
1

BRPL: Backpressure RPL for High-throughput
and Mobile IoTs

Yad Tahir, Shusen Yang, and Julie McCann

Abstract—RPL, an IPv6 routing protocol for Low power Lossy Networks (LLNs), is considered to be the de facto routing standard for

the Internet of Things (IoT). However, more and more experimental results demonstrate that RPL performs poorly when it comes to

throughput and adaptability to network dynamics. This significantly limits the application of RPL in many practical IoT scenarios, such

as an LLN with high-speed sensor data streams and mobile sensing devices. To address this issue, we develop BRPL, an extension of

RPL, providing a practical approach that allows users to smoothly combine any RPL Object Function (OF) with backpressure routing.

BRPL uses two novel algorithms, QuickTheta and QuickBeta, to support time-varying data traffic loads and node mobility respectively.

We implement BRPL on Contiki OS, an open-source operating system for the Internet of Things. We conduct an extensive evaluation

using both real-world experiments based on the FIT IoT-LAB testbed and large-scale simulations using Cooja over 18 virtual servers on

the Cloud. The evaluation results demonstrate that BRPL not only is fully backward compatible with RPL (i.e. devices running RPL and

BRPL can work together seamlessly), but also significantly improves network throughput and adaptability to changes in network

topologies and data traffic loads. The observed packet loss reduction in mobile networks is, at a minimum, 60% and up to 1000% can

be seen in extreme cases.

Index Terms—RPL, Internet of Things, IPv6, Backpressure Routing, Low-power Lossy Networks, Wireless Sensor Networks

✦

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/TMC.2017.2705680

1 INTRODUCTION

MANUFACTURERS are adapting a new breed of stan-
dards to provide an unprecedented level of trans-

parency between business players, factory operations, and
supply chain planning. This results in the fourth industrial
revolution, commonly referred as “Industry 4.0”. One of the
core technological basis for this industrial revolution is the
Internet of Things (IoT). Many efforts have been made to in-
corporate core Internet technology, TCP/IP standards, with
emerging IoT standards primarily to ensure interoperability
in heterogeneous networks. Herein nodes not only represent
smart sensing devices, but also can be actuators, or even
traditional Internet endpoints such as computers, tablets or
smartphones.

The Internet Engineering Task Force (IETF) has proposed
RPL [1] as a de-facto IoT routing standard for IPv6-based
Low power and Lossy Networks (LLNs). RPL is a generic dis-
tance vector routing protocol that allows users to establish
logical routing topologies, commonly known as Directed
Acyclic Graphs (DAGs), over a shared physical network.
DAGs are computed based on Objective Functions (OFs) spec-
ified by users. Much work in both academia and industry
has shown that RPL provides a promising routing solution
for a wide range of network types and industrial appli-
cations, including Home Automation (RFC 5826) [2], In-
dustrial Control (RFC 5673) [3], Urban Environments (RFC

• Y. Tahir and J. McCann are with Department of Computing, Imperial
College London.
E-mail: {y.tahir11, j.mccann}@imperial.ac.uk.

• S. Yang is with the School of Mathematics and Statistics, Xi’an Jiaotong
University, China.
E-mail: shusenyang@mail.xjtu.edu.cn.

Fig. 1. Used routing paths for a system with RPL and the ETX OF.

5548) [4], Building Automation (RFC 5867) [5], Advanced
Metering Infrastructure (AMI) [6], and Smart Grids [7].

1.1 Motivations

To support real-world industrial IoT applications, the un-
derlying networking services for LLNs must meet several
requirements, including support for rapidly growing de-
mands for high-throughput networks [8], [9], [10], adaptability
to the data traffic dynamics [9], [11], [12], and in some
cases mobility of IoT devices [13], [14], [9]. Two of these
requirements are formally stated in RFC 5673 [3] and RFC
5867 [5]. However based on the current specifications, RPL
can perform poorly in terms of meeting these requirements,
which limits its adaption in numerous IoT applications.

1) Throughput. As a distance vector routing protocol
[15], RPL may suffer from severe congestion and packet loss
when the network traffic is heavy (e.g., where multiple IoT
applications coexist in a network). This is mainly because
the DAGs defined by the OFs may not utilize the full
network capacity. Fig. 1 shows an example of this issue, in
which node A wants to transfer data to the DAG’s roots
R1 or R2 (i.e., anycasting). Assume the network uses the
standard ETX metric [16] as the OF. In this case, RPL will

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

use A-B-C-R1 in Fig. 1 to avoid using the noisy path A-D-E-
R2 as much as possible. As a result, congestion and packet
loss may occur on path A-B-C-R1 when the network is
handling a large amount of traffic, which is typical in multi-
user IoT systems. This could be mitigated by exploiting the
additional capacity of the suboptimal path A-D-E-R2.

2) Traffic Load Adaptivity. The highly dynamic and
unplanned nature of LLN applications can produce time-
varying data traffic patterns (e.g., traffic bursts generated
by event-based applications). However, RPL fails to adapt
to such traffic dynamics due to its fixed configurations. It
is crucial to have an adaptive solution such that it utilizes
necessary resources based on traffic demands. When the net-
work experiences low data traffic, the default path specified
by OF is sufficient. The suboptimal paths (e.g., path A-D-E-
R2 in Fig.1) are needed only when the data traffic volume is
high.

3) Mobility. Due to the time-varying network topology
caused by node mobility, invalid routes and link breakage
are likely to exist in DAGs. The lack of adaptivity and
mobility-awareness in an OF leads to the slow response
to changes in network topologies. This makes RPL highly
inefficient and potentially impractical in mobile networks.
Network resources must be utilized opportunistically as
well as strategically to support low power and lossy IoT
systems with mobile nodes.

1.2 Contributions

To address the mentioned limitations, Backpressure RPL
(BRPL) is proposed, a new extension of RPL that provides
enhanced support for high throughput, adaptivity and mo-
bility without any modification or assumption on RPL OFs.
Our contributions are summarized as follows:

1) We developed BRPL, the first work that incorporates
the principles of backpressure-based optimization with RPL
routing. BRPL is a multi-topology routing protocol that
smartly routes traffic based on the gradients of both differ-
ential queue backlogs and OFs provided by the users. The
basic idea of BRPL is to adaptively and smoothly switch be-
tween RPL and the backpressure routing (classic Lyapunov-
based routing) according to network conditions. This is
achieved by two lightweight control algorithms: QuickTheta
supporting data traffic dynamics and QuickBeta for topology
dynamics (i.e., mobility). BRPL has two interesting features:
when the traffic loads in the network are high, BRPL can
achieve high throughput by utilizing all possible resources to
handle the overwhelming data traffic. However, when the
network experiences light data traffic in all nodes, BRPL is
objective function optimal routing and becomes identical to
RPL routing. As a result, BRPL maintains the advantages
of both RPL and backpressure routing, while avoiding their
disadvantages.

2) BRPL uses the same control message structures de-
fined in the specifications of RPL. This ensures that BRPL
is interoperable with RPL, i.e. IoT devices running original
RPL or BRPL can operate together seamlessly in a hybrid
network, without requiring any source code modification on
nodes running RPL. Such software compatibility is very im-
portant in practice, as the routing layer of some nodes (such
as non-programmable Zigbee chips) is not reprogrammable

or replaceable. To the best of our knowledge, this is the first
work that aims to make backpressure-based routing feasible
in hybrid networks.

3) BRPL strongly adheres to the “Application Trans-
parency” design principle. Improving throughput, adaptiv-
ity and mobility of the network in BRPL is achieved without
requiring any knowledge or statistical assumptions on OFs
and their implementation details. This is vital in IoT as OFs
for IoT applications can be widely dissimilar. The current
specifications of RPL do not provide any constraint on the
types of OFs.

4) We implemented BRPL in Contiki OS [17], an open
source operating system for LLNs and IoT. Through both
real-word experiments on the FIT IoT-LAB testbed [18] and
extensive simulations with Cooja (Contiki’s network simu-
lator) over a private Cloud with 18 servers, we demonstrate
that BRPL can work seamlessly with RPL, and it has control
overhead similar to RPL and backpressure routing. More
importantly, the results show that BRPL smartly achieves
the advantages of both RPL and backpressure routing and
significantly outperforms them in terms of reliability, end-
to-end delay, throughput, adaptability to network dynam-
ics, and mobility support.

1.3 Paper Organization

The remainder of the paper is organized as follows. The
next section presents system models and more detailed
information about RPL. BRPL extension is proposed in
Section 3. Section 4 provides a detailed discussion about
our proposed solution. Testbed experiments and simulation
results are presented in Section 5. Related work is discussed
in Section 6. Finally, we conclude the paper in Section 7.

Table 1 summarizes the key symbols used in this work.

TABLE 1
Main symbols used in this paper.

S,R The sets of all sensor nodes and roots, respectively.
N The set of all IoT devices N = S ∪ R.
L The set of all wireless links.
Nx(t) The set of x’s all neighbors at slot t.
M The set of all DAGs available in the network.
R The set of all roots for the network.
Rm The set of all roots for DAG m.
cx,y(t) Channel capacity of link x, y at slot t.
fm
x,y(t) Data rate for DAG m over link (x, y) at t.

f in
x,m(t) Total incoming DAG m data rate of node x at t.

fout
x,m(t) Total outgoing DAG m data rate of node x at t.

RootRankmx The Rank of root x for DAG m.
Rankmx (t) The Rank of node x for DAG m at t .
pmx,y(t) The penalty over link for DAG m x, y at t.
Qm

x (t) The queue length of node x for DAG m at t.
rmx (t) Data packets generated by node x for DAG m at t.
Qm

y (x, t) The queue length for the neighbor record y

in the neighbor table of node x.
MaxQm

x Maximum queue size for DAG m in node x.
MaxQm

y (x) Maximum queue size for the neighbor record y

in the neighbor table of node x.
wm

x,y(t) The weight over link (x, y) for DAG m at t
θmx (t) Tradeoff parameter between throughput and OF.
△Qm

x,y(t) the queue length difference between x, y for DAG m.

Q̄m
x (t) The moving average of x’s queue for DAG m at t.

βx(t) The mobility-awareness parameter for node x at t.

2

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Fig. 2. An illustration for logical routing topologies in RPL. The circles
and squares represent nodes and roots, respectively. Ranks are rep-
resented as numbers next to the nodes and roots. Both (c) and (d)
topologies have one DODAG and one DAG each, whereas the logical
topology in (b) has two DODAGs and one DAG.

2 SYSTEM MODELS

We consider an LLN that consists of a set of IoT devices
N = S ∪R communicating in a multi-hop fashion as shown
in Fig. 2(a); where S represents the set of all sensor nodes
that can generate and relay data packets, and R is the set
of all roots/gateways that collect the data traffic produced
by the network. The network operates in discrete time slots
t ∈ {1, 2, ...}.

2.1 Modeling the Physical LLN

To model the dynamic and lossy wireless transmissions, we
define cmax ≥ cx,y(t) ≥ 0 as the logical link-layer channel
capacity from node x to node y at time slot t, i.e. cx,y(t)
indicates the maximum (integer) number of acknowledged
packets that can be successfully transmitted from node x to
y during time slot t. Here, cmax is the maximum possible
cx,y(t), ∀t, which is bounded by the data rate of the wire-
less radio. For instance, experimental studies show that a
commonly-used IEEE 802.15.4 transceiver, CC2420 (e.g.[19]),
can achieve a data rate of approximate 160 40-bytes packets
per second [20] in practice.

The logical channel capacity depends on a wide range
of random events such as wireless interference and node
mobility. When cx,y(t) > 0, it indicates that both node x
and y are one-hop away from each other at time slot t. Let
Nx(t) ⊆ N be the set of all possible one-hop neighbors that
node x ∈ N can communicate with during slot t:

Nx(t) := { y | cx,y(t) > 0, cy,x(t) > 0, y ∈ N − {x} }

The whole network is modeled as a time-varying
weighted graph G(N ,L, c(t)) where L represents all pos-

sible wireless links for all node pairs in N . |L|–dimensional
vector c(t) holds the channel capacities for all the links at t.

2.2 Network-theoretical Modeling of RPL routing

The IETF Routing over Lossy and Low-power Networks
(RoLL) group established the specifications of RPL, pub-
lished as RFC 6550 [1]. This section presents network the-
oretic models for the key RPL specifications.

2.2.1 Multi-Commodity Model for Multi-Topology Routing

Topologically, RPL adheres to the concept of Multi-Topology
Routing (MTR). RPL allows multiple instances of RPL to
run concurrently in a network. Each RPL instance con-
structs a logical topology called Directed Acyclic Graph (DAG)
that consists of one or more Destination Oriented DAGs
(DODAGs) (one DODAG per one root destination). All log-
ical DAGs share the same physical network infrastructure,
and simultaneously support different routing optimization
objectives. For instance, Fig.2 shows illustrative examples of
three DAGs for a common physical LLN, where the DAG in
Fig.2 (b) consists of two DODAGs, and the DAGs in Fig.2
(c) and (d) have one DODAG each.

Let M be the set of all DAGs available in the network.
Rm represents the set of all roots for the DAG m ∈ M.
Hence, the set of all roots for all DAGs can be seen as:

R =
⋃

m∈M

Rm (1)

We use the multi-commodity model [21] to formalize
the RPL protocol in a network. Here, each DAG m in the
network can be seen as a commodity. All data traffic in a
DAG m should be transmitted to any destination r ∈ Rm.

Definition 1 [MTR Traffic Feasibility]. Denote fm
x,y(t) ≥ 0

as the actual amount of data traffic for DAG m over a wireless
link (x, y) at slot t. Let f in

x,m(t) =
∑

y∈Nx(t)
fm
y,x(t) and

fout
x,m(t) =

∑

y∈Nx(t)
fm
x,y(t) be the total data DAG-m incoming

and outgoing traffic of node x at slot t respectively. Then for any
feasible multi-topology routing approach (e.g. RPL), the following
two conditions should be satisfied:

∑

m∈M

fm
x,y(t) ≤ cx,y(t), ∀x, y ∈ N , t ≥ 1 (2)

rmx + f
in

x,m ≤ f
out

x,m, ∀x ∈ S,m ∈ M (3)

where f
in

x,m and f
out

x,m represent the long-term averages of

f in
x,m and fout

x,m respectively, and rmx ≥ 0 is the long-term
average of DAG-m data traffic generated by node x.

Condition (2) ensures that the total data traffic for all
DAGs over a link should not exceed its channel capacity.
Condition (3) states the flow conservation law, i.e. the total
incoming data traffic for a given DAG m at any IoT device
x should not be more than the total outgoing data traffic for
DAG m for x.

2.2.2 Objective Function and Routing Gradient

RPL constructs each DAG by using an OF, which defines
a specific routing optimization objective, such as minimiz-
ing energy consumption or end-to-end delay. All DODAGs
within a DAG share the same OF. Each DODAG in a DAG

3

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Fig. 3. DIO message structure in RPL.

is computed by a scalar variable associated with each node
called Rank, which is basically the logical distance between
a node and the corresponding root of the DODAG. For
instance, the Rank in Fig.2(c) represents hop count, and the
routing objective is to minimize the number of hops for
packet delivery from the nodes to the destination R3. The
Rank value of node x ∈ N in m ∈ M is computed as:

Rankmx (t) =

{

min
y∈Nx(t)

(pmx,y(t) +Rankmy (t)) x /∈ Rm

RootRankmx x ∈ Rm

(4)
where pmx,y(t) > 0 denotes the penalty/cost of using the
link (x, y) in DAG m at time slot t, and RootRankmx ≥ 0
is the smallest Rank value in the DAG m. Hence, when a
node x is not a root, its rank is computed by finding a one-
hop connection that gives the smallest sum of neighbor rank
Rankmy and link penalty pmx,y .

2.2.3 DIO Message and DODAG Establishment

The construction of any DODAG 1 is fully distributed, but
initially triggered by the root r of the DODAG. r starts by
broadcasting a DODAG Information Object (DIO) message
to its one-hop neighbors. Fig. 3 that shows the DIO message
structure. DIO is an ICMPv6 information message holding
important parameters about the DODAG including: RPLIn-
stanceID, Version Number, and the Rank of the sender.

Each neighbor x ∈ Nr(t) computes its Rank value based
on Eq.(4), updates the Rank parameter, and then broadcasts
its DIO message to its one-hop neighbors y ∈ Nx(t

′), t′ ≥ t.
This process repeats itself for all other nodes existing in the
network. Based on the computed Rank values, each node x
is going to choose its optimal neighbor y∗m as follows:

y∗m(x, t) = arg min
y∈Nx(t)

(pmx,y(t) +Rankmy (t)) (5)

This neighbor is commonly referred as the preferred par-
ent for node x in the DAG m. Whenever a node receives
data packets associated with m DAG, it forwards them to its
preferred parent. The parent then repeats the process until a
root r ∈ Rm receives the packets.

The broadcasting process for RPL relies on the Trickle
algorithm specified in RFC 6206. It is not necessary to have
a broadcasting process per each DODAG, instead it can
be per each DAG. It is important to note that the Trickle

1. For brevity, this work only considers RPL nodes operating as both
leaf and router. However, it is straightforward to extend our proposed
solution to support the leaf-only and router-only modes.

Fig. 4. Illustration of software architecture of BRPL.

algorithm takes network stability into account. Receiving a
DIO message from a sender with a lesser Rank that causes
no changes to the recipient’s preferred parent or Rank is
considered as a ‘consistent’ DIO message with respect to the
Trickle timer. When the network continuously encounters
consistent DIO messages (i.e. the network is stable), the
algorithm decreases the broadcasting rate, which results
in performing less update operations on the neighbor ta-
bles. In this case, the tradeoff between energy efficiency
and neighbor table consistency is considered to be highly
justifiable for LLNs, particularly when nodes have limited
resources. However, in time-varying networks, the Trickle
algorithm increases the DIO broadcasting rate. Neighbor
table maintenance is therefore performed more frequently
to ensure DAG consistency and accuracy.

3 BRPL

This section describes our proposed extension to RPL, BRPL,
aiming to enhance the performance of RPL in terms of
mobility support, high throughput, and adaptivity to the
network traffic dynamics. The software architecture of the
proposed solution, which is illustrated in Fig. 4, has the
following key components:

• Internal ICMP communicates with ICMPv6 in or-
der to send/receive DIO, DAO, and DIS control
messages. When an ICMPv6 message is received, the
internal ICMP component first extracts the payload,
and then notifies the DAG component.

• Timers holds all timer-related logics including the
Trickle algorithm.

• Public API provides a clean interface to allow ex-
ternal components such as user applications to adjust
or interact with BRPL.

• QuickBeta holds the implementation details for the
mobility-awareness indicator.

• QuickTheta an online algorithm that actively ad-
justs the parameter settings of BRPL based on current
network dynamics.

4

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

• OF is the objective function provided by the applica-
tion layer.

• Neighbor Manager manages the neighbor table
of the node. It communicates with IPv6 Neighbor
Discovery Service to synchronize the neighbor table.

• Queue Manager manages the data buffer (queue)
of each DAG. The queue stores incoming IPv6 data
packets.

• Rank Façade is responsible for calculating Ranks
and link weights for the one-hope neighbors. As
the name indicates, this component follows the well-
known Façade design pattern [22] in software engi-
neering.

• DAG contains all the logic related to DAGs including
modifying IPv6 routing table, routing repair, choos-
ing best parent based on Rank Façade.

3.1 Multi-topology Queueing System

Similar to RPL, BRPL follows the design principles of MTR.
Each DAG is established by an OF. However unlike RPL,
BRPL combines network congestion gradients (i.e. differen-
tial queue gradients) and OF ranking for handling upward
data routing. Each IoT device running BRPL is required
to maintain a queue (packet buffer) for each DAG (This
queue is maintained by the queue manager in Fig. 4). Let
Qm

x (t) ≥ 0 be the queue backlog (or queue length) of node
x ∈ N for DAG m ∈ M at slot t. The queue dynamics of x
are defined as follows:

0 ≤ Qm
x (t) ≤ MaxQm

x (6)

Qm
x (t+ 1) = |Qm

x (t)− fout
x,m(t)|+ + rmx (t) + f in

x,m(t) (7)

where MaxQm
x > 0 is the maximum queue length (i.e.

allocated data buffer size) of x for DAG m. rmx (t) denotes
the amount of data packets produced by node x for DAG m
at time slot t. The operator |a|+ means max(a, 0). The queue
length of any root is always equal to zero:

Qm
r (t) = 0, ∀r ∈ R, m ∈ M, t ≥ 1

3.2 Neighbor Table Maintenance

When a node receives a DIO message from a one-hop
neighbor, it updates a few fields for the sender’s record
in the neighbor table. This includes rank, queue backlog and
maximum queue length.

Because this work considers hybrid networks (i.e. some
nodes may use the original specifications of RPL and do not
advertise queue backlogs), the ‘queue backlog’ field for any
neighbor record in BRPL is updated as follows:

Qm
y (x, t) =

Qm
y (t) y is a BRPL node

Rankm

y
(t)

Rankm
x
(t)Q

m
x (t) y is a RPL node

(8)

Where Qm
y (x, t) denotes the queue backlog (a counter)

for the node y in x’s neighbor table. Eq. 8 is designed
carefully to address hybrid networks. Here we have two
cases:

When y runs the original RPL routing protocol, then
queue details are going to be missing in y’s DIO messages.

In this case, node x updates the Qm
y (x, t) by scaling its

queue length Qm
x (t) based on the rank of x and y. The

use of the Rankmy (t)/Rankmx (t) ratio avoids x sending data
packets to its child nodes, thus less routing loops. Based on
Eq. 4, we can observe that nodes choosing x as a parent have
ranks equal to or larger than node x’s rank.

The second case is when y runs BRPL. Here, Qm
y (t) is

not missing in DIO messages. x updates the Qm
y (x, t) field

such that Qm
y (x, t) = Qm

y (t).
Likewise, the maximum queue length field MaxQm

y (x)
for neighbor y in x’s neighbor table is updated according to:

MaxQm
y (x) =

{

MaxQm
y y is a BRPL node

MaxQm
x y is a RPL node

(9)

BRPL also uses the Trickle algorithm to control the
broadcasting rate of DIO messages. Similar to RPL, BRPL is
a fully distributed routing protocol. Each node only needs to
broadcast its DIO messages to its one-hop neighbors. There
is no need to relay DIO messages for other nodes. Global
repairing operations are generally not required.

3.3 Data Forwarding based on RPL Ranks and Queue

Backlogs

At each time slot t, BRPL performs routing and data for-
warding operations for upward data traffic as follows:

• Link Weight Calculation. Each IoT device x running
BRPL computes a weight wm

x,y(t) for each neighbor
y ∈ Nx(t) by combining queue length information
and RPL rank values:

wm
x,y(t) = θmx (t)p̃mx,y(t)− (1− θmx (t))△Qm

x,y(t)cx,y(t)
(10)

where

p̃mx,y(t) = pmx,y(t) +Rankmy (t) (11)

△Qm
x,y(t) = Qm

x (t)−Qm
y (x, t) (12)

and 0 ≤ θmx (t) ≤ 1 is the tradeoff parameter between
average queue backlogs and minimizing objective
function of DAG m, which is adaptively updated in
real-time by the QuickTheta algorithm2.
However in practice, the Eq. (10) may suffer from
scaling issues between the range values of △Qm

x,y(t)
and p̃mx,y(t). For example, the p̃mx,y(t) can be in
[0,255] (e.g. choose hop count as the Rank metric),
whereas △Qm

x,y(t) may only between [0,10000]. To
solve this problem, we can normalize the left and
right operands as:

wm
x,y(t) = θmx (t)p̃mx,y(t)− (1−θmx (t))△Qm

x,y(t)
cx,y(t)

cmax

p̃mx,y(t) =
pmx,y(t) +Rankmy (t)

MaxRank

△Qm
x,y(t) =

Qm
x (t)

MaxQm
x

−
Qm

y (x, t)

MaxQm
y (x)

2. Please note that the weight wm
x,y(t) for BRPL adopts the typically

combination of queue backlog difference △Qm
x,y(t) and penalty p̃mx,y(t),

which are also used in other backpressure based routing algorithms
such as [9], [23].

5

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Where MaxRank ≤ 216 − 1 is the maximal rank
value, depending on the Rank metric types (e.g. hop
count, ETX). Here, 216 − 1 is the maximum possible
value of MaxRank specified in the RPL specifica-
tions. wm

x,y(t) in this case for any two pairs of nodes
is always in [−1, 1] range.

• Routing and Data Forwarding. With the computed
weights wm

x,y(t), ∀y ∈ Nx(t), node x will compute
its potential parent (i.e. next-hop destination) y∗m for
DAG m:

y∗m(x, t) = arg min
y∈Nx(t)

(wm
x,y(t)) (13)

Data packets for upward data traffic are for-
warded to the potential parent y∗ if wm

x,y∗

m

(t) >
0 ∨ △Qm

x,y∗

m

(t) > 0. The actual data forward should
be less than the current channel capacity and the
number of data packets in its queue, i.e.

fm
x,y∗

m

(t) ≤ min(Qm
x (t), cx,y∗

m
(t))

BRPL has the following two special and interesting cases:

• Objective Function Optimality: It is easy to observe that
Eq. 10 would be degraded to Eq. 4, when θmx (t) = 1.
Therefore, BRPL has identical performance to RPL
when θmx (t) = 1 ∀x, y ∈ N and both schemes
greedily minimizes the routing objective specified by
the OF.

• High Throughput : When θmx (t) = 0 ∀x, y ∈ N ,
BRPL would achieve high throughput, because its
behavior (Eq. 10) will be similar to the well-known
throughput-optimal backpressure routing [24].

3.4 QuickTheta

The parameter θmx (t) in Eq. 10 can be configured directly
by the users, but this means that users must have knowl-
edge about the underline routing protocols and the current
physical network infrastructure. This is not feasible in prac-
tice for dynamic IoT, especially in multi-user IoT systems.
To abstract this complexity from the application layer, we
propose QuickTheta, a lightweight online algorithm that
adaptively adjusts parameter θmx (t), according to network
traffic congestion levels, without having any assumption on
the deployed applications or their expected traffic levels.

QuickTheta maintains a smooth queue length Q̄m
x (t),

which is an Exponential Weighted Moving Average (EWMA)
of Qm

y (x, t), i.e.

Q̄m
y (x, t) =

{

0 t = 1

αQ̄m
y (x, t− 1) + (1− α)Qm

y (x, t) t > 1

where 0 ≤ α ≤ 1 is the smoothing factor. Based on the
current smooth queue length value, θmx (t) is computed as:

θmx (t) = βx(t)

1−
1

|Nx(t)|+ 1

∑

y∈Nx(t)∪{x}

Q̄m
y (x, t)

MaxQm
y (x)

(14)
where the βx(t) parameter is for mobility-awareness,

which is discussed in the next subsection. For now, assume

βx(t) = 1. The ratio Q̄m
y (x, t)/MaxQm

y (x) is considered as
a measurement of y’s local congestion level for DAG m. This
measurement relies on the usage share of the y’s queue.
The more packets are stored in the queues of the nodes
y ∈ Nx(t) ∪ {x}, the closer θmx (t) is to 0. This results in
pushing BRPL to increase network throughput based on
Eq. 10. The reasons behind the design choice of Eq. 14 are
presented in Section 4.2.

3.5 QuickBeta: Mobility Support

QuickBeta computes the βx(t) parameter in Eq. 14 based
on the mobility condition of the nodes. This is defined as
follows:

βx(t) =
1

△t

t−1
∑

τ=t−△t

|Nx(τ) ∩Nx(τ + 1)|

max(|Nx(τ) ∪Nx(τ + 1)|, 1)
(15)

which observes the state changes of one-hop neighbor
nodes for the node x within the time window [t − △t, t).
The more neighbors change their states (i.e. from online to
offline or from offline to online), the closer βx(t) to 0 and
the more node x is seen as mobile.

For example, let node x has three neighbors {A,B,C} at
slot τ , and two existing neighbors {B,C} leave and a new
neighbor D joins at slot τ + 1, i.e. Nx(τ + 1) = {A,D}. We
compute the neighbor state changing rate for x from slot τ
to τ + 1 as

|Nx(τ) ∩Nx(τ + 1)|

|Nx(τ) ∪Nx(τ + 1)|
=

|{A}|

|{A,B,C,D}|
= 0.25

From the Eq. 14, it is easy to see that the closer βx(t) is to
0 (i.e. the more node is mobile), the closer θmx (t) is to 0 too.
This causes BRPL to rely more on queue length differential
for routing operations based on Eq. 10. In addition, the β
parameter in Eq. 14 can be weighted to reduce or increase
the sensitivity of mobility awareness in BRPL routing.

The rationale behind the design of QuickBeta algorithm
is presented in Section 4.2.

4 DISCUSSION AND ANALYSIS

4.1 Design Principles of BRPL

To provide a solution that is effective in IoT, the following
factors have been considered in BRPL:

4.1.1 Low Power and Lossy IoT

Similar to RPL, BRPL is designed mainly for LLNs using
IPv6. The characteristics of LLNs are carefully considered
in the proposed solution. In particular we focus on satis-
fying the limited power and processing resources. Control
message overheads are intentionally kept to minimum. Only
one new 6-byte field is added to RPL DIO control messages.
Both QuickTheta and QuickBeta does not require statistical
models or a learning/training phase to operate.

6

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

4.1.2 Focus on many-to-one routing, yet any-to-any is still

supported

BRPL focus mainly on the upward data traffic, which is
predominant traffic patterns in LLNs. Here, the traffic is
multipoint-to-point. As stated in [25], other traffic patterns
like unicast and point-to-multipoint are less frequent in
LLNs. For these types of patterns, BRPL uses the two
operation modes (non-storing and storing) that are originally
defined by the specifications of RPL.

4.1.3 Different Mobility Schemes

Although BRPL uses the mobility metric defined in Eq. 15,
other mobility metrics can be easily integrated with BRPL.
This includes, but not limited to, rendezvous-based [26],
trajectory-based [27] and social-aware [23] mobility metrics.

4.2 Design Rationale for QuickTheta and QuickBeta

When we designed QuickTheta and QuickBeta, we consid-
ered a wide range of factors to ensure having an imple-
mentable and practical solution in LLNs. The following list
briefly highlights three advantages of our algorithm design:

Single-layer Dependency: Both QuickTheta and QuickBeta
are self-contained and relies on one network layer only, the
routing layer. This is desirable design property to have.
Making QuickTheta and QuickBeta independent from the
other network layers not only enables seamless integration
with the OSI model, but also ensures usability under diverse
communication systems. For example, utilizing a custom
MAC layer does not cause any interoperability issue for the
two algorithms.

Simplicity: The choice of Eq. 14 and 15 is suitable for
nodes with limited amount of resources. Both algorithms are
simple to compute, and they do not rely on sophisticated
statistical models. There is no need to perform resource-
hungry data analysis operations here, nor to keep extensive
historical data from multiple network layers. The QuickBeta
algorithm only needs to retain the value of Nx(t) for the
time slots between (t − △t) and t. The Q̄m

y (x, t) for all the
nodes in y ∈ Nx(t) in the QuickTheta algorithm can be
maintained in a vector of Nx(t) + 1 elements.

User Abstraction and Self Parameter Tuning: It is easy to
observe that both Eq. 14 and 15 do not incorporate a direct
feedback from network users, instead they rely on neighbor
table and network traffic congestion levels to adjust their
performance. This is intentional and by design because it
makes BRPL more suitable for multi-user networks, spe-
cially when a network has a DAG serving multiple greedy
users. Even when user applications are highly dynamic and
unpredictable, users are not required to tune QuickTheta
and QuickBeta at runtime. This design also offers an effec-
tive solution to overcome user selfishness as a user cannot
mislead the QuickTheta and QuickBeta algorithms to gain a
better position in the network.

4.3 RPL Backward Compatibility Support

To ensure backward compatibility with RPL, BRPL does
not introduce any new control message types but rather
reuses the control message structures defined in RPL. Node
x ∈ N broadcasts its queue length Qm

x to Nx(t) at time

0

Queue Option Code
Option

Length

7 15 23

RPLInstanceID
Version	

Number
Rank

G 0 MOP Prf DTSN Flags Reserved

DODAGID

(128	bit)

Options

(the	rest	of	available	bits)

31

Queue Option Other Options…

0 7 15 31

Max

47

𝑄" 𝑄"

Fig. 5. DIO message structure in BRPL

Fig. 6. An illustration demonstrates how BRPL supports large-scale net-
works. Assume nodes can concurrently listen to multiple radio channels.
In (a), the network is stable and the path B-C-D-R1 handles the data
traffic. Both BRPL and RPL produce the same DAG. In (b) and (c), new
nodes join the network. BRPL automatically adjusts θ to utilize additional
network resources.

slot t via DIO messages. BRPL introduces a new standard
ICMP option named Queue Option as shown in Fig. 5. The
payload of this new option has a length of 4 bytes stored in
big endian order.

Maintaining interoperable communications between
BRPL and non-BRPL nodes is a key element towards sup-
porting hybrid networks. When a node running RPL pro-
cesses an incoming DIO message with the Queue Option,
it considers the option code to be unknown. The node will
then ignore this ICMP option and process the rest of DIO
message safely. This ensures a transparent message structure
between BRPL and non-BRPL nodes, and allows nodes
to seamlessly join hybrid networks without experiencing
compatibility-related issues.

4.4 Support for Large-scale Networks

The high adaptability in BRPL also enables deploying large-
scale LLNs. When new nodes join the network, they may
introduce extra traffic to the network causing BRPL to adjust
the θ parameter accordingly. Unlike RPL, when network
bottleneck appears in the network, BRPL tries to solve it
by allocating more resources for the incoming data traffic.
Similarly, when nodes leave the network and traffic level be-
comes lower, BRPL deallocates resources that are no longer
required.

7

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Fig. 7. Node deployment in the FIT IoT-LAB testbed.

Fig. 6 presents an example illustrating how BRPL natu-
rally supports large-scale networks. Let assume that R1, the
root of the network, offers multiple communication chan-
nels. In (a), the path B-C-D-R1 handles all the data traffic
coming from node A. Both RPL and BRPL have the exact
same DAG since θ is close 1 when the traffic load is light.
In (b), node K and J join the network. Now the path B-C-D-
R1 becomes congested and cannot handle all the incoming
traffic. Unlike RPL, BRPL observes the traffic congestion in
the DAG, and diverts some of the traffic through the path B-
C-G-H-R1. In (c), one more node joins the network resulting
in further traffic congestion. Again BRPL adjusts the routing
and allocates more resources trying to eliminate the traffic
congestion. When nodes L, K, J leaves the network, BRPL
deallocates the extra resources utilized in (c) and (b) causing
the DAG to return back to the DAG showing in (a).

5 EXPERIMENTS

The practical performance of BRPL has been compared to
RPL and backpressure routing. This section firstly describes
the general configuration settings of our experiments. Then,
it shows BRPL performance in static networks using real-life
IoT testbed, and mobile networks using a network simulator
with a realistic indoor mobility model.

5.1 Implementation and Configuration

BRPL is implemented on top of Contiki OS [17], an open
source operating system designed for systems with limited
resources including, but not limited to, LLNs and IoT. Out
of the box, Contiki provides a C implementation for the IPv6
stack (uIPv6) and RPL. This section summarizes some key
modifications that we have done in Contiki before running
the experiments.

For the MAC layer, a CSMA/CA driver combining with
MiCMAC [28] was used. MiCMAC is mainly employed to
perform channel hopping. The maximum number of chan-
nels that a node can use is 4 and the maximum channel cycle
listening time is 80ms. The neighbor table size is 50 records.
The radio duty cycling is disabled during all experiments.
The maximum transmission attempts to re-send a packet is
set to 5.

In regards to the IPv6 layer, we set the
UIP_CONF_ND6_REACHABLE_TIME parameter to 5000 and
the UIP_CONF_ND6_MAX_UNICAST_SOLICIT to 65535

TABLE 2
Summary of Evaluation Parameter Settings

Method Testbed Simulation
IoT-LAB Factory QuickTheta

OF ETX ETX Custom

Platform
Contiki/
M3 ARM

Contiki/
Cooja

Contiki/
Cooja

MAC
CSMA/CA+

MiCMAC
CSMA/CA+

MiCMAC
CSMA/CA+

MiCMAC

Mobility -
Factory Indoor

Mobility
-

Transport UDP/IPv6 UDP/IPv6 UDP/IPv6
Packet Size 160 bytes 160 bytes 160 bytes
Queue Size 150 packets 250 packets 250 packets
Transmission
Power

-17 dBm 0 dbm 0 dbm

Transmission
Range

- 30 meter 50 meter

Network
Scale

100 nodes 130 nodes 100 nodes

to increase the effectiveness of IPv6 Neighbor Discovery
service. The packet reassembly service is disabled and the
UIP_CONF_IGNORE_TTL is set to zero to ignore the TTL
flag in the packet headers. The HC6 SICSlowpan header
compression is used in all our experiments.

For the routing layer, ETX OF has been utilized
with the default parameter settings. We also enable the
RPL_MOP_NO_DOWNWARD_ROUTES option since downward
routing is not used in our experiments. Time slot duration
is assumed to be one second. DIO_INTERVAL_MIN and
DIO_INTERVAL_DOUBLINGS were adjusted to broadcast
routing metadata every 512 to 1024ms period. When the
network is highly dynamic (i.e. time-varying traffic and/or
topology), the Trickle algorithm pushes the DIO broadcast-
ing rate towards every 512ms. On the other hand, Trickle
adjusts the broadcasting rate to 1024ms when weight stabil-
ity is observed in one-hop neighbors.

The “Queue Manager” component has been imple-
mented, and integrated with the IPv6 stack in Contiki. The
Queue Manager uses Last-In-First-Out (LIFO) scheduling.
When a node with full data queue receives a data packet,
it drops the newly received packet. In addition, to make
RPL more fair and reduce its packet loss, data queues has
been added to RPL to buffer the incoming packets. However
unlike BRPL, data queues in RPL are not considered during
routing operations. The queue option code in DIO messages
is set as ‘0xCE’, which does not interfere with existing RPL
option codes in Contiki.

The rest of BRPL components shown in Fig. 4 has been
also implemented successfully in Contiki. In the experi-
ments, BRPL uses the same OF of RPL with the same
settings. The neighbor table size of both BRPL and RPL is
50. In addition, we implemented the well-known backpres-
sure routing [24] on top of the IPv6 stack, but without its
scheduling policy. All three routing protocols have identical
queue settings.

The performance of BRPL, RPL and backpressure rout-
ing has been examined in static and mobile networks. The
length of each experiment is 4 hours. The application layer
generates UDP packets on a regular basis and passes them
to the IPv6 layer. The size of a data packet is 160 bytes (8
bytes for payload, the rest is used for IPv6 header). Table 2

8

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

20

40

60

80

100
N

o
d

e
 I
D

Packet loss in RPL

30 60 90 120 150 180 210 240
Time (min)

20

40

60

80

100

N
o

d
e
 I
D

Packet loss in BRPL

0

10

20

30

40

50

60

(a) packet loss.

(b) θ parameter at runtime.

Fig. 8. Testbed results when the network has dynamic data traffic. Every
10 minutes, the application layer increases its sensing rate to generate
a traffic burst last 3 minutes. (a) shows the packet loss for BRPL and
RPL. (b) shows the θ parameter and its adaptivity at runtime.

highlights key settings in our experiments.

5.2 Methodology

Both testbed experiments and simulations are employed to
evaluate the performance of BRPL.

5.2.1 Testbed Experiments.

We used 100 nodes (M3 Open Nodes) from the Grenoble
site offered by the FIT IoT-LAB testbed [18], shown in Fig.
7. The network had 5 roots and 95 sensor nodes generating
UDP packets on predefined time interval. Each M3 open
node has a ARM Cortex M3 micro-controller, a 64 kB RAM,
a IEEE 802.15.4 radio AT86RF231, several types of sensors,
and a rechargeable 3.7 V LiPo battery. To ensure multi-hop
mash topology is formed, we set transmission power to -17
dBm. The MaxQm

x is set to 150 for all nodes.

5.2.2 Cooja Simulations based on Cloud.

To evaluate how BRPL can extends RPL to support mobile
IoT scenarios, we used Cooja - the network simulator of
Contiki. We set the MaxQm

x to 250 packets. The trans-
mission range is adjusted to 30m to simulate indoor radio
limitations. We noticed that Cooja has a poor performance in
a 130-node network. To speed up, we run all our simulations
on a 18-server cluster provided by the Imperial College
London’s private Cloud. Each server runs 14.04 Ubuntu
LTS with 4 GB of RAM. Git and Puppet, an open-source
configuration management tool, are utilized in order to run
multiple simulations in parallel with different configuration
settings.

5.3 Testbed Experiments

Three sets of testbed experiments were constructed to com-
pare practical performance of BRPL, RPL and backpressure
routing based on a 100-node network in the FIT IoT-LAB
testbed with settings described in Section 5.1.

5.3.1 Adaptivity to Dynamic Traffic Load

This set of experiments examines the performance of BRPL
and RPL in a network with time-varying traffic loads. A
simple application has been developed to generate data
packets at rate 1 Packet Per Second (PPS). The application
has an internal timer that is triggered every 10 minutes
to change the packet rate to 4 PPS for three minutes. This
simulates a traffic burst condition in the network. Fig. 8(a)
shows packet loss for BRPL and RPL as a function of
time. RPL drops around 154K packets mainly when the
network encounters a traffic burst. On the other hand, BRPL
adapts to the traffic dynamics, thanks to the QuickTheta
algorithm, and utilizes resources to handle the traffic burst.
Fig. 8(b) shows how the QuickTheta algorithm adjusts the
θ parameter at runtime according to the traffic congestion
levels. This runtime adaptivity results in BRPL having more
than 4.5 times less packet loss than RPL.

5.3.2 Throughput Study

In this set of experiments, the data sensing rate is fixed
over time. Fig. 9(a) shows the packet loss BRPL, RPL and
backpressure routing under different data rates. RPL has
the highest packet loss as it tends to always choose the
optimal OF path. To enhance the throughput of the network,
BRPL utilizes suboptimal paths when the network has high
data traffic (when the data rate is 4, 3, or 2 PPS). This
results in around 100% reduction in the packet loss which
is accommodated with higher end-to-end packet delay and
communication overhead3, as seen in Fig. 9(b) and 9(c)
respectively. It is important to note that both backpressure
routing and BRPL have similar performance in terms of
throughput. However, when the traffic load is light (e.g.
1 PPS), backpressure routing suffers from large high end-
to-end packet delays. This is because backpressure routing
relies on congestion gradients to route the packets. The data
traffic in some settings was not enough to establish stable
congestion gradients. This results in network frequently
experiencing routing loops. BRPL, on the other hand, relies
on the OF to route the packets in this case, as the θ in this
case is close to 1. Data is forwarded via the optimal paths
defined by the OF. This also explains why the performance
of BRPL and RPL is very similar when the data rate is 1 PPS.

5.3.3 Support for Hybrid Networks.

a multi-hop network where are all the nodes running RPL
has been constructed. The data rate in this experiment is set
to 4 PPS to simulate that the network is facing relatively
high traffic load. Then we randomly replaced 20 nodes of
RPL with BRPL nodes. The results were gathered, and then
the same process was repeated until all the nodes run BRPL.

3. Please note that communication overhead reflects not only network
congestion levels, but also the energy consumption of nodes. This is
because it is well recognized that packet transmissions are the major
energy consumer of routing protocols [29], [30].

9

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

4 3 2 1
Packet Per Second

0

20

40

60
P

a
c

k
e

t
L

o
s

s
 (

%
)

RPL
BRPL
Backpressure

(a) packet loss.

4 3 2 1
Packet Per Second

1

2

3

4

E
2

E
 D

e
la

y
 (

s
e

c
)

RPL
BRPL
Backpressure

(b) end-to-end delay.

4 3 2 1
Packet Per Second

0

4

8

12

16

P
a
c
k
e
ts

 (
1
0

6
 t

x
)

RPL
BRPL
Backpressure

(c) communication overhead (in 106 packets).

Fig. 9. The performance of BRPL, RPL and backpressure under different traffic loads in the testbed. RPL has the highest packet loss. BRPL and
backpressure routing uses suboptimal paths when the traffic load is high (i.e when data rate is 4, 3 or 2 PPS) which results in a significant reduction
in packet loss with an increase in end-to-end packet delay and communication overhead. When the traffic load is light (e.g. 1 PPS), both BRPL and
RPL have similar performance, whereas backpressure routing still suffers from large delay and communication overhead.

100806040200
BRPL Ratio (%)

20

30

40

50

60

P
a
c
k
e
t

L
o

s
s
 (

%
)

Backpressure

(a) packet loss.

100806040200
BRPL Ratio (%)

1

2

3

E
2
E

 D
e
la

y
 (

s
e
c
)

(b) end-to-end delay.

100806040200
BRPL Ratio (%)

0

4

8

12

16

P
a
c
k
e
ts

 (
1
0

6
 t

x
)

(c) communication overhead (in 106 packets).

Fig. 10. The performance of a hybrid network with various BRPL node deployments. The data rate is fixed to 4 PPS. As seen, the more BRPL
nodes deploy in the network, the lower packet loss is expected. This is accommodated with higher delay and communication overhead as BRPL
nodes may use suboptimal OF paths to improve the throughput.

From these experiments, the following conclusion can be
realize: first, BRPL is backward compatible with RPL. Nodes
running RPL or BRPL can operate together in the same
hybrid network. Interoperability for data and control mes-
sages between RPL and BRPL nodes is successfully verified.
Second, the more BRPL nodes deployed in the network, the
less packet loss is observed as shown in Fig. 10(a). Because
the traffic level of the network in the experiments is con-
siderably high, BRPL nodes tends to utilizes all the possible
network capacity to increase the throughput and reduce the
packet loss as much as possible. This is accommodated with
an increase in average end-to-end delay and communication
overhead as shown in Fig. 10(b) and Fig. 10(c) respectively.

5.4 Cooja-based Simulations

Cooja network simulator is used to provide more insights
about the performance of BRPL under other network condi-
tions. These simulations firstly show BRPL performance for
a network following an indoor mobility model. Then, we
examine how QuickTheta algorithm achieves the practical
balance between throughput and minimizing OF.

5.4.1 Study of Mobile Networks

The performance of BRPL has been evaluated in net-
works where mobile devices exist. We managed to obtain
a 500mx250m layout for a poultry processing factory from
[31], shown in Fig. 11. The transmission range is adjusted

to 30m to simulate indoor radio limitation. 130 nodes has
been semi-randomly placed, generating UDP packets which
are required to be collected by the mobile roots. From the
layout, an indoor mobility graph has been created as shown
in Fig. 12. The graph defines all possible destinations and
paths that mobile roots can take while traveling within the
factory. The doors are assumed to be always open during
the simulations. A custom Cooja plugin has been developed
to import the mobility graph to Cooja. In the simulations,
each root has 9 preferred destinations (randomly selected
during the bootstrap phase). A root travels to one of its
preferred destinations 90% of the time. For the other 10%,
it randomly chooses a destination from the indoor mobility
graph. When a root reaches its destination, it waits for one
second, selects a new destination, and the process repeats
itself. The travel speed of all roots is set to 1.4 m/s with 0.2
variance to simulate average man walking speed.

Fig. 13(a) shows the packets loss for BRPL, RPL, and
backpressure routing under various network and traffic
conditions. As seen, the packet loss of BRPL is between 1.2
and 20 times less than RPL. RPL relies on the ETX OF alone,
commonly known to be unsuitable for mobile networks.
Outdated DAGs and link breakage were the main reasons
for losing 70% to 80% of the data packets in RPL. BRPL
and backpressure routing have relatively close performance
(usually within ≤ 2% differences), and thanks to adaptive
routing operations they utilizes mobile resources more effec-

10

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Fig. 11. A poultry processing factory layout obtained from [31]. The red squares denote the locations of the deployed sensor nodes.

Fig. 12. The indoor mobility graph constructed from the factory layout in Fig. 11. The dark blue squares are possible end destinations. The yellow
circles are doors. The green squares are path points, which define the mobility paths roots can take.

tively than RPL. As observed in Fig. 13(a), the more mobile
roots are available, the less packet loss is expected from the
network running BRPL or backpressure routing.

Fig. 13(b) presents the average end-to-end delays for the
delivered data packets. RPL has usually worst performance
than the other two. The outdated DAGs causes nodes to
send packets to a destination where the roots no longer
exist and the ETX OF does not cope well with utilizing
opportunistic resources. BRPL has better performance than
backpressure routing as it tends to, especially under light
traffic loads, to utilizing OF reduces routing loops.

The communication overhead for the three routing
schemes are similar as seen in Fig. 13(c). The Trickle algo-
rithm and the IPv6 Neighbor Discovery Service causes the
mobile roots to continuously transmit DIO and IPv6 ND
control messages. These messages are the main reasons for
the large communication overhead.

5.4.2 Study of Adaptive Balancing in QuickTheta

The purpose of this set of simulations is to show Quick-
Theta performance at runtime. We want to demonstrate how
QuickTheta can effectively find the best possible balance
between maximizing throughput and minimizing RPL OF.
To do so, the performance of QuickTheta is compared to the
drift-plus-penalty routing technique [32] under various V
settings.

In order to easily visualize the dynamics of the θ param-
eter, a simple grid topology is used. The topology has 100
nodes with spacing of 30 meters between adjacent nodes.
Radio transmission range is set to 50 meters. The network

has 98 sensor nodes and two roots (root1 and root2). Root1
is set to be plugged in a power line with unlimited amount
of energy. Root2, on the other hand, runs on battery with a
finite amount of energy. Root1 and root2 are respectively
deployed in the top left corner (grid cell (0,0)) and the
bottom right (grid cell (10,10)). The network uses a custom
OF such that it is designed to reduce maintenance cost,
and therefore always prefer to use root1 for the data traffic.
Based on the implementation of the OF, root2 will be used
only when root1 is not available.

Fig. 14(a) shows the θ parameter for the network under
two different traffic loads. Depending on the traffic conges-
tion levels, the QuickTheta algorithm tends to converge the
θ parameter into a relatively fixed range. For example, in
Fig. 14(a) when the data rate is 2 packet per second, θ for
the most nodes tends to be in the range [0.25,0.35]. However,
the nodes, which are closer to the roots, will have a higher
θ (closer to 1) since the traffic levels are less in these spots
than the rest of the network.

The drift-plus-penalty technique proposed in [32] has
been implemented to provide another approach to combine
RPL OF with backpressure routing. However as going to
be discussed in Section 6, the key challenge in utilizing this
technique is that it requires manual tuning for the V param-
eter, which is the tradeoff parameter between throughput
and achieving the optimal solution for the penalty function
(i.e. RPL OF in our case). Finding the optimal value for the V
parameter is difficult, especially in multi-user IoT systems.
V tightly depends on the expected traffic levels from the
application layer. The traffic levels in IoT can be highly

11

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

(a) packet loss.

(b) end-to-end delay.

(c) communication overhead (in 106 transmissions).

Fig. 13. The performance of BRPL, RPL and backpressure routing in a
mobile network simulated based on the layouts in Fig. 11 and 12. BRPL
outperforms RPL in terms of packet loss and average end-to-end delay.

dynamic and time-varying. For this set of simulations, we
manually tested the network under various V values.

Fig. 14(b) shows the performance BRPL, RPL, back-
pressure and drift-plus-penalty technique with different V
settings. Here the data rate is fixed to 1 packet per second.
Backpressure routing provides a costly allocation as 41% of
data packets are forwarded to root2 (i.e., 41% of the data
is gathered using the stored energy from root2’s batteries).
This is expensive in terms of maintenance costs. RPL, on
the other, always tends to forward all the data packets to
root1 using OF optimal paths, which results in 45% packet
loss. BRPL first tries to greedily forward data to root1.
However as the θ parameter gradually increases because
of network traffic congestion, it utilizes root2 and other
suboptimal paths to upload the rest of the packets. The

result is root1 gets 78.6% of the data packets and root2 gets
19% of the data packets. From Fig. 14(b), it is clear that
BRPL performance is very similar to the drift-plus-penalty
technique when V is close to 5. If V is below 5, the allocation
is not as optimal since more data packets are forwarded via
energy stored in root2’s batteries. If V is above 5, a higher
packet loss then will be observed. A similar story can be
seen when the data rate is 2 PPS. As shown in Fig. 14(c),
BRPL sends 42% and 49% of data packets to root1 and root2
respectively. A similar performance can be found when V
equalizes to a certain point in the range (3,4). Increasing
V beyond that point will causes packet loss as the routing
scheme aggressively minimizes the OF. Decreasing V from
this range will cause more data forwarding towards root2,
which is not optimal either. Therefore, QuickTheta in both
cases managed to find the best practically possible tradeoff
between throughput and minimizing the OF.

6 RELATED WORK

6.1 RPL

The proposed extension in [25] addresses the data reliability
problem in RPL. Similarly, ORPL [33] incorporates oppor-
tunistic routing with RPL to achieve low latency, robustness,
and good scalability. On the other hand, [34] provides a
modified MAC layer for supporting multipath forwarding.
Kalman positioning and the Corona mechanism have been
used in KP-RPL[35] and Co-RPL [36], respectively, to ad-
dress the issue of mobility support in RPL. BRPL relies on
the smart and smooth switching between RPL and back-
pressure routing to enhance mobility support. This results
in a lightweight solution that does not require any assump-
tion or knowledge about the underline mobility pattern of
the network. In addition, this paper presents a modular
framework. The implementation of QuickBeta can easily be
adjusted to incorporate other mobility metrics, including
Kalman-based and Corona-based metrics. Enhancing RPL
in terms of mobility, throughput and traffic adaptability all
together has not yet been examined by the current literature.

We consider QU-RPL, recently proposed in [37], to be
the closest to our work. The authors here combine queue
information with the OF0 to improve the load-balancing of
RPL routing in heavy-traffic networks. BRPL also exploits
queue backlogs during routing decision making. However,
BRPL does not rely on the propagation of queue metadata
in multi-hop paths. Instead, routing decisions in BRPL are
performed based on pure hop-by-hop queue information,
similar to backpressure routing. Clearly, this makes BRPL
a more dynamic routing solution, applicable not only for
heavy-traffic networks, but also for networks with highly
time-varying traffic loads and topologies, such as networks
with node mobility which are sadly ignored in QU-RPL.
In addition, BRPL eliminates the need for having a naive
propagation reduction factor, λ in QU-RPL. BRPL also offers
an attractive solution to adaptively tune the sensitivity of
queues. Manually setting these parameters as suggested in
QU-RPL is challenging in dynamic, large-scale IoT systems.
Furthermore unlike QU-RPL, BRPL is not limited to OF0.
In fact, any RPL OF can be used with BRPL since data
queues are completely decoupled from OFs while both are
still strongly normalized. This is vital to truly improving the
performance of MTR deployments.

12

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

Grid Cell ID
Grid Cell ID

0.2
10

0.4

0.6θ

8

0.8

1

6
4 1082 6420 0

 PPS=1

 PPS=2

(a) θ for a grid topology under two different data
rates (PPS=1 and PPS=2).

B
R
PL

B
C

R
PL

V=1 V=2 V=3 V=4 V=5 V=6 V=7 V=8
0

20

40

60

80

100

p
a

c
k

e
t

s
h

a
re

 (
%

)

by battery (root2)
by power line (root1)
packet loss

BRPL Reference Line

(b) when data rate is 1 packet per second, BRPL
has similar performance to the drift-plus-penalty
scheme with V=5.

B
R
PL

B
C

R
PL

V=1 V=2 V=3 V=4 V=5 V=6 V=7 V=8
0

20

40

60

80

100

p
a

c
k

e
t

s
h

a
re

 (
%

)

by battery (root2)
by power line (root1)
packet loss

BRPL Reference Line

(c) when data rate is 2 packet per second, BRPL
has similar performance to the drift-plus-penalty
scheme with V is somewhere in the range (3,4).

Fig. 14. The performance of for BRPL, backpressure routing, RPL, and drift-plus-penalty scheme with various V settings in a grid topology. The
network has two roots deployed at the corners. (a) shows the average θ values for the nodes under two different data rates. (b) and (c) present the
observed packet loss and the amount of data packets forwarded to each root.

6.2 Backpressure Routing

The proposed solution in this work is heavily inspired by
the elegant backpressure routing [24]. Introducing the drift-
plus-penalty technique [32] and combining it with [38], [39],
[40] contributions in utility optimal networking provided
a theoretical framework for backpressure-based stochastic
optimization. This framework has been used in a wide range
of applications including power control [41], [42], selfish
data relays [23], sensor networks [9], and mobile networks
[43], [44]. However, utilizing this framework directly in RPL
for dynamic IoT systems is not practical. The framework has
parameter tuning issues. The V parameter sets the tradeoff
between queue backlogs and penalty/objective function opti-
mization. Users are required to set the V parameter based
on the expected traffic level from the application layer. This
is challenging because the routing layer must have certain
assumptions about OFs and expected data traffic, which
is technically difficult, or even impossible, in LLNs with
event-driven applications. A network may need to serve
multiple concurrent users with heterogeneous time-varying
bandwidth demands. This work presents QuickTheta as a
practical solution to this problem.

Many efforts have been made to make backpressure
practical. Various techniques have been proposed to im-
prove the performance of backpressure in terms of the
reduction of memory overhead [45], [46] and delay [47], [9].
However, to our knowledge this is the first work that utilizes
backpressure routing in hybrid networks where some nodes
use backpressure routing while others do not.

7 CONCLUSION

This work addresses three key limitations of RPL: low
throughput, poor adaptability to time-varying data traffic
loads and lack of support for node mobility. To this end,
we develop BRPL, a backward-compatible extension for
RPL, which can adaptively and smoothly switch between
RPL and backpressure routing depending on network con-
ditions. We present QuickBeta and QuickTheta, two adap-
tive online algorithms for BRPL, to respectively support
node mobility and balance the tradeoff between network
throughput and RPL OF minimization. Through extensive

experiments driven by real-world testbed and cloud-based
simulations, we show that BRPL works seamlessly with
RPL and achieves significant performance improvements in
terms of network throughput with 60% packet loss reduc-
tion at a minimum in mobile networks. An interesting future
direction is to study resource fairness issues among multiple
coexisting DAGs in RPL and BRPL.

ACKNOWLEDGMENT

This work is sponsored by the Ministry of Higher Education
and Scientific Research in Kurdistan/Iraq, Intel Corpora-
tion, China ‘1000 Young Talents Program’, and ‘Young Talent
Support Plan’ of Xi’an Jiaotong University. We thank the
associate editor and anonymous reviewers for their helpful
and insightful comments and suggestions, which signifi-
cantly contribute to improving the paper.

REFERENCES

[1] T. Winter and et al, “RPL: IPv6 Routing protocol for Low-Power
and Lossy Networks,” IETF RFC 6550, 2012.

[2] A. Brandt and J. Buron, “Home Automation Routing Require-
ments in Low-Power and Lossy Networks,” IETF RFC 5826, 2010.

[3] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial Routing
Requirements in Low-Power and Lossy Networks,” IETF RFC
5673, 2009.

[4] M. Dohler, D. Barthel, T. Watteyne, and T. Winter, “Routing
Requirements for Urban Low-Power and Lossy Networks,” IETF
RFC 5548, 2009.

[5] J. Martocci, P. Mil, N. Riou, and W. Vermeylen, “Building Automa-
tion Routing Requirements in Low-Power and Lossy Networks,”
IETF RFC 5867, 2010.

[6] G. Iyer, P. Agrawal, E. Monnerie, and R. S. Cardozo, “Performance
analysis of wireless mesh routing protocols for smart utility net-
works,” in IEEE SmartGridComm, 2011, pp. 114–119.

[7] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati,
and G. P. Hancke, “Smart Grid technologies: communication tech-
nologies and standards,” IEEE Trans. Ind. Inform., vol. 7, no. 4, pp.
529–539, 2011.

[8] P. T. A. Quang and D.-S. Kim, “Throughput-aware routing for
industrial sensor networks: Application to ISA100. 11a,” IEEE
Trans. Ind. Inform., vol. 10, no. 1, pp. 351–363, 2014.

[9] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,
“Routing without routes: The backpressure collection protocol,”
in Proc. Int. Conf. Inf. Process. Sens. Netw. (IPSN), 2010, pp. 279–290.

[10] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Networks
and Applications, vol. 19, no. 2, pp. 171–209, 2014.

13

Article Accepted in IEEE Transaction on Mobile Computing Early Draft

[11] M. A. Kafi, D. Djenouri, J. Ben-Othman, and N. Badache, “Con-
gestion control protocols in wireless sensor networks: a survey,”
IEEE Commun. Surveys Tuts., vol. 16, no. 3, pp. 1369–1390, 2014.

[12] Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung,
“A survey on the ietf protocol suite for the internet of things:
Standards, challenges, and opportunities,” IEEE Wireless Commun.,
vol. 20, no. 6, pp. 91–98, 2013.

[13] C. Tunca, S. Isik, M. Y. Donmez, and C. Ersoy, “Distributed
mobile sink routing for wireless sensor networks: a survey,” IEEE
Commun. Surveys Tuts., vol. 16, no. 2, pp. 877–897, 2014.

[14] M. Di Francesco, S. K. Das, and G. Anastasi, “Data collection in
wireless sensor networks with mobile elements: A survey,” ACM
Transactions on Sensor Networks (TOSN), vol. 8, no. 1, p. 7, 2011.

[15] D. Medhi and K. Ramasamy, Network routing: algorithms, protocols,
and architectures. Morgan Kaufmann, 2010.

[16] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” Wireless
Networks, vol. 11, no. 4, pp. 419–434, 2005.

[17] [Online]. Available: http://www.contiki-os.org
[18] [Online]. Available: https://www.iot-lab.info
[19] http://www.openautomation.net/uploadsproductos

/micaz datasheet.pdf.
[20] A. Sridharan and B. Krishnamachari, “Explicit and precise rate

control for wireless sensor networks,” in Proc. ACM SenSys, 2009,
pp. 29–42.

[21] T. C. Hu, “Multi-commodity network flows,” Operations research,
vol. 11, no. 3, pp. 344–360, 1963.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[23] S. Yang, U. Adeel, and J. A. McCann, “Selfish mules: Social profit
maximization in sparse sensornets using rationally-selfish human
relays,” IEEE J. Sel. Areas Commun., vol. 31, no. 6, pp. 1124–1134,
2013.

[24] L. Tassiulas and A. Ephremides, “Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks,” IEEE Trans. Autom.
Control, vol. 37, no. 12, pp. 1936–1948, 1992.

[25] E. Ancillotti, R. Bruno, and M. Conti, “Reliable data delivery with
the ietf routing protocol for low-power and lossy networks,” IEEE
Trans. Ind. Inform., vol. 10, no. 3, pp. 1864–1877, 2014.

[26] G. Xing, T. Wang, W. Jia, and M. Li, “Rendezvous design algo-
rithms for wireless sensor networks with a mobile base station,”
in Proc. ACM MobiHoc, 2008, pp. 231–240.

[27] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Mobility prediction-
based smartphone energy optimization for everyday location
monitoring,” in Proc. ACM SenSys, 2011, pp. 82–95.

[28] “MiCMAC, a Channel-Hopping extension of ContikiMAC,” Avail-
able at http://bit.ly/1OfP7jn.

[29] N. A. Pantazis, S. A. Nikolidakis, and D. D. Vergados, “Energy-
efficient routing protocols in wireless sensor networks: A survey,”
IEEE Commun. Survey Tuts., vol. 15, no. 2, pp. 551–591, 2013.

[30] S. Yang, Y. Tahir, P.-y. Chen, A. Marshall, and J. McCann, “Dis-
tributed optimization in energy harvesting sensor networks with
dynamic in-network data processing,” in Pro. IEEE Infocom, 2016,
pp. 1–9.

[31] “Poultry processing equipment.com,” Available at
http://www.poultryprocessingequipment.com.

[32] M. J. Neely, “Dynamic power allocation and routing for satellite
and wireless networks with time varying channels,” Ph.D. disser-
tation, Massachusetts Institute of Technology, 2003.

[33] S. Duquennoy, O. Landsiedel, and T. Voigt, “Let the tree bloom:
Scalable opportunistic routing with orpl,” in Proc. ACM Conf.
Embedded Netw. Sens. Syst., 2013, pp. 1–14.

[34] B. Pavković, F. Theoleyre, and A. Duda, “Multipath opportunistic
rpl routing over IEEE 802.15.4,” in Proc. ACM MSWiM. ACM,
2011, pp. 179–186.

[35] M. Barcelo, A. Correa, J. Vicario, A. Morell, and X. Vilajosana,
“Addressing mobility in rpl with position assisted metrics,” IEEE
Sensors J.

[36] O. Gaddour, A. Koubâa, R. Rangarajan, O. Cheikhrouhou, E. To-
var, and M. Abid, “Co-rpl: Rpl routing for mobile low power
wireless sensor networks using corona mechanism,” in IEEE SIES.
IEEE, 2014, pp. 200–209.

[37] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load balancing under
heavy traffic in rpl routing protocol for low power and lossy
networks,” IEEE Trans. Mobile Comput., 2017.

[38] M. J. Neely, “Intelligent packet dropping for optimal energy-
delay tradeoffs in wireless downlinks,” IEEE Trans. Autom. Control,
vol. 54, no. 3, pp. 565–579, 2009.

[39] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal
stochastic control for heterogeneous networks,” IEEE/ACM Trans.
Netw., vol. 16, no. 2, pp. 396–409, 2008.

[40] M. J. Neely, “Order optimal delay for opportunistic scheduling
in multi-user wireless uplinks and downlinks,” IEEE/ACM Trans.
Netw., vol. 16, no. 5, pp. 1188–1199.

[41] S. Yang, X. Yang, J. A. McCann, T. Zhang, G. Liu, and Z. Liu,
“Distributed networking in autonomic solar powered wireless
sensor networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 12, pp.
750–761, 2013.

[42] C.-p. Li and M. J. Neely, “Energy-optimal scheduling with dy-
namic channel acquisition in wireless downlinks,” IEEE Trans.
Mobile Comput., vol. 9, no. 4, pp. 527–539, 2010.

[43] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power
allocation and routing for time-varying wireless networks,” IEEE
J. Sel. Areas Commun., vol. 23, no. 1, pp. 89–103, 2005.

[44] S. Yang, U. Adeel, and J. A. McCann, “Backpressure meets taxes:
Faithful data collection in stochastic mobile phone sensing sys-
tems,” in Proc. IEEE INFOCOM, 2015.

[45] L. Bui, R. Srikant, and A. Stolyar, “Novel architectures and al-
gorithms for delay reduction in back-pressure scheduling and
routing,” in Proc. IEEE INFOCOM, 2009, pp. 2936–2940.

[46] E. Athanasopoulou, L. X. Bui, T. Ji, R. Srikant, and A. Stolyar,
“Back-pressure-based packet-by-packet adaptive routing in com-
munication networks,” IEEE/ACM Trans. Netw., vol. 21, no. 1, pp.
244–257, 2013.

[47] B. Ji, C. Joo, and N. B. Shroff, “Throughput-optimal scheduling
in multihop wireless networks without per-flow information,”
IEEE/ACM Trans. Netw., vol. 21, no. 2, pp. 634–647, 2013.

Yad Tahir received the B.Sc. degree with Hon-
ors in Computer Science from University of Su-
laimani, Iraq, in 2008, and the M.Sc in Soft-
ware Engineering with Distinction from Heriot-
Watt University, UK, in 2010. He has recently
finished his Ph.D in Computing at Imperial Col-
lege London, UK. His research interests include
resource management, network control and op-
timizations, Internet of things, software and sys-
tem engineering.

Shusen Yang received his PhD in Computing
from Imperial College London in 2014. He is cur-
rently a professor in the Institute of Information
and System Science at Xi’an Jiaotong University
(XJTU). Before joining XJTU, Shusen worked as
a Lecturer (Assistant Professor) at University of
Liverpool from 2015 to 2016, and a Research
Associate at Intel Collaborative Research Insti-
tute ICRI from 2013 to 2014. His research in-
terests include mobile networks, networks with
human in the loop, and data-driven networked

systems. Shusen achieves ”1000 Young Talents Program” award, and
holds an honorary research fellow at Imperial College London. Shusen
is a senior member of IEEE and a member of ACM.

Julie A. McCann is a Professor in Computer
Systems at Imperial College. Her research cen-
ters on highly decentralized and scalable algo-
rithms for spatial computing systems e.g. sen-
sor networks. She leads both the Adaptive Em-
bedded Systems Engineering Research Group
and the Intel Collaborative Research Institute for
Sustainable Cities, and is working with NEC and
others on substantive smart city projects. She
has received significant funding though bodies
such as the UK’s EPSRC, TSB and NERC as

well as various international funds, and is an elected peer for the
EPSRC. She has actively served on, and chaired, many conference
committees and is currently Associative Editor for the ACM Transactions
on Autonomous and Adaptive Systems. She is a Fellow of the BCS.

14

http://www.contiki-os.org
https://www.iot-lab.info

