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Quantization of systems with constraints can be carried on with several methods. In
the Dirac’s formulation the classical generators of gauge transformations are required to
annihilate physical quantum states to ensure their gauge invariance. Carrying on BRST
symmetry it is possible to get a condition on physical states which, differently from the
Dirac’s method, requires them to be invariant under the BRST transformation. Em-
ploying this method for the action of general relativity expressed in terms of the spin
connection and tetrad fields with path integral methods, we construct the generator
of BRST transformation associated with the underlying local Lorentz symmetry of the
theory and write a physical state condition following from BRST invariance.
The condition we gain differs form the one obtained within Ashtekar’s canonical formu-
lation, showing how we recover the latter only by a suitable choice of the gauge fixing
functionals. We finally discuss how it should be possible to obtain all the requested phys-
ical state conditions associated with all the underlying gauge symmetries of the classical
theory using our approach.
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PACS number:04.60.-m, 03.70.+k

1. Introduction

The problem of quantization of constrained systems arises in many contexts of phys-

ical interest. The presence of constraints at a classical level avoids us to threat all

the dynamical variables as independent ones, and entails several difficulties when

we are to construct the quantum theory. In a program of canonical quantization
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which promotes all classical canonical variables to quantum operators one has to

deal with the problem of imposing the constraints quantum mechanically. In the

procedure à la Dirac4 the constraint operators are imposed to annihilate physical

states. This procedure stems from the observation that in the classical theory the

constraint functions are generators of infinitesimal canonical transformations which

don’t alter the physical state of the system.

The Dirac’s procedure is widely used in different contexts, including quantization of

general relativity.3,10 Nevertheless this procedure of quantization encounters several

difficulties when we require the Dirac’s conditions on physical states to be consis-

tent with each other4,6 and the physical states selected by constraint operators to

posses a finite scalar product allowing a probabilistic interpretation:6,12 moreover,

in some cases this procedure can lead to a physical subspace of the entire Hilbert

space that is curiously empty.6 Other difficulties arise when one tries to imple-

ment Dirac’s procedure, which are not properly to ascribe to Dirac’s theory for

constrained systems, but to the canonical quantization framework this procedure is

developed in. As a matter of fact, our experience on quantum field theory in special

relativity showed us how canonical quantization methods, when applied to systems

with infinite degrees of freedom, lead to several inconsistencies:7,11 for example, it

is a remarkable fact that the Glashow - Weinberg - Salam theory for electroweak

interactions cannot be consistently formulated by canonical quantization methods,

while the only way it can be coherently written by is the Feynman’s path integral.

Even if Feynman’s path integral can be derived after constructing the quantum

theory by means of canonical quantization methods,14 such inconsistencies make

necessary to postulate the path integral approach as a founding element of the

quantum theory when we deal with systems with infinite degrees of freedom.11 For

these reasons we developed all of our work avoiding to use the Dirac procedure

for constrained systems and canonical quantization methods at all, employing a

method to derive conditions on physical states based on BRST symmetry and path

integral methods uniquely.

BRST symmetry2,6,13,15 was conceived at first within non-abelian gauge theories

and showed to apply to a really wide class of systems. There are different for-

mulations for the BRST formalism, with substantial differences from each other.

There exists a widely diffused formulation of BRST symmetry for constrained sys-

tems based on canonical quantization methods,5,6 being employed in quantization

of general relativity.1 Another approach,15 the one we followed in this work, to de-

rive BRST symmetry is based entirely on path integral methods and is applicable

to systems with infinite degrees of freedom avoiding those inconsistencies proper of

canonical quantization methods we discussed above.

2. BRST symmetry for a non-abelian gauge theory

We start with an enlightening example, considering BRST symmetry for a non-

abelian gauge theory. In order to compare path integral methods with canonical
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quantization ones, one can8 consider the Nöether charge following from BRST

symmetry of the action and, taking an appropriate choice for the gauge fixing

functionals in the DeWitt - Fadeev - Popov method, show it to be the generator of

quantum BRST transformation within a canonical quantization framework.

Otherwise, using solely path integral methods, we show the BRST Nöether charge

Q ≡

∫

d3xJ 0(x)

related to the BRST current J µ to generate quantum BRST transformation by

means of Ward’s identities for the ensemble of gauge fields, ghost and antighost

fields and Nakanishi - Lautrup fields,15 designed by ψi(x), i. e.

0 = ∂x
µ 〈ψik

(xk) · · ·ψi1 (x1) J µ(x)〉
j=0 − i

k
∑

l=1

σi1 · · ·σil〈ψik
(xk) · · · (1)

· · ·ψil+1
(xl+1) sψil

(x)ψil−1
(xl−1) · · ·ψi1 (x1)〉j=0δ

(4) (x− xl) .

where σi = ±1 for ψi bosonic or fermionic respectively. The fact that in (1) the

gauge fixing functionals are completely arbitrary allows us to infer a physical state

condition on states of the gauge fields following from BRST invariance, given by

the usual Gauss’ constraint

DaF
0aα(x) |ψ〉 = 0. (2)

The condition (2) differs from the one we’d obtain fixing the temporal gauge con-

dition A α
0 = 0 at a classical level and then quantizing by the Dirac method the

classical Gauss’ constraint DaF
0aα(x) = 0 holding on the equations of motion. This

is because in (2) the Yang-Mills tensor operator possesses some additional terms

propotional to A α
0 with respect to the Yang-Mills tensor operator in the Dirac’s

procedure. Thus according to BRST invariance the Dirac’s procedure’s Gauss’ con-

straint does not annihilate physical states any more: we will find a deeply analog

result in Section 3 for general relativity.

3. BRST symmetry for general relativity

Afterward we turn our attention to general relativity expressed in first order for-

malism9,10 in order to investigate the physicality condition for gravitational field’s

states arising from BRST invariance of the theory and following the same proce-

dure employed for non-abelian gauge theories. We are to determine a physical state

condition on quantum states without thinking of classical hamiltonian constraints

in order to compare our physicality condition required by BRST symmetry and

derived with path integral methods with the one obtained using the Dirac quanti-

zation method employed within Ashtekar’s canonical formulation.10,12 Employing

the same method followed in Section (2) for general relativity, we arrive to the

following physical state condition for the densitized triad1,9,10,12 Ea
i

Da

[

Ea
j (x) + iejb(x)e0c(x)ε

abc
]

|ψ〉 = 0. (3)
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Comparing our physicality condition with the one used in loop quantum gravity10,12

and obtained fixing the temporal gauge condition already in the classical theory

DaE
a
j (x) |ψ〉 = 0, (4)

we find they differ by an additional term: thus according to BRST invariance the

Dirac’s procedure’s Gauss’ constraint does not annihilate physical states any more,

just as we observed in Section 2 for a non-abelian gauge theory. We think the

origin of this discrepancy to be in the choice of a particular gauge in the classical

theory made within Ashtekar’s approach and which was intentionally avoided in

our work, in order to preserve a fundamental symmetry such as the local Lorentz’s

one. Finally we showed that we recover the Dirac’s canonical condition in our BRST

quantization only by a suitable choice of gauge fixing functionals within the DeWitt

- Fadeev - Popov method, followed by an appropriate limiting procedure. Being such

a limit possibly ill-defined, (3) and (4) cannot be trivially said to be equivalent.
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