
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 354, Number 11, Pages 4627–4637
S 0002-9947(02)03074-X
Article electronically published on June 4, 2002

BROWNIAN-TIME PROCESSES: THE PDE CONNECTION II
AND THE CORRESPONDING FEYNMAN-KAC FORMULA

HASSAN ALLOUBA

Abstract. We delve deeper into our study of the connection of Brownian-time
processes (BTPs) to fourth-order parabolic PDEs, which we introduced in a
recent joint article with W. Zheng. Probabilistically, BTPs and their cousins
BTPs with excursions form a unifying class of interesting stochastic processes
that includes the celebrated IBM of Burdzy and other new intriguing processes
and is also connected to the Markov snake of Le Gall. BTPs also offer a new
connection of probability to PDEs that is fundamentally different from the
Markovian one. They solve fourth-order PDEs in which the initial function
plays an important role in the PDE itself, not only as initial data. We connect
two such types of interesting and new PDEs to BTPs. The first is obtained by
running the BTP and then integrating along its path, and the second type of
PDEs is related to what we call the Feynman-Kac formula for BTPs. A special
case of the second type is a step towards a probabilistic solution to linearized
Cahn-Hilliard and Kuramoto-Sivashinsky type PDEs, which we tackle in an
upcoming paper.

1. Introduction and statements of results

Let B(t) be a one-dimensional Brownian motion starting at 0 and Xx(t) be
an independent Rd-valued continuous Markov process starting at x, both defined
on a probability space (Ω,F , {Ft},P). We call the process XxB(t)

4
= Xx(|B(t)|) a

Brownian-time process (BTP): the regular clock t is replaced with the Brownian
clock |B(t)|. In the special case where Xx is a Brownian motion starting at x we call
the process XxB(t) a Brownian-time Brownian motion (BTBM). Excursions-based
Brownian-time processes (EBTPs) are obtained from BTPs by breaking up the
path of |B(t)| into excursion intervals—maximal intervals (r, s) of time on which
|B(t)| > 0—and, on each such interval, we pick an independent copy of the Markov
process Xx from a finite or an infinite collection. Frequently in applied PDEs
(like the Allen-Cahn and Cahn-Hilliard and others), an order parameter ε with
some physical significance is an important part of the PDE; and to accommodate
such a parameter, we introduce the ε-scaled BTPs XxεB(t)

4
= Xx(ε|B(t)|) and their

excursion cousins (see Theorem 1.2 below for a PDE connection).
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4628 HASSAN ALLOUBA

BTPs and EBTPs may be regarded as canonical constructions for several famous
as well as interesting new processes. To see this, observe that the following processes
have the one-dimensional distribution P(XxB(t) ∈ dy):

(a) Markov snake—when |B(t)| increases we generate a new independent path.
See Le Gall ([19], [20], and [21]) for applications to the nonlinear PDE ∆u =
u2.

(b) Let Xx,1(t), . . . , Xx,k(t) be independent copies of Xx(t) starting from point
x. On each excursion interval of |B(t)|, use one of the k copies chosen at
random. When x = 0, Xx is a Brownian motion starting at 0, and when
k = 2, this reduces to the iterated Brownian motion or IBM (see Burdzy
[7, 8] Burdzy et al. [9, 10] and Khoshnevisan et al. [17]). We identify such a
process by the abbreviation kEBTP and we denote it by Xx,kB,e(t). Of course,
when k = 1 we obtain a BTP.

(c) Use an independent copy of Xx on each excursion interval of |B(t)|. This is
the k → ∞ weak limit of (b) (for a rigorous statement and proof, see the
Appendix of [1]). It is intermediate between IBM and the Markov snake.
Here, we go forward on a new independent path only after |B(t)| reaches 0.
This process is abbreviated as EBTP and is denoted by XxB,e(t).

As in the case of standard Brownian motion (and more generally diffusions), there is
a host of interesting connections of BTPs to PDEs. However, unlike the Brownian
motion’s link to PDEs (see, e.g., [5, 6, 11, 16]), the PDEs here are fourth order and
they are distinguished by the feature that the initial function is a fundamental part
of the PDE itself, not only as initial data. We call such PDEs initially perturbed.

In this paper we always assume that the generatorA of the outer Markov process
Xx, and its associated semigroup Ts, satisfy the property

f : Rd → R bounded and Dijf is Hölder continuous ∀ 1 ≤ i, j ≤ d

=⇒ ∂2Tsf(x)
∂s2

= A2Tsf is continuous on (0,∞)× Rd, and
(a) A2

∫ ∞
0

Tsf(x)pt(0, s)ds =
∫ ∞

0

A2Tsf(x)pt(0, s)ds;

(b) A2

∫ t

0

∫ ∞
0

Tsf(x)pr(0, s)dsdr =
∫ t

0

∫ ∞
0

A2Tsf(x)pr(0, s)dsdr,

(P)

where pt(0, s) is the transition density of the Brownian motion B(t) and Dijf is
∂2/∂xi∂xj . Property (P) is satisfied when Xx is a Brownian motion (see Lemma 2.1
below).

The first theorem gives us the fourth-order PDE solved by running a Brownian-
time process and then averaging the sum of f(XxB(t)) and the integral of a function
g along the path of XxB(t).

Theorem 1.1. Let Tsf(x) = EPf(Xx(s)) be the semigroup of the continuous
Markov process Xx(t) and let A be its generator. Let f and g be bounded con-
tinuous functions in D(A), the domain of A, such that Dijf and Dijg are bounded
and Hölder continuous with exponent 0 < α ≤ 1, for all 1 ≤ i, j ≤ d. If

u(t, x) = EP
[
f(Xx,kB,e(t)) +

∫ t

0

g(Xx,kB,e(r))dr
]

(1.1)
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for any k ∈ N (as stated before Xx,1B,e(t) = XxB(t)), or if we replace Xx,kB,e(t) with
XxB,e(t) in (1.1), then u solves the PDE


∂

∂t
u(t, x) =

Af(x)√
2πt

+
√

2t
π
Ag(x) +

1
2
A2u(t, x); t > 0, x ∈ Rd,

u(0, x) = f(x) = lim
t↓0
y→x

u(t, y); x ∈ Rd,
(1.2)

where the operator A acts on u(t, x) as a function of x with t fixed. In particular,
if XxB(t) is a BTBM and ∆ is the standard Laplacian, then u solves


∂

∂t
u(t, x) =

∆f(x)√
8πt

+
√

2t
2π

∆g(x) +
1
8

∆2u(t, x); t > 0, x ∈ Rd,

u(0, x) = f(x) = lim
t↓0
y→x

u(t, y); x ∈ Rd.
(1.3)

Remark 1.1. The inclusion of the initial function f(x) in the PDEs (1.2) and (1.3)
is a reflection of the non-Markovian property of our BTP. Thus, as mentioned
above, the role of f here is fundamentally different from its role in the standard
Markov-PDE connection. Moreover, as t gets large, we see that the effect of the
initial function f , through Af , fades away at the rate 1/

√
2πt, while the effect of

g, through Ag, becomes more dominant at a rate
√

2t/π. We also remark that
property (P) (excluding part (b)) should have been explicitly assumed for the case
of the general outer Markov process Xx in Theorem 0.1 in [1].

Next, we solve the PDE obtained by running an ε-scaled BTP and averaging
the product of f(XxεB(t)) with the negative exponential of |B(t)|/ε (the Brownian
clock speeded up by 1/ε). When ε = 1 this is a special case of the Feynman-Kac
formula for BTP given by (1.8) in Theorem 1.3. However, it deserves to be singled
out, for it is a first step towards the probabilistic study of linearized Cahn-Hilliard
and Kuramoto-Sivashinsky type PDEs, which we undertake in an upcoming paper
[3] (see also Remark 1.2 below).

Theorem 1.2. Under the same conditions on f as in Theorem 1.1, and for ε > 0,
if

uε(t, x)
4
= EP

[
f(Xx,kεB,e(t)) exp

(
−|B(t)|

ε

)]
(1.4)

for any k ∈ N, or if we replace Xx,kεB,e(t) with XxεB,e(t) in (1.4), then u solves



∂

∂t
uε(t, x) =

1√
2πt

[
εAf(x)− 1

ε
f(x)

]
+

1
2ε2

uε(t, x)−Auε(t, x) +
ε2

2
A2uε(t, x); t > 0, x ∈ Rd,

uε(0, x) = f(x) = lim
t↓0
y→x

uε(t, y); x ∈ Rd.

(1.5)
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In particular, if the outer Markov process Xx in (1.4) is a Brownian motion, then
uε(t, x) solves

∂

∂t
uε(t, x) =

1√
2πt

[
ε

2
∆f(x)− 1

ε
f(x)

]
+

1
2ε2

uε(t, x) − 1
2

∆uε(t, x) +
ε2

8
∆2uε(t, x); t > 0, x ∈ Rd,

uε(0, x) = f(x) = lim
t↓0
y→x

uε(t, y); x ∈ Rd.

(1.6)

Remark 1.2. This time the initial function f affects our PDE through both f and
Af ; and, as before, these effects diminish as t grows larger at the rate 1/

√
2πt.

Also, for small ε, we see that the effects f and uε are larger and eventually, as
ε ↘ 0, uε dominates all other terms in the PDE. We also comment briefly that,
although a certainly different PDE, the last two terms in (1.6) (the bi-Laplacian
and the Laplacian of the solution uε) look like those in a linearized Cahn-Hilliard
equation with the correct ε-scaling, albeit with the opposite sign for ∆2.

The next result gives a Feynman-Kac type formula for BTPs and connects it to
fourth-order PDEs:

Theorem 1.3. Assume that f, c : Rd → R are bounded, c ≤ 0, and Dijf and Dijc
are bounded and Hölder continuous with exponent 0 < α ≤ 1, for all 1 ≤ i, j ≤ d.
If the |Dijv(s, x)| ≤ KT ∀(s, x) ∈ [0, T ]×Rd, for any time T > 0, for all i, j, where
KT > 0 is a constant depending only on T and

v(s, x)
4
= EP

[
f(Xx(s)) exp

(∫ s

0

c(Xx(r))dr
)]

,(1.7)

and where Xx is a d-dimensional Brownian motion starting at x under P, then

u(t, x)
4
= EP

[
f(XxB(t)) exp

(∫ |B(t)|

0

c(Xx(r))dr

)]
(1.8)

solves

∂

∂t
u(t, x) =

1√
2πt

[
1
2

∆f(x) + c(x)f(x)
]

+
[

1
4

∆c(x) +
1
2
c2(x)

]
u(t, x) +

1
2
∇c(x) · ∇u(t, x)

+
1
2
c(x)∆u(t, x) +

1
8

∆2u(t, x); t > 0, x ∈ Rd,

uε(0, x) = f(x) = lim
t↓0
y→x

uε(t, y); x ∈ Rd.

(1.9)

Remark 1.3. As with previous PDEs, the effect of the initial function f—this time
through 1

2∆f(x) + c(x)f(x)—fades away as t grows larger at the BTP rate of
1/
√

2πt. Another feature of the BTP Feynman-Kac PDE that is quite different
from the standard Feynman-Kac PDE for Brownian motion is the existence of the
interaction term c(x)f(x) between the initial function f and the function c. Also,
we suspect that the conditions on f and c in Theorem 1.3 above are sufficient to
imply the condition |Dijv(s, x)| ≤ KT ∀(s, x) ∈ [0, T ]×Rd, for any time T > 0, for
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all i, j, but we do not have a proof of this yet. Finally, it is worth emphasizing that
the BTP solutions to the PDEs presented in this article are all bounded.

2. Proofs of results

2.1. A technical lemma. We start with a differentiating-under-the-integral type
lemma.

Lemma 2.1. Let Xx be a d-dimensional Brownian motion starting at x under P,
and let f, g : Rd → R be bounded and measurable such that Dijf and Dijg are
Hölder continuous, with exponent 0 < α ≤ 1, for 1 ≤ i, j ≤ d. Let

u1(t, x)
4
=
∫ ∞

0

EPf(Xx(s))pt(0, s)ds,

u2(t, x)
4
=
∫ t

0

∫ ∞
0

EPg(Xx(s))pr(0, s)dsdr.
(2.1)

Then ∆2u1(t, x) and ∆2u2(t, x) are finite and

∆2u1(t, x) =
∫ ∞

0

∆2EPf(Xx(s))pt(0, s)ds,

∆2u2(t, x) =
∫ t

0

∫ ∞
0

∆2EPg(Xx(s))pr(0, s)dsdr.
(2.2)

If we additionally assume that the Dijf and Dijg are bounded (for all i, j), then
∆2u1(t, x) and ∆2u2(t, x) are continuous on (0,∞)× Rd.

Proof. For notational simplicity we show that
(a)

∂4u1

∂x4
i

=
∫ ∞

0

∂4

∂x4
i

EPf(Xx(s))pt(0, s)ds; i = 1, . . . , d,

(b)
∂4u2

∂x4
i

=
∫ t

0

∫ ∞
0

∂4

∂x4
i

EPg(Xx(s))pr(0, s)dsdr; i = 1, . . . , d,
(2.3)

where the mixed derivatives cases follow the same steps. In the remainder of the
proof, fix an arbitrary i ∈ {1, . . . d}. We start with assertion (a) in (2.3). Using
the boundedness on f and Problem 3.1, p. 254 in [16] (the case Rd with d > 1 is
a simple extension when f is bounded), the symmetry of p(d)

s (x, y) (the density of
Xx) in x and y, and the facts that

lim
yi→±∞

f(y)
∂3

∂y3
i

p(d)
s (x, y) = lim

yi→±∞

∂

∂yi
f(y)

∂2

∂y2
i

p(d)
s (x, y) = 0

(since f is bounded and ∂
∂yi

f(y) is Lipschitz in yi), we get

∂4

∂x4
i

EPf(Xx(s))pt(0, s) =
(∫

Rd
f(y)

∂4

∂x4
i

p(d)
s (x, y)dy

)
pt(0, s)

=
(∫

Rd
f(y)

∂4

∂y4
i

p(d)
s (x, y)dy

)
pt(0, s)

=
(∫

Rd

∂2

∂y2
i

f(y)
∂2

∂y2
i

p(d)
s (x, y)dy

)
pt(0, s).

(2.4)
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Rewriting the last term in (2.4), and letting hi(y)
4
= ∂2f(y)/∂y2

i , we have

1√
2πt

(∫
Rd

(2πs)−d/2
(

(xi − yi)2 − s
s2

)
e−|x−y|

2/2shi(y)dy
)
e−s

2/2t

=
1√
2πt

e−s
2/2tEP

[(
(xi −Xx

i (s))2 − s
s2

)
hi(Xx(s))

]
=

1√
2πt

e−s
2/2tEP

[(
(xi −Xx

i (s))2 − s
s2

)
(hi(Xx(s))− hi(x))

]
,

(2.5)

where we used the fact that EP
(
(xi −Xx

i (s))2 − s
)

= 0 to obtain the last equality.
Now, using the Brownian motion scaling, we have

EP
∣∣(xi −Xx

i (s))2 − s
∣∣2 = s2EP

∣∣∣∣∣
(
X0
i (s)√
s

)2

− 1

∣∣∣∣∣
2

= s2EP
∣∣∣(X0

i (1)
)2 − 1

∣∣∣2 = Cs2,

(2.6)

for some constant C; so an easy application of the Cauchy-Schwarz inequality yields∣∣∣∣ ∂4

∂x4
i

EPf(Xx(s))pt(0, s)
∣∣∣∣

≤ 1√
2πt

e−s
2/2t

(
EP
∣∣∣∣ (xi −Xx

i (s))2 − s
s2

∣∣∣∣2 EP |hi(Xx(s)) − hi(x)|2
)1/2

≤ K√
2πt

e−s
2/2t

s

(
EP |Xx(s)− x|2α

)1/2

=
K√
2πt

e−s
2/2t

s1−α/2 ,

(2.7)

where the next to last inequality follows from (2.6) and the Hölder condition on hi.
But

K√
2πt

∫ ∞
0

e−s
2/2t

s1−α/2 ds <∞,(2.8)

for α > 0. So, (2.3) (a), as well as the continuity assertion afterwards, follow by
a standard classical argument (see, e.g., Friedman [13], pages 10-12 for the purely
analytical details in the second-order case).

Now, by part (a) of (2.3), part (b) of (2.3) is established once we show

∂4

∂x4
i

∫ t

0

∫ ∞
0

EPg(Xx(s))pr(0, s)dsdr =
∫ t

0

∂4

∂x4
i

∫ ∞
0

EPg(Xx(s))pr(0, s)dsdr.

(2.9)

This is simple, however, since by the first part we have∣∣∣∣ ∂4

∂x4
i

∫ ∞
0

EPg(Xx(s))pr(0, s)ds
∣∣∣∣ =

∣∣∣∣∫ ∞
0

∂4

∂x4
i

EPg(Xx(s))pr(0, s)ds
∣∣∣∣

≤
∫ ∞

0

∣∣∣∣ ∂4

∂x4
i

EPg(Xx(s))pr(0, s)
∣∣∣∣ ds

≤ K√
2πr

∫ ∞
0

e−s
2/2r

s1−α/2 ds,

(2.10)

and ∫ t

0

(
K√
2πr

∫ ∞
0

e−s
2/2r

s1−α/2 ds

)
dr <∞.
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So, again standard arguments (e.g., Problem 3, p. 52 in [4] or Friedman again)
complete the proof.

Remark 2.1. By an identical argument to that in Lemma 2.1 above, with only
notational differences to accommodate the dependence on time r in g(r, x), ∆2 can
be pulled outside the integrals in (2.25) once Dijg is continuous on [0, T ]×Rd and
Hölder continuous in x uniformly with respect to (t, x) ∈ [0, T ]× Rd.

2.2. The main proofs. In all the proofs presented here, it suffices to prove the
result for the BTP case. The excursion BTP (including the IBM) cases are proved
from the BTP one in exactly the same way as in the proof of Theorem 0.1 in [1].

Proof of Theorem 1.1. We first use the independence of Xx(·) and |B(·)| to get

u(t, x) = EP
[
f(XxB(t)) +

∫ t

0

g(XxB(r))dr
]

= 2
∫ ∞

0

Tsf(x)pt(0, s)ds+ 2
∫ ∞

0

∫ t

0

Tsg(x)pr(0, s)drds,
(2.11)

where pt(0, s) is the transition density of B(t), and where we used the boundedness
of g and consequently that of Tsg(x) along with Fubini’s theorem to get the last
term. Differentiating (2.11) with respect to t and putting the derivative under the
integral, which is easily justified by the dominated convergence theorem (remember
that f and g are bounded), then using the fact that pt(0, s) satisfies the heat
equation

∂

∂t
pt(0, s) =

1
2
∂2

∂s2
pt(0, s),

we have

∂

∂t
u(t, x) = 2

∫ ∞
0

Tsf(x)
∂

∂t
pt(0, s)ds+ 2

∫ ∞
0

Tsg(x)
(∫ t

0

∂

∂r
pr(0, s)dr

)
ds

=
∫ ∞

0

Tsf(x)
∂2

∂s2
pt(0, s)ds+

∫ t

0

∫ ∞
0

Tsg(x)
∂2

∂s2
pr(0, s)dsdr.

(2.12)

So, integrating by parts twice and observing that the boundary terms always
vanish at ∞ (as s↗∞) and that (∂/∂s)pt(0, s)|s=0 = 0 but pt(0, 0) > 0, we get

∂

∂t
u(t, x) = pt(0, 0)

(
∂

∂s
Tsf(x)

)∣∣∣∣
s=0

+
∫ t

0

pr(0, 0)
(
∂

∂s
Tsg(x)

)∣∣∣∣
s=0

dr

+
∫ ∞

0

A2Tsf(x)pt(0, s)ds+
∫ t

0

∫ ∞
0

A2Tsg(x)pr(0, s)dsdr

=
1√
2πt
Af(x) +

√
2t
π
Ag(x)

+A2

(∫ ∞
0

Tsf(x)pt(0, s)ds+
∫ t

0

∫ ∞
0

Tsg(x)pr(0, s)dsdr
)

=
1√
2πt
Af(x) +

√
2t
π
Ag(x) +

1
2
A2u(t, x),
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where in the next to last step we used property (P). Obviously, u(0, x) = f(x).
Also, rewriting u as u(t, x) = EPf(x + X0

B(t)) and noticing that f is bounded and
continuous, we can use the bounded convergence theorem to conclude

f(x) = lim
t↓0
y→x

u(t, y).

Next, we present the

Proof of Theorem 1.2. Again, it is enough to prove the BTP case. Let

uε(t, x)
4
= EP

[
f(XxεB(t)) exp

(
−|B(t)|

ε

)]
(2.13)

and

vε(s, x)
4
= EP

[
f(Xx(εs)) exp

(
−s
ε

)]
= exp

(
−s
ε

)
Tεsf(x).(2.14)

We then have

uε(t, x) = 2
∫ ∞

0

vε(s, x)pt(0, s)ds,(2.15)

and so, following our argument in the previous proof, and noticing that, for a fixed
ε, exp (−s/ε) and all of its derivatives are bounded and in C∞(R+;R+), we get

∂

∂t
uε(t, x) = 2

∫ ∞
0

vε(s, x)
∂

∂t
pt(0, s)ds =

∫ ∞
0

vε(s, x)
∂2

∂s2
pt(0, s)ds

= pt(0, 0)
(
∂

∂s
vε(s, x)

)∣∣∣∣
s=0

+
∫ ∞

0

pt(0, s)
∂2

∂s2
vε(s, x)ds

=
1√
2πt

[
εAf(x)− 1

ε
f(x)

]
+

1
2ε2

uε(t, x) −Auε(t, x) +
ε2

2
A2uε(t, x),

(2.16)

where we have also used property (P). Again, uε(0, x) = f(x). Rewriting u as
u(t, x) = EP

[
f(x+ X0

εB(t)) exp (−|B(t)|/ε)
]

and noticing that f is bounded and
continuous, we can use the bounded convergence theorem to conclude

f(x) = lim
t↓0
y→x

uε(t, y).

We are now in a position to give the

Proof of Theorem 1.3. Let u and v be defined as in (1.8) and (1.7), respectively.
Then, as we did several times above,

u(t, x) = 2
∫ ∞

0

pt(0, s)v(s, x)ds.(2.17)

Differentiating (2.17) with respect to t and putting the derivative under the integral,
which is again justified by the dominated convergence theorem (remember that f
is bounded and c ≤ 0), then proceeding as in the proof of Theorem 1.1 and noting
that, since Xx is Brownian motion starting at x under P, then

∂

∂s
v(s, x) =

1
2

∆v(s, x) + c(x)v(s, x), in (0,∞)× Rd,
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with v continuous on [0,∞)×Rd and v(0, x) = f(x) (see, for example, section 4.3 of
[11]). So, integrating by parts twice, and again observing that the boundary terms
always vanish at ∞ (as s ↗ ∞) and that (∂/∂s)pt(0, s)|s=0 = 0 but pt(0, 0) > 0,
we get

∂

∂t
u(t, x) = −

∫ ∞
0

∂

∂s
pt(0, s)

∂

∂s
v(s, x)ds

= pt(0, 0)
(
∂

∂s
v (s, x)

)∣∣∣∣
s=0

+
∫ ∞

0

pt(0, s)
∂2

∂s2
v(s, x)ds

= pt(0, 0)
(

1
2

∆f(x) + c(x)f(x)
)

+
∫ ∞

0

pt(0, s)
(

1
4

∆2v (s, x) +
1
2
v (s, x) ∆c (x)

)
ds

+
∫ ∞

0

pt(0, s)
(
∇c (x) · ∇v (s, x) + c (x) ∆v (s, x) + c2 (x) v (s, x)

)
ds.

(2.18)

Taking the application of ∆, ∇, ∆2 as well as the terms c, c2, ∆c, ∇c and the dot
product outside the integral, we get the PDE in (1.2). To justify this last step,
it suffices to show that we can take the highest-order derivatives (∆2) outside the
integral. Towards this end, we first note that

v(s, x) = EPf(Xx(s)) +
∫ s

0

EP {c(Xx(r))v(s − r,Xx(r))} dr.(2.19)

This follows from exactly the same steps as those in Durrett’s [11], pp. 140–141.
Then,

Dijv(s, x) = DijEPf(Xx(s)) +Dij

(∫ s

0

EP {g(s− r,Xx(r))} dr
)

; 1 ≤ i, j ≤ d,

(2.20)

where g(r, x) = c(x)v(r, x). Fix an arbitrary pair i, j and let

v1(s, x)
4
= DijEPf(Xx(s)) and v2(s, x)

4
= Dij

∫ s

0

EP {g(s− r,Xx(r))} dr.

We see from the boundedness of f and the Hölder and boundedness assumptions
on Dijf that

|v1(s, x) − v1(s, y)| =
∣∣EP [Dijf(x+X0(s))−Dijf(y +X0(s))

]∣∣
≤ EP

∣∣Dijf(x+X0(s))−Dijf(y +X0(s))
∣∣ ≤ C |x− y|α .

(2.21)

In fact, the boundedness of f and Problem 3.1 in [16] imply that DijEPf(Xx(s)) =
EPDijf(x + X0(s)) has derivatives of all orders (in both s and x, for (s, x) ∈
(0,∞)× Rd), and hence is Lipschitz in x.

Now, the boundedness of v (implied by the boundedness of f and the fact that
c ≤ 0) and the boundedness of c imply the boundedness of g. This, in addition to
Theorem 2.6c in [11] (in Chapter 4) yield

v2(s, x) =
∫ s

0

∫
Rd
g(s− r, y)Dijp

(d)
r (x, y)drdy.(2.22)
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But |Dijv(s, x)| ≤ KT ∀(s, x) ∈ [0, T ]×Rd, for any time T > 0, by assumption; and
Dijv is continuous by Theorem 3.6, p. 140 in [11] (since f and c are both bounded
by assumption and Hölder continuous because Dijf and Dijc are by assumption).
This, in addition to the assumption thatDijc are all Hölder continuous and bounded
imply that Dijg(s, x) is bounded on [0, T ] uniformly in x and continuous, so that,

if G(r, y)
4
= Dijg(r, y), then (2.22) implies that

v2(s, x) =
∫ s

0

∫
Rd
p(d)
r (x, y)Dijg(s− r, y)drdy =

∫ s

0

∫
Rd
p(d)
r (x, y)G(s− r, y)drdy,

(2.23)

and it follows by Theorem 2.6b, pp. 133-134 in [11] (in which the assertion of
differentiability and continuity of derivatives is unaffected if we replace |G| ≤ M
with |G(t, x)| ≤MT ∀(t, x) ∈ [0, T ]× Rd, ∀T ) that

|v2(s, x) − v2(s, y)| ≤ CT |x− y|, ∀s ∈ [0, T ].(2.24)

Clearly, (2.21) and (2.24) imply that Dijv(s, x) = v1(s, x) + v2(s, x) is Hölder
continuous with exponent α in x uniformly with respect to (s, x) ∈ [0, T ]×Rd. So,
by the boundedness assumptions on Dijv and Dijc and the assumption that Dijc
is Hölder continuous, it follows that Dijg(s, x) is Hölder continuous with exponent
α in x uniformly with respect to (s, x) ∈ [0, T ]× Rd.

Now, since f, g and Dijf,Dijg are bounded and Hölder continuous, then (2.19),
Lemma 2.1 and Remark 2.1 imply that

∆2

∫ ∞
0

pt(0, s)v (s, x) ds

= ∆2

∫ ∞
0

pt(0, s)
(
EPf(Xx(s)) +

∫ s

0

EP {g(s− r,Xx(r))} dr
)
ds

= ∆2

∫ ∞
0

pt(0, s)EPf(Xx(s))ds+ ∆2

∫ ∞
0

pt(0, s)
∫ s

0

EP {g(s− r,Xx(r))} drds

=
∫ ∞

0

pt(0, s)∆2EPf(Xx(s))ds+
∫ ∞

0

pt(0, s)
∫ s

0

∆2EP {g(s− r,Xx(r))} drds

=
∫ ∞

0

pt(0, s)
(

∆2EPf(Xx(s)) + ∆2

∫ s

0

EP {g(s− r,Xx(r))} dr
)
ds

=
∫ ∞

0

pt(0, s)∆2v (s, x) ds.

(2.25)

So, we can pull the operator ∆2 outside the integral in (2.18) as desired.
Obviously, u(0, x) = f(x), and rewriting u as

u(t, x) = EP

[
f(x+ X0

B(t)) exp

(∫ |B(t)|

0

c(x+X0(r))dr

)]
and noticing that f is bounded and continuous and c ≤ 0, bounded and continuous,
we can use the bounded convergence theorem to conclude

f(x) = lim
t↓0
y→x

u(t, y),

so that u(t, x) solves (1.9).
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