∂G, then TxG = 0 a.s. � and so � x = Ɛ�T
x
G = 0.

Of course, by Theorem 0.3, � x satisfies (0.4). We are now ready to give the
elliptic fourth order PDE connection to a Brownian motion at the expected
value of the iterated exit time TxG.

Theorem 0.4. Assume that Xx is the outer Brownian motion in �xB�t� =
Xx��B�t���, starting at x under �, and let � x = Ɛ�T

x
G. Let f ∈ C4��d��� be

biharmonic (�2f ≡ 0), and assume polynomial growth for f and all of its
partial derivatives of order k ≤ 4. Then u�x� = Ɛ�f�Xx�� x�� satisfies

�2u�x� = 4�f�x� + α�x� + β�x�� x ∈ G�
u�x� = f�x�� x ∈ ∂G�

(0.5)

where

α�x� = ∇��f�x�� · ∇��Ɛ��τxG�2� and β�x� = 2 ∑
1≤i�j≤d
i�=j

Dij�f�x�DijƐ��τxG�2�
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In particular, if in addition to the above assumptions on f and its partial
derivatives we assume that ∇��f�x�� = 0, where ∇ is the usual gradient, then
u�x� = Ɛ�f�Xx�� x�� solves

�2u�x� = 4�f�x�� x ∈ G�
u�x� = f�x�� x ∈ ∂G�

(0.6)

Remark 0.3. Comparing (0.5) and (0.6) with (0.2), we see that they all
include the bi-Laplacian of u and the Laplacian of the function f. So that,
also in the elliptic case (0.5), f plays a fundamentally different role than in
the usual Brownian motion–PDE connection: it acts on G ∪ ∂G, and not just
on the boundary ∂G.

The following result attaches a formal generator to our BTP’s, in the half-
derivative sense. More precisely, we have the following theorem.

Theorem 0.5. Let Xx be the outer Markov process in our BTP, starting at
x ∈ �d under �. Suppose that the generator � of Xx is given by a divergence
form second order partial differential operator as in �3�1�. Let � ∗

t be the gen-
erator of the time-reversed Markov process �Xx�T−t�� 0 ≤ t ≤ T� and suppose
that C20��d��� ⊃ 	�� � ∩	�� ∗

t �, where 	�� � and 	�� ∗
t � are the domains of

� and � ∗
t , respectively. Finally, assume that condition �3�6� holds. If

� 1/2
s f�x�� lim

t↘s
Ɛ��f��xB�t����xB�s�� − f��xB�s��

�t− s�1/2
� 0 < s ≤ t�(0.7)

then �
1/2
s f�x� is given by
1√
2π

[
� f��xB�s�� +

∫∞
0 p�0� s�0� y�h�0� y�x��xB�s��� ∗

y f��xB�s��dy∫∞
0 p�0� s�0� y�h�0� y�x��xB�s��dy

]
�(0.8)

where p�s� t�x�y� and h�s� t�x�y� are the transition densities (with respect to
Lebesgue measure) of �B�t�� and X�t�, respectively. In particular, if � = � ∗

t

for all t, then �
1/2
s f�x� is simply √

2/π� f��xB�s��.

Notation. We alternate freely between the notations X�t� and Xt for
aesthetic reasons and for typesetting convenience.

1. Proof of Theorem 0.1. We first prove the theorem for the case of
u�t� x� = Ɛ�f��xB�t�� using the following generator computation:

ƐPf��xB�t�� = 2
∫ ∞
0
pt�0� s��sf�x�ds�(1.1)

where pt�0� s� is the transition density of B�t�. Differentiating �1�1� with
respect to t and putting the derivative under the integral, which is easily jus-
tified by the dominated convergence theorem, then using the fact that pt�0� s�
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satisfies the heat equation we have

∂

∂t
Ɛ�f��xB�t�� = 2

∫ ∞
0

∂

∂t
pt�0� s��sf�x�ds

=
∫ ∞
0

∂2

∂s2
pt�0� s��sf�x�ds�

We now integrate by parts twice, and we observe that the boundary terms
always vanish at ∞ (as s ↗ ∞) and we have �∂/∂s�pt�0� s� = 0 at s = 0 but
pt�0�0� > 0. Thus,

∂

∂t
Ɛ�f��xB�t�� = −

∫ ∞
0

∂

∂s
pt�0� s�

∂

∂s
�sf�x�ds

= pt�0�0�� f�x� +
∫ ∞
0
pt�0� s�� 2�sf�x�ds�

Taking the application of � 2 outside the integral using the conditions on f
and Dijf, and writing u�t� x� = Ɛ�× f��xB�t�� we have

∂

∂t
u�t� x� = pt�0�0�� f�x� + 1

2
� 2u�t� x��

where, clearly, the operator � acts on u�t� x� as a function of x with t fixed.
Obviously, u�0� x� = f�x�, so that u�t� x� = Ɛ�f��xB�t�� solves (0.1).
To prove the result for �x� kB� c�t� for k ∈ �\�1�, we show that Ɛ�f��x� kB� c�t�� =

Ɛ�f��xB�t��. Toward this end, let e−�t� be the �B�t��-excursion immediately
preceding the excursion straddling t, e�t�; and condition on the event that
we pick the jth copy of �x on e−�t� (uniformly from among the k available
independent copies ofXx), using the independence of the choice of the process
Xx�j on e−�t� from B�t� and from the following choice of the Xx copy, on e�t�,
to get

Ɛ�f��x�kB� c�t�� = 2
k∑
j=1

∫ ∞
0
pt�0� s��sf�x���we pick the jth copy on e−�t��ds

= 2
k

k∑
j=1

∫ ∞
0
pt�0� s��sf�x�ds = 2

∫ ∞
0
pt�0� s��sf�x�ds

= Ɛ�f��xB�t���
Finally, to prove that u�t� x� = Ɛ�f��xB� c�t�� solves (0.1), we use the fact

(proven in the Appendix) that �x� kB� c �⇒ �xB� c, for some subsequence �x� kB� c.

Following Skorohod’s celebrated result, we may construct processes Yk

=�x� kB� c

and Y
=�xB� c on some probability space such that Yk→ Y as k→∞ a.s. uni-

formly in t on compact sets of �+. The result then follows since Ɛ�f��x� kB� c�t�� =
Ɛ�f��xB�t�� for each k and since f is bounded and continuous. ✷
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2. Exit PDEs for �xB�t�. Throughout this section the outer process Xx is
always assumed to be a Brownian motion starting at x under �, and G is a
bounded open subset of �d with regular boundary ∂G.

Proof of Theorem 0.2. Let

τxG � inf�t ≥ 0� Xx�t� /∈ G� and σxB � inf
{
t ≥ 0� �B�t�� = τxG

}�
of course σxB = TxG. We then have

u�x� = Ɛ�f
[
�xB�TxG�

] = Ɛ�f
[
Xx�τxG� �B�σxB�� = τxG

]
�
[�B�σxB�� = τxG]

= Ɛ�f
[
Xx�τxG�

]
�

(2.1)

where the last equality in (2.1) follows from the obvious fact that

�
[�B�σxB�� = τxG] = 1�

a fact which also clearly gives us the independence of the event ��B�σkB�� = τxG�
from Xx�τxG�.
Now, u�x�� Ɛ�f�Xx�τxG�� is a harmonic function in G (since Xx is a

Brownian motion starting at x under �, and τxG is its first exit time from
G). It follows that u�x� solves the Dirichlet problem (0.3). ✷

We then prove the connection of the iterated exit time TxG to fourth order
PDE’s.

Proof of Theorem 0.3. Let u�x� = Ɛ�T
x
G and observe that

TxG � inf�t ≥ 0� �xB�t� /∈ G� = inf�t ≥ 0� �B�t�� /∈ �0� τxG��
= inf�t ≥ 0�B�t� /∈ �−τxG� τxG���

(2.2)

where τxG � inf�t ≥ 0� Xx�t� /∈ G�. Thus, conditioning on τxG we easily get

u�x� = Ɛ��Ɛ��TxG�τxG�� = Ɛ��τxG�2�(2.3)

However, from [9] and [11] we have that u�x� = Ɛ��τxG�2 solves the equation

�2u = 8�(2.4)

for any smooth bounded domain G. Plainly, u�x� = 0 for x ∈ ∂G. We thus
obtain (0.4) and this completes the proof. ✷

We are now ready to prove Theorem 0.4.
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Proof of Theorem 0.4. Let u�x� = Ɛ�f�Xx
� x�, and let τxG be the first exit

time for the Brownian motion Xx. Itô’s formula, applied twice, gives us

f�Xx
� s� − f�x�

=
∫ � x

0
∇f�Xx

s � · dXx
s + 1

2

∫ � x

0 �f�Xx
s �ds

=
∫ � x

0
∇f�Xx

s � · dXx
s + 1

2�
x�f�x� + 1

2

∫ � x

0

∫ s
0 ∇��f�Xx

r�� · dXx
r ds

+ 1
4

∫ � x

0

[∫ s
0 �

2f�Xx
r�dr

]
ds

=
∫ � x

0
∇f�Xx

s � · dXx
s + 1

2�
x�f�x� + 1

2

∫ � x

0

∫ s
0 ∇��f�Xx

r�� · dXx
r ds

=
∫ � x

0
∇f�Xx

s � · dXx
s + 1

2�
x�f�x�

+ 1
2

∫ � x

0

∫ � x

0 1�r<s��r� ∇��f�Xx
r��dXr ds

=
∫ � x

0
∇f�Xx

s � · dXx
s + 1

2�
x�f�x� + 1

2

∫ � x

0 �� x − r�∇��f�Xx
r��dXr�

where we used the assumption that �2f ≡ 0 to get the third equality. Now,
taking expectations, we get that all the expectations involving stochastic inte-
grals vanish. This is because we assumed that both ∇f�x� and ∇��f�x�� have
polynomial growth while the density of Xx

r has exponential decay, so that

Ɛ�

[∫ � x

0
�∇f�Xx

s ��2 ds
]
<∞ and Ɛ�

[∫ � x

0
��� x − r�∇��f�Xx

r���2dr
]
<∞�

We then have

Ɛ�f�Xx
� x� − f�x� = 1

2�
x�f�x��(2.5)

Applying the bi-Laplacian to both sides of (2.5), remembering that u�x� =
Ɛ�f�Xx

� x�, that �2f ≡ 0 and that � x = Ɛ�T
x
G (by assumption) and invoking

(2.3) and (2.4), we obtain

�2u�x� = 1
2�

2�� x�f�x��= 1
2�

2�� x��f�x�
+∇��f�x��·∇���� x��+��∇��f�x��·∇�� x��

= 4�f�x�+∇��f�x��·∇���� x��+��∇��f�x��·∇�� x��(2.6)

= 4�f�x�+∇��f�x��·∇���� x��+2 ∑
1≤i�j≤d
i�=j

Dij�f�x�Dij�� x�

= 4�f�x�+∇��f�x��·∇��Ɛ ��τxG�2�+2
∑

1≤i�j≤d
i�=j

Dij�f�x�DijƐ��τxG�2�x∈G�

with the convention that
∑
i�=j Dij�f�x�DijƐ��τxG�2 = 0 if d = 1.
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Finally, as stated in Remark 0.2, � x = 0 whenever x ∈ ∂G, and so u�x� =
Ɛ�f�Xx�� x�� = f�x� for every x ∈ ∂G. ✷

3. The half-derivative formal generator. In this section, we prove the
formula for the half-derivative generator of our Brownian-time processes. We
denote by p�s� t�x�y� and h�s� t�x�y� the transition densities (with respect to
Lebesgue measure) of �B�t�� and X�t�, respectively. We denote the generator
of X by � , and we assume that X�0� = x0 is deterministic.
It is well known that, for each fixed but arbitrary 0 < T < ∞, the time

reversed process X∗T = �X∗T�t��X�T− t�� 0 ≤ t ≤ T� is still Markovian; we
denote its (time-dependent) generator by � ∗

t . We assume for simplicity that
� is given by a divergence form second order partial differential operator

� f =
d∑

i� j=1

∂

∂xi

[
gij�x� ∂

∂xj
f

]
�(3.1)

where d is the space dimension and gij ∈ C2��d��� satisfies c < gij�x� < c−1
for some positive constant c. From Aronson’s inequality we have a constant c1
such that

h�s� t�x�y� ≤ c1
�t− s�d/2 exp

{
− �x− y�

2

c1�t− s�
}
�(3.2)

Moreover (see, e.g, [16] and [17])

� ∗
t f = � f+ 2

d∑
i�j=1

∂

∂xi
log h�0� t�x0� x�gij�x�

∂

∂xj
f�(3.3)

In particular, when � = 1
2�, �

∗
t = 1

2�+ ��x0 − x�/t�∇.
We assume that, for every f ∈ C20��d���,

lim
t↘s
�t− s�−1

[∫
h�s� t�x�y�f�y�dy− f�x�

]
= � f�x��(3.4)

lim
s↗t
�t− s�−1

[∫ h�0� s�x0� y�h�s� t�y�x�f�y�
h�0� t�x0� x�

dy− f�x�
]
= � ∗

t f�x��(3.5)

and without losing generality we assume that there is a constant 0 < c2 <∞
such that

∂

∂xi
log h�0� t�x0� x� ≤ c2

�x0 − x� + c2
tc2

�(3.6)

When � is the Laplacian, the above condition is easily satisfied. It is easy to
deduce the following lemma.

Lemma 3.1. For any fixed f ∈ C20��d��� and x ∈ �d, there is a constant
0 < c3 <∞ such that

sup
s<t

{
�t− s�−1

[∫ h�0� s�x0� y�h�s� t�y�x�f�y�
h�0� t�x0� x�

dy− f�x�
]}
< c3t

−c2 �(3.7)
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Proof. Since
∫
h�0� s�x0� y�h�s� t�y�x�dy = h�0� t�x0� x�,

∫ h�0� s�x0� y�h�s� t�y�x�f�y�
h�0� t�x0� x�

dy

is bounded by the same bound on f. Thus, when s < 2−1t� (3.7) is true as
�t− s� > 2−1t. So it is sufficient to consider the case where s ≥ 2−1t� From the
form of � ∗

t in (3.3), it is easy to see that our time-reversed process has the
following decomposition for fixed t > 0:

Ɛ��X∗T�T− s� −X∗T�T− t��Xt = x�

= Ɛ�

[∫ t
s
� f�Xr�dr

∣∣∣Xt = x
]

+2Ɛ�
[∑
i�j

∫ t
s

∂

∂xj
log h�0� r�x0�Xr�gij�Xr�

∂

∂xi
f�Xr�dr

∣∣∣Xt = x
]

≤ �t− s�!� f!∞ +CƐ�
[∫ t
s

�x0 −Xr� + c2
tc2

dr
∣∣∣Xt = x

]

≤ �t− s�!� f!∞ +C
∫ t
s
s−c2 dr�

where we used Aronson’s inequality in the last step, and C is a constant
depending on the C1-norm of f, �x0 − x�� c� c1 and c2. Dividing both sides of
the last inequality by �t− s� and noticing that s > 2−1t, we get the lemma. ✷

We also have the following lemma.

Lemma 3.2. For all f ∈ C20��d��� the following convergence holds for
almost every y > 0 �

lim
t↘s

∫ y
0

{
�t− s�−1/2p�s� t�y� z�

[∫ h�0� z�x0� η�h�z� y�η� ξ�
h�0� y�x0� ξ�

f�η�dη− f�ξ�
]}
dz

= � ∗
y f�ξ�√
2π

�

Moreover, there is a constant c4 such that∫ y
0

{
�t− s�−1/2p�s� t�y� z�

[∫ h�0� z�x0� η�h�z� y�η� ξ�
h�0� y�x0� ξ�

f�η�dη− f�ξ�
]}
dz

≤ c4y−c2 �

Proof. By the reflection principle, the transition density of the reflecting
Brownian motion �B�s�� is

p�s� t�y� z� = 1√
2π�t− s�

[
exp

{ �y− z�2
2�t− s�

}
+ exp

{ �y+ z�2
2�t− s�

}]
�(3.8)
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By Lemma 3.1,
∫ y
0
�t− s�−1/2�y− z�p�s� t�y� z�

×
[∫ �h�0� z�x0� η�h�z� y�η� ξ�/h�0� y�x0� ξ��f�η�dη− f�ξ�]

�y− z� dz

≤ C
∫ y
0
�t− s�−1/2�y− z�p�s� t�y� z�y−c2 dz

≤ C
∫ y
0
�t− s�−1�y− z� exp

{
−�y− z�

2

2�t− s�
}
y−c2 dz

= C
∫ y/√t−s
0

z exp
{
−z
2

}
y−c2 dz

≤ Cy−c2�

where C is a generic constant that may vary from line to line. Now, we may
write, for z < y,

�y− z�−1
[∫ h�0� z�x0� η�h�z� y�η� ξ�

h�0� y�x0� ξ�
f�η�dη− f�ξ�

]
= � ∗

y f�ξ� + o�y− z��

where o�y−z� → 0 [as �y−z� → 0] and o�y−z� ≤ Cy−c2 . On the other hand,

lim
t↘s

∫ y
0
�t− s�−1/2�y− z�p�s� t�y� z�[� ∗

y f�ξ� + o�y− z�
]
dz

= lim
t↘s

∫ y
0

�y− z�√
2π�t− s� exp

{
−�y− z�

2

2�t− s�
}[

� ∗
y f�ξ� + o�y− z�

]
dz

= lim
t↘0

∫ y/√t−s
0

�z�√
2π

exp
{
−�z�

2

2

}[
� ∗
y f�ξ� + o�z

√
t− s�]dz

= � ∗
y f�ξ�

∫ ∞
0

�z�√
2π

exp
{
−�z�

2

2

}
dz

= � ∗
y f�ξ�√
2π

�

Thus we get the lemma. ✷

Similarly we have the following lemma.

Lemma 3.3. For all f ∈ C20��d��� the following convergence holds for
almost every y > 0�

lim
t↘s

∫ ∞
y
�t− s�−1/2p�s� t�y� z�

[∫
h�y� z� ξ�η�f�η�dη− f�ξ�

]
dz = � f�ξ�√

2π
�
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Now, we easily have

��X��B�s��� ∈ dξ� =
[∫ ∞
0
p�0� s�0� y�h�0� y�x0� ξ�dy

]
dξ�

For t > s, we see that

��X��B�s��� ∈ dξ� �B�t�� ≥ �B�s���X��B�t��� ∈ dη�

=
[∫ ∞
0

∫ ∞
y
p�0� s�0� y�p�s� t�y� z�h�0� y�x0� ξ�h�y� z� ξ�η�dzdy

]
dξdη�

and

�
(
X��B�s��� ∈ dξ� �B�t�� < �B�s���X��B�t��� ∈ dη)

=
[∫ ∞
0

∫ y
0
p�0� s�0� y�p�s� t�y� z�h�0� y�x0� ξ�

×��X�z� ∈ dη�X�y� ∈ dξ�dzdy
]
dξ

=
[∫ ∞
0

∫ y
0
p�0� s�0� y�p�s� t�y� z�h�0� y�x0� ξ�

× h�0� z�x0� η�h�z� y�η� ξ�
h�0� y�x0� ξ�

dzdy

]
dξdη

=
[∫ ∞
0

∫ y
0
p�0� s�0� y�p�s� t�y� z�h�0� z�x0� η�h�z� y�η� ξ�dzdy

]
dξdη�

Thus,

Ɛ��f�X��Bt��� � X��Bs�� = ξ�

=
{∫ ∞

0
p�0� s�0� y�h�0� y�x0� ξ�dy

}−1

×
{∫ [∫ ∞

0

∫ ∞
y
p�0� s�0� y�p�s� t�y� z�h�0� y�x0� ξ�

×h�y� z� ξ�η�dzdy
]
f�η�dη

+
∫ [∫ ∞

0

∫ y
0
p�0� s�0� y�p�s� t�y� z�

×h�0� z�x0� η�h�z� y�η� ξ�dzdy
]
f�η�dη

}

and so, to compute

lim
t↘s
�t− s�−1/2

{
Ɛ�

[
f�X��Bt����X��Bs��

]
− f�X��Bs���

}
�



BROWNIAN-TIME PROCESSES AND PDE’S 1791

we observe that

lim
t↘s
�t−s�−1/2�Ɛ��f�X��Bt��� �X��Bs��=ξ�−f�ξ��

= lim
t↘s
�t−s�−1/2

{∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�dy

}−1

×
{∫ [∫ ∞

0

∫ ∞
y
p�0�s�0�y�p�s�t�y�z�h�0�y�x0�ξ�h�y�z�ξ�η�dzdy

]
f�η�dη

+
∫ [∫ ∞

0

∫ y
0
p�0�s�0�y�p�s�t�y�z�h�0�z�x0�η�h�z�y�η�ξ�dzdy

]

×f�η�dη−f�ξ�
}

= lim
t↘s
�t−s�−1/2

{∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�dy

}−1

×
{∫ [∫ ∞

0

∫ ∞
y
p�0�s�0�y�p�s�t�y�z�h�0�y�x0�ξ�h�y�z�ξ�η�dzdy

]
f�η�dη

+
∫ [∫ ∞

0

∫ y
0
p�0�s�0�y�p�s�t�y�z�h�0�z�x0�η�h�z�y�η�ξ�dzdy

]
f�η�dη

−f�ξ�
∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�dy

}

= lim
t↘s
�t−s�−1/2

{∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�dy

}−1
(3.9)

×
{∫ [∫ ∞

0

∫ ∞
y
p�0�s�0�y�p�s�t�y�z�

h�0�y�x0�ξ�h�y�z�ξ�η�dzdy
]
f�η�dη

+
∫ [∫ ∞

0

∫ y
0
p�0�s�0�y�p�s�t�y�z�h�0�z�x0�η�h�z�y�η�ξ�dzdy

]
f�η�dη

−f�ξ�
∫ ∞
0

∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�p�s�t�y�z�dydz

}

= lim
t↘s

{∫ ∞
0
p�0�s�0�y�h�0�y�x0�ξ�dy

}−1

×
{∫ ∞

0

∫ ∞
y
�t−s�−1/2�y−z�p�0�s�0�y�p�s�t�y�z�h�0�y�x0�ξ�

×�y−z�−1
[∫
h�y�z�ξ�η�f�η�dη−f�ξ�

]
dzdy
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+
∫ ∞
0

∫ y
0
�t−s�−1/2�y−z�p�0�s�0�y�p�s�t�y�z�h�0�y�x0�ξ�

×�y−z�−1
[∫ h�0�z�x0�η�h�z�y�η�ξ�

h�0�y�x0�ξ�
f�η�dη−f�ξ�

]
dzdy

}
�

It is easy to see by Lemma 3.3 that

lim
t↘s

{∫ ∞
0
p�0� s�0� y�h�0� y�x0� ξ�dy

}−1{∫ ∞
0

∫ ∞
y
�t− s�−1/2�y− z�p�0� s�0� y�

×p�s� t�y� z�h�0� y�x0� ξ��y− z�−1
[ ∫

h�y� z� ξ�η�f�η�dη− f�ξ�
]
dzdy

}

= 1√
2π

� f�ξ��

So let us consider the last term in (3.10). From Aronson’s inequality (3.2) and
Lemma 3.2, when �x0 − ξ� > 0,∫ y

0
�t− s�−1/2�y− z�p�s� t�y� z�h�0� y�x0� ξ�

× �y− z�−1
[∫ h�0� z�x0� η�h�z� y�η� ξ�

h�0� y�x0� ξ�
f�η�dη− f�ξ�

]
dz

≤ c4h�0� y�x0� ξ�y−c2
is bounded in �t− s� y� for fixed ξ, and we may pass to the limit through the
integral over �+. Thus, the following half-derivative exists for every s > 0 and
is given by

lim
t↘s
�t−s�−1/2�Ɛ�

[
f�X��Bt����X��Bs��

]−f�X��Bs����

= 1√
2π

[
� f�X��Bs���+

∫∞
0 p�0�s�0�y�h�0�y�x0�X��Bs���� ∗

y f�X��Bs���dy∫∞
0 p�0�s�0�y�h�0�y�x0�X��Bs���dy

]
�

proving 0.5.

APPENDIX

We now rigorize and prove our claim in statement 1 of the Introduction
that �xB� c�t� is the k → ∞ limit of �x� kB� c�t�. This is accomplished by showing
weak convergence of the process ��x� kB� c�t��0 ≤ t <∞� to ��xB� c�t��0 ≤ t <∞�.
Without losing generality, we may assume that, for each p > 0, there are
positive constants c1� p� c2� p and c3� p such that

�

[
sup

a≤s≤t≤a+b
�Xx�1�t� −Xx�1�s��p > c1�pbc2�pp

]

≤ exp
{
−c3�p

b

}
∀ a� b ≥ 0�

(A.1)
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Clearly, (A.1) is true when Xx is a Brownian motion, which is α-Hölder con-
tinuous for any α < 1/2. For a general Xx, we see that the martingale part of
the diffusion process Xx is of α-Hölder continuous for any α < 1/2, and the
nonmartingale part is differentiable, so it is even smoother, so (A.1) is true
here as well. Now, note that the paths which do not satisfy

sup
a≤s≤t≤a+b

�Xx�1�t� −Xx�1�s��p ≤ c1� pbc2� pp

have exponentially small probability, so they can be thrown away when t− s
is small.

Theorem 5.1. There is a positive constant c such that, for each p > 0�
there is a positive constant C�p� satisfying

Ɛ�
∣∣�x� kB� c�s� − �x� kB� c�t�

∣∣p ≤ C�p��s− t�cp ∀ 0 ≤ qs ≤ t <∞� ∀ k ∈ ��(A.2)

and this is enough to conclude that there is a subsequence of ��x� kB� c� converging
weakly to �xB� c, as k→∞.

Proof. Let Ai� s � ��x� kB� c�s� = Xx�i��B�s����, for 1 ≤ i ≤ k and 0 ≤ s < ∞.
We then have

Ɛ�
∣∣�x� kB� c�s� − �x� kB� c�t�

∣∣p = k∑
i� j=1

Ɛ�
{
1Ai� s

1Aj� t

∣∣�x� kB� c�s� − �x� kB� c�t�
∣∣p}

=
k∑

i� j=1
i�=j

Ɛ�
{
1Ai� s

1Aj�t

∣∣Xx�i��B�s��� −Xx�j��B�t���∣∣p}

+
k∑
i=1

Ɛ�
{
1Ai� s

1Ai� t

∣∣Xx� i��B�s��� −Xx� i��B�t���∣∣p}

= k�k− 1�Ɛ�
{
1As�1

1At�2

∣∣Xx�1��B�s��� −Xx�2��B�t���∣∣p}
+kƐ��1A1� s

1A1� t
�Xx�1��B�s��� −Xx�1��B�t����p��

where the last equality follows from symmetry. From the definition of �x� kB� c�·�,
it is easy to see that the following inclusion of events is true when i �= j:

[
�x� kB� c�s� =Xx� i��B�s���] ∩ [

�x� kB� c�t� =Xx�j��B�t���] ⊂ [
inf
s≤u≤t

�B�u�� = 0]�Ss� t�
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Thus, by symmetry,

Ɛ�
∣∣�x� kB� c�s� − �x� kB� c�t�

∣∣p
≤ Ɛ�

{
1Ss� t

∣∣Xx�1��B�s��� −Xx�2��B�t���∣∣p}
+kƐ�

{
1A1� s

1A1� t

∣∣Xx�1��B�s��� −Xx�1��B�t���∣∣p}
≤ CpƐ�

{
1Ss� t

[∣∣Xx�1��B�s��� − x∣∣p + ∣∣x−Xx�2��B�t���∣∣p]}
+kƐ�

{∣∣Xx�1��B�s��� −Xx�1��B�t���∣∣p}�

(A.3)

As x =Xx� i�0�, then by (A.1) and the remarks following it and (A.3), we obtain

Ɛ�
∣∣�x� kB� c�s� − �x� kB� c�t�

∣∣p
≤ Cc1� pƐ�

{
1Ss� t

[�B�s��c2�pp + �B�t��c2�pp]}
+ c1� pƐ�

{��B�s�� − �B�t���c2� pp}
≤ Cc1�pƐ�

{
1Ss� t��B�s��c2�pp + �B�t��c2� pp�

}+ c4� pƐ�{�t− s�c5� pp}�
(A.4)

where C is a generic constant whose value may vary from line to line and c4� p
and c5� p are new constants obtained by the well-known property of Brownian
motion: there is a constant Cp such that

Ɛ�

{
sup

s0≤s≤t≤t0

{�B�t� −B�s��p}
}
≤ Cp�t0 − s0�p/2 ∀ 0 ≤ s ≤ t <∞�(A.5)

On the other hand, it is easy to see that

1Ss� t

{
�B�s��c2� pp + �B�t��c2� pp

}
≤ 2 sup

s≤u≤v≤t
��B�v� −B�u��p��(A.6)

Thus, (A.2) can be easily deduced from (A.4), (A.6) and (A.5).
It is well known (see, e.g., [7] and [12]) that Kolmogorov’s criterion implies

that the sequence of processes ��x� kB� c�t�� 0 ≤ t <∞�k is tight in law under the
uniform convergence topology. It is easy to check that any limit of the conver-
gent subsequence of ��x� kB� c� gives the law of �xB� c. Thus we proved statement
1 in Section 0. ✷
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