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de Microbiologı́a, Universidad de Costa Rica, San José, Costa Rica, 5 Department of Microbiology, University of Navarra, Navarra, Spain

Background. To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction
with innate immunity. Methodology/Principal Findings. Brucella did not induce proinflammatory responses as
demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered
neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced
proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts
and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells
displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous
inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did
not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did
not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-a-induction was TLR4- and TLR2-
dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was
not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4
mutant mice. Conclusion/Significance. We propose that Brucella has developed a stealth strategy through PAMPs reduction,
modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to
reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with
clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular
pathogens phylogenetically related to Brucella that also cause long lasting infections.
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INTRODUCTION
Pathogenic bacteria use a variety of virulence factors that endow

them with the ability to overcome the immune system. Adhesins,

enzymes and toxins acting on host tissues, cells and free molecules

enable pathogens to breach host barriers and thwart defenses. In

most cases, however, the aggression is quickly sensed by innate

immune defenses that both act immediately and bolster the

adaptive immune response. Innate immunity detects minute

amounts of components bearing the so-called pathogen-associated

molecular patterns (PAMPs) as well as some products of host

damage [1]. The subsequent proinflammatory responses are

manifestations of the innate immunity and usual landmarks of

infection and septic syndromes. However, there is increasing

evidence that some pathogens display altered PAMPs in key

molecules, suggesting that to escape detection by innate immunity

is a survival strategy. One of the best examples of a structure with

altered PAMPs is the lipopolysaccharide (LPS) of Brucella (BrLPS),

an intracellular parasite of worldwide importance [2]. BrLPS bears

a non-canonical lipid A and, although it signals through toll-like

receptor (TLR) 4 [3], it is active only at very high concentrations

[4,5]. Moreover, BrLPS confers a highly resistant phenotype to

cationic bactericidal peptides and makes Brucella a poor activator

of the complement system [4,6]. Accordingly, we have suggested

that evading innate immunity is decisive for Brucella parasitism

[5,7]. Yet, there are conflicting reports on the role of TLR4 and

TLR2 in the immunity against live Brucella [8–12]. Although the

course of experimental brucellosis seems unaltered in TLR2

knockout (KO) mice [8,11,12], the receptor was shown to be

involved in the detection of heat-killed (HK) Brucella abortus [13].

Furthermore, some authors reported that Brucella lipoproteins

(BLPs) are potent triggers of proinflammatory cytokines through

TLR2, and proposed that B. abortus stimulates the innate immune

system and induces cytokine-mediated inflammation by this

mechanism [14]. Similarly, other authors have reported that

Brucella replicates to a higher extend in TLR4 KO mice than in the

WT [8,12], while others do not notice significant differences of

Brucella replication in these mice [9–11].
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These discrepancies are not trivial. At the onset of the infection,

brucellosis courses without significant endotoxicity signs or

significant blood changes [15], an unusual fact that calls for an

experimentally supported explanation. Moreover, Brucella lacks

classical virulence factors [16], although it possesses a type IV

secretion system VirB and periplasmic cyclic b-1,2-glucans that

enable the pathogen to reach its final replicating niche in the

endoplasmic reticulum [17,18]. In addition, BvrR/BvrS, a two

component sensory and regulatory system essential for Brucella

virulence, controls the outer membrane (OM) composition and

possibly aspects of the pathogen metabolism [19,20]. Since

activated macrophages successfully deal with intracellular Brucella

[21,22] it may be that prevention of early host cell activation is

a prerequisite for b-glucans, VirB and other factors to become

effective. To test this hypothesis, we have investigated the

proinflammatory responses induced by B. abortus in the murine

model in comparison with Salmonella typhimurium. We show here

that B. abortus behaves in fact as a furtive pathogen that

circumvents proinflammatory responses and propose that this

strategy does not rely on inhibitory mechanisms but rather on the

negligible activity of those molecules that bear marked PAMPs in

other bacteria. The data presented are consistent with clinical

profiles at the onset of brucellosis and argue that this model could

be valid for those intracellular pathogens phylogenetically related

to Brucella that also cause long lasting infections.

RESULTS

B. abortus infected mice do not show symptoms of

sepsis
As reported before [23,24], S. typhimurium induced symptoms of

septic shock in mice that started 2 h after intraperitoneal injection of

105 CFU and were initially characterized by piloerection, decrease

in feeding and water consumption and general malaise. At later

times, signs progressed to severe wasting and cachectia, with death

before 5 days. Pathological and histopathological examination of

the lungs demonstrated alveolar edema, hemorrhage, extensive air

space damage and PMN infiltration (not shown). None of these

symptoms were observed in mice injected intraperitoneally with

live- or HK-B. abortus in doses ranging from 104 to 107 CFU doses.

However, bacteria were isolated from blood as early as 1 h of

infection and bacteremia persisted for at least 48 h. Spleen cellular

profiles and weights between B. abortus-infected with 105 to 107

colony forming units (CFU) and PBS-injected mice did not differ

significantly in the first 48 h post-inoculation. Peritoneum and

spleen of B. abortus infected mice (104–105 CFU) had close to one log

increase in CFU at 24h of infection. Infection doses of 56109 to 1010

CFU of B. abortus did not induce the classical endotoxic shock profile

observed with Salmonella, although these bacterial quantities were

lethal for 50–60% of the mice after 48 h.

B. abortus infected mice do not demonstrate acute

coagulopathy disorders
Two critical events during strong proinflammatory responses are

platelet aggregation and synthesis of acute response proteins such as

fibrinogen [25]. Plasmin generation and the subsequent degradation

of fibrin are also linked to proinflammatory responses and PMN

activation [26]. Whereas S. typhimurium induced statistically signifi-

cant thrombocytopenia already 24 h of infection, for B. abortus this

was observed only after 48 h and at a less markedly level (Figure 1

A). Likewise, S. typhimurium- but not B. abortus-infected mice showed

increased fibrinogen synthesis (Figure 1 B) and generation of high

levels of plasmin activity (Figure 1 C).

B. abortus infection does not induce leukocytosis or

recruitment of PMN
Gram negative bacterial infections commonly generate leukocy-

tosis and PMN recruitment at early times. Thus, we explored the

leukocyte blood changes and PMN recruitment in mice infected

with B. abortus or S. typhimurium. As expected, the latter bacteria

induced noticeable blood neutrophilia (Figure 2 A) and a signifi-

cant recruitment of PMN and monocytes in the peritoneum

(Figure 2 B and C) and in the air pouch model in mice (Figure 2

D). In some cases, S. typhimurium also caused neutrophilia at early

stages followed by severe blood leucopenia starting at 10 h post-

inoculation (not shown). B. abortus did not induce significant

leukocyte blood changes or recruitment of PMN, monocytes or

lymphocytes in the peritoneum of mice, and only a mild

recruitment of PMN was observed in air pouches.

PMN do not play a significant role in the clearance

of B. abortus in vivo
The role of PMN during Brucella infections has not been critically

examined. We studied this aspect of innate immunity using mice

chronically depleted of PMN by treatment with monoclonal

antibody RB6. Bacterial counts were carried out 3 days of

infection for S. typhimurium and 7 and 14 days for B. abortus, times

at which these bacteria attain significant numbers in the spleen

[11]. Consistent with previous reports, S. typhimurium replicated to

a larger extent in PMN depleted than in control mice [27]. In

contrast, B. abortus spleen CFU were similar in both groups after 7

or 14 days of infection (Figure 3 A). Since Brucella colonization of

spleen and other organs takes place during the first hours [28,29]

and the phagocytosis of PMN starts immediately after bacterial

invasion [30], these results show that the role of PMN in the

Figure 1. B. abortus does not induce augmented levels of fibrinogen,
fibrin-breakdown products or important platelet aggregation. Balb/c
mice (6 mice per group) were intraperitoneally injected with 106 CFU of
B. abortus 2308, 105 CFU S. typhimurium (6 mice per group) or 0.1 ml of
PBS (10 mice per group) and blood was collected from the retro-orbital
sinus and the blood from the various individuals subjected to analysis.
(A) The number of platelets was determined by flow cytometry. (B) The
levels of fibrinogen were determined in plasma. (C) The levels of fibrin
D-dimers in the plasma from infected and PBS injected control mice
were determined by agglutination of sensitized beads, after 48 h pos-
infection. Minimum positive cut-off (0.5 mg/ml) is represented with
a dashed line. Values of p,0.05 (*), p,0.005 (**) and p,0.0005 (***) are
indicated.
doi:10.1371/journal.pone.0000631.g001
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control of B. abortus is not significant, even once adaptive immunity

has developed.

PMN are not significantly active against B. abortus

ex vivo
It has been shown that virulent smooth brucellae hamper PMN

degranulation and are more resistant than LPS defective strains to

the killing action of PMN [31]. These properties, however, have

not been weighed against those of other facultative intracellular

gram negative bacteria. As expected [32], S. typhimurium stimulated

the respiratory burst (Figure 3 B), did not prevent PMN

degranulation (Figure 3 C) and was readily killed by these rat

cells (Figure 3 D). Under the same conditions, B. abortus induced

only a mild respiratory burst and a modest PMN degranulation

(Figure 3 B and C), two facts more evident at rates of infection of

8–10 B. abortus per PMN than at lower rates. The inhibitory effect

on degranulation lasted for up to 6 h post inoculation, a time when

all control and S. typhimurium infected rat PMN were degranulated.

Consistent with these observations, B. abortus was resistant to the

killing action of human and rat PMN (Figure 3 D).

B. abortus barely consumes complement and is

resistant to bactericidal molecules
Since complement activation and intracellular killing by micro-

bicidal molecules are events linked to proinflammatory mechanisms,

we compared the ability of B. abortus and S. typhimurium to consume

complement and their resistance to cationic peptides, PMN extracts

and normal serum. In contrast to S. typhimurium, B. abortus barely

displayed anticomplementary activity (Figure 4 A) and it was

considerable more resistant to the action of bactericidal cationic

peptide p-EM2, PMN-extracts and normal serum (Figure 4 B).

B. abortus infection induces minimal levels of

cytokines
Although it has been shown that live- and killed-Brucella induce

proinflammatory cytokines [8,11,13,21,33,34], the in vivo levels

and kinetics at early times have not been contrasted with those in

other infections. As expected, S. typhimurium induced a fast increase

in TNF-a, IL-1b and IL-6 levels that reached their maximum 2, 4

and 10 h post inoculation, respectively, and then decreased rapidly

(Figure 5 upper panel). Concomitantly, the levels of anti-

inflammatory IL-10 increased steadily up to at least 24 h of

infection. In contrast, the levels of these four cytokines were

comparatively insignificant after infection with B. abortus (Figure 5

upper panel). This markedly lower response was not linked to an

active interference by the live bacteria because inocula of HK-B.

abortus did not increase the cytokine levels (Figure 5 upper and

center panels). It is important to note that, in this and subsequent

experiments, HK-bacteria were not washed after killing because it

is known that heat disrupts Brucella cell envelopes and exposes

large amounts of BrLPS, BLPs, peptidoglycan, DNA and other

molecules [35] as a rule recognized by innate immunity. Although

both HK- and live-B. abortus displayed effects much lower and

widely different from those of S. typhimurium, they did not induce

identical activities, as demonstrated when the scale of the graphs

are modified to portray more resolution (Figure 5 center panel).

Live-B. abortus stimulated TNF-a, IL-1b and IL-6 biphasic

Figure 2. B. abortus does not induce leukocytosis or significant recruitment of PMN. Leukocyte counts were determined in the peritoneal fluids,
heparinized blood or in the air pouch of Balb/c mice intraperitoneally injected with 106 CFU B. abortus 2308, 105 CFU S. typhimurium or 0.1 ml PBS. (A)
Blood PMN were counted in 8 mice/group, during different periods. (B) Leukocyte values in the peritoneum were determined from fluids of 5 mice/
group, in time. The inserted graph indicates the values of peritoneal lymphocytes and monocytes at 24 h. (C) The peritoneal PMN recruited were
determined as in ‘‘(B)’’. (D) PMN in air pouches were determined from the fluids of 5 mice/group, during 4 periods. PMN average numbers of PBS
injected mice in each period (blue-dashed line) and the ranges of normal maximum upper and lower limits are depicted in each graphic (gray bar).
doi:10.1371/journal.pone.0000631.g002
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responses with steady increases after 8 h post inoculation, whereas

HK-B. abortus induced a response with a different kinetics and

lower amounts of cytokines after 10 h. Only when mice were

infected with a very high dose of Brucella (56109 CFU), the levels of

cytokines approached those induced by Salmonella (Figure 5 lower

panel). Similarly, 56109 of HK-B. abortus induced a modest

increase in cytokines (Figure 5 lower panel) and mild signs of

endotoxemia, but not lethality, probably due to the lower levels of

Figure 4. B. abortus does not consume complement and is resistant to PMN extracts, cationic peptides and serum. (A) Packed bacteria were
incubated with normal rabbit serum and the remaining hemolytic activity of complement in serum measured in a complement fixation indicator
system: higher hemolytic activity corresponds to less complement consumption by the bacteria. (B) Bactericidal activity was determined by
incubating 4 6105 CFU of bacteria with 5 mM of cationic peptide pEM-2 or 5 mg/ml of PMN-extract in 0.2 ml PBS-1 % peptone, for 20 and 30 min.
Complement bactericidal activity was estimated on 105 CFU/ml bacterial suspensions dispensed in wells of microtiter plates (45 ml/well) containing
fresh normal human serum (45 ml/well). Bactericidal action was estimated as the percentage of CFU with respect to controls without pEM-2, PMN
extract or decomplemented inactivated serum, respectively. Values of p,0.005 (**) and p,0.0005 (***) are indicated.
doi:10.1371/journal.pone.0000631.g004

Figure 3. PMN are not required for innate control of B. abortus infection. (A) Balb/c mice were given repeated injections of the anti-RB6 antibody
to deplete PMN. Untreated or PBS injected mice were used as controls. Two days later, all mice were intraperitoneally infected with 106 CFU of B.
abortus 2308 or 105 S. typhimurium. During the infection, mice were treated with anti-RB6 antibody every two days, for a maximum of 7 days. Spleen
bacterial counts were determined 3 days of infection for Salmonella and 7 and 14 days of infection for B. abortus. (B) In situ respiratory burst was
estimated as the rate of Brucella or Salmonella infected rat PMN containing NBT positive granules at proportion of 1 or 10 bacteria/cell. (C)
Degranulation of infected rat PMN (564 bacteria/cell) at two cell densities/well was estimated by microscopic examination (406 upper panel and
206 lower panel) at 3 h and expressed as the proportion of degranulated cells versus intact PMN in 5 fields. Standard error was less than 10% in all
cases. (D) The rate of B. abortus or S. typhimurium survival in human and rat PMN was tested at 564 bacteria/cell, at two post infection times. Values
of p,0.005 (**) and p,0.0005 (***) are indicated.
doi:10.1371/journal.pone.0000631.g003

Brucella Evade Innate Immunity

PLoS ONE | www.plosone.org 4 July 2007 | Issue 7 | e631



TNF-a generated. Moreover, the cytokine profiles were different

from those induced by live-bacteria. Since we were able to

overcome the low cytokine response by using very large inocula,

our results demonstrated that the low levels of proinflammatory

cytokines induced by B. abortus infection were not connected to

inhibitory mechanisms exerted by the infecting bacteria.

B. abortus molecules putatively bearing PAMPs do

not inhibit cytokine responses and are low

activators
To test whether the Brucella molecules that putatively bear PAMPs

hampered activation or, on the other hand, were just poorly

detected, we performed two experiments. First, we challenged

mice and macrophages with high concentrations of a collection of

B. abortus fractions containing those molecules (Table 1), and

measured the TNF-a levels (Figure 6). Second, we injected

Escherichia coli LPS (EcLPS) alone or after the respective B. abortus

fractions and compared the TNF-a levels with those measured in

the first experiment. All B. abortus fractions induced very low levels

of TNF-a in mice after 2 or 8 hours, even at high concentrations

(50 mg/mouse) but none of them inhibited the generation of this

cytokine after activation with EcLPS. Similarly, only high concen-

trations of the B. abortus preparations (50 mg/ml) generated TNF-

a in macrophages and no preparation inhibited a subsequent

activation by EcLPS. Concentrations lower that 10 mg/mouse or

10 mg/well of the B. abortus fractions induced very low or

undetectable levels of cytokines. On the contrary, 0.05–5 mg/well

of EcLPS induced significant levels of TNF-a (not shown).

Similarly, very low to undetectable levels of the inhibitory cytokine

IL-10 were observed in macrophages treated with the B. abortus

fractions. This was in contrast to EcLPS, which induced significant

amounts of this cytokine after 24 h (not shown). None of the

Brucella fractions was toxic for mice or macrophages. These

experiments demonstrate that, in addition of being low activators,

the Brucella molecules that putatively bear PAMPs (Table 1) do not

inhibit the generation of TNF-a in vivo or in vitro.

Replicating intracellular B. abortus are protected

from macrophage activation
It has been proposed that activated macrophages are the primary

source for B. abortus elimination in the infected host [29,33].

However, our in vivo observations suggested that macrophage

activation could be both delayed with respect to the onset of B.

abortus infection and insufficient to lead to an effective control of

the pathogen. To study this hypothesis, we first compared the

brucellacidal activity of non-activated macrophages and macro-

Figure 5. B. abortus infections induce a blunted cytokine response. The levels of IL-10, IL-1b, IL-6 and TNF-a were determined in the sera of Balb/c
mice (6 per group) intraperitoneally infected with 106 CFU of B. abortus 2308, 105 CFU of S. typhimurium or injected with 106 CFU of HK-B. abortus
(upper and center panels). Alternatively, mice were infected with 56109 CFU of B. abortus 2308, or injected with 56109 of HK-B. abortus. Untreated or
intraperitoneally injected with 0.1 ml PBS control groups displayed negligible quantities of cytokines (not shown). Notice that the scales of the
graphics between the upper and center panels differ in at least one order of magnitude.
doi:10.1371/journal.pone.0000631.g005
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phages exogenously activated before or during infection. Macro-

phages were treated or not with EcLPS, then inoculated with B.

abortus and CFU determined 2 h later. The results showed that

macrophages pretreated with EcLPS were considerably more

brucellacidal than naive macrophages (Figure 7 A), and that

treatment did not increase the proportion of cell death as compare

to the infected controls without EcLPS treatment (not shown).

Then, naı̈ve macrophages were infected with B. abortus, incubated

for 24 h until intracellular replication started. At this time, they

were treated with EcLPS or left untreated. As shown in Figure 7 B,

Brucella replication proceeded unaltered in the macrophages

treated with EcLPS at 24 h of infection. In all these experiments,

macrophage activation was not endogenously inhibited by the

intracellular bacteria, as demonstrated by the production of similar

TNF-a levels in infected and non-infected macrophages upon

EcLPS stimulation (Figure 7 C). Altogether, these results

Figure 6. B. abortus PAMP-bearing molecules and extracts do not block the generation of TNF-a in vivo and in vitro. (A) Balb/c mice (10 per
group) were intraperitoneally. injected with 50 mg/0.05ml PBS of each of the different B. abortus preparations described in Table 1, or with 0.05 ml
PBS alone. Then, halve of the mice from each group were intraperitoneally injected with 5 mg/0.05 ml PBS of EcLPS, and the other halve with 0.05 PBS
alone, and TNF-a levels determined in sera at 2 and 8 hours after the last injection. (B) RAW264.7 macrophages were treated with 50 mg/well with
each of the various preparations described in Table 1. After 30 min, halve of the cultures were challenged with 5 mg/well of EcLPS and the levels of
TNF-a determined from culture supernatants at 4 and 24 hours. (C) Omp10, Omp16 and Omp19 lipoproteins in Brucella OMF revealed by Western
blots with the respective monoclonal antibodies. Value of p,0.05 (*) is indicated.
doi:10.1371/journal.pone.0000631.g006

Table 1. Characteristics of the PAMP-bearing preparations used in this study for stimulating mice and macrophages.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preparation Description

BrLPS B. abortus LPS possesses an O-amphypatic chain homopolymer composed of N-formyl-perosamine subunits, a core oligosaccharide devoid of negative
charges, and a lipid A backbone of two subunits of diaminoglucose substituted with long chain (up to 30 C atoms) of hydroxylated and unsaturated
fatty acids. The preparation contains 85% LPS, 11% NH, 1.5% protein and 2.5 % of other components. B. abortus LPS mutants are attenuated.
[3,4,20,56,79].

EcLPS E. coli LPS is a classic endotoxic preparation composed of hydrophylic O chain, highly negative charged core oligosaccharide and a canonical lipid A
composed of two subunits of glucosamine substituted with short chain (,16 C atoms) hydroxylated and saturated fatty acids. This preparation
contains of 87% LPS, 2% protein and 11% other components [3].

Gluc/NH Preparation NH2 composed of 65% of cyclic beta-1,2-glucan substituted with anionic succinyl residues, 30% NH, and 5% of other components. B.
abortus mutants in cyclic beta-1,2-glucan or devoid of O-chain derived polysaccharides, including NH are attenuated [79].

OMF Outer membrane fragments composed of 42% BrLPS, 26% NH, 18% proteins, and 10% phospholipids and ornithine-containing lipids. Proteins include
60 periplasmic proteins and 25 OM proteins, from which 10 are BLPs, including Omp10, Omp16 and Omp19. B. abortus mutants in several Omps, and
BLPs are attenuated [19,35,58].

Cyto This preparation is 96% protein from which 65% are cytoplasmic, 25% periplasmic, 5% membrane associated and 1% membrane. A significant
proportion of the cytoplasmic and periplasmic proteins are devoted to folding, sorting, degradation and transport functions. BLPs, LPS, NH or beta-1, 2
cyclic glucans were not detected in this preparation [35,79].

HK-B. abortus Heat killed B. abortus was prepared by boiling B. abortus 2308 in pyrogen-free PBS for 10 minutes without further washing the bacterial debris. This
preparation includes exposed peptidoglycan, nucleic acids, and mixtures of membrane components.

doi:10.1371/journal.pone.0000631.t001..
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established that previously activated macrophages display higher

brucellacidal activity than naı̈ve ones. Moreover, they demonstrate

that B. abortus infected macrophages are not refractory to further

activation and also that such an activation does not lead to the

elimination of replicating Brucella.

TLRs barely respond to high levels of Brucella

molecules putatively bearing PAMPs and do not

influence bacterial replication
The lack of macrophage activation induced by Brucella could be

explained by an insufficient triggering of PAMP receptors. To test

this, we measured the production of TNF-a by bone marrow (BM)

macrophages of WT, TLR4-/- TLR2-/- and TLR4/TLR2-/-

mice upon stimulation with bacterial products, live- and HK- B.

abortus (Figure 8). The levels of TNF-a induced by the Brucella OM

fragments (OMF) or BrLPS at 50 mg/ml were lower than that

induced by EcLPS at 0.1 mg/ml (Figure 8 A). In spite of this, the

recognition of purified BrLPS and OMF depended on TLR

(Figure 8 A). Recognition of OMF, a material that contains high

quantities of BrLPS and several BLPs (Table 1 and Figure 6 C), did

not depend on TLR2; however, the absence of both, TLR4 and

TLR2, abolished the response. In a second set of experiments, we

compared the TNF-a induction in macrophages inoculated with

live- and unwashed HK- B. abortus. TLR KOs but not WT

macrophages generated differential and lower levels of TNF-

a when infected than when inoculated with unwashed HK-B.

abortus (Figure 8 B), demonstrating in vitro dependence on TLR4

and TLR2 by live- but not by HK-bacteria. As expected, the

TNF-a levels induced by Brucella were at least 3 times lower than

those generated in WT macrophages stimulated with EcLPS

(Figure 8 panels A and B). These results prompted us to investigate

the multiplication of Brucella in macrophages deficient for these

receptors. In agreement with our previous observations of in vivo

infections in TLR KO mice [11], the replication of B. abortus in

TLR4-/-, TLR2-/- and TLR4/TLR2-/- macrophages did not

differ from those in WT (Figure 8 C). Therefore, whereas TNF-

a secretion in cultured macrophages infected with B. abortus seems

to depend somewhat on TLR2 and TLR4, signaling by these

receptors does not affect the intracellular replication of this

pathogen.

B. abortus intracellular replication has no cytotoxic

effects
Salmonella is cytotoxic for BM macrophages in a TLR2 and/or

TLR4-independent manner [36]. In contrast, Brucella replicates

extensively within macrophages and inhibit apoptosis in human

monocytes [18,37]. Therefore, we determined the survival of WT

and different TLR KO macrophages infected with B. abortus. The

viability of uninfected macrophages steadily decreased during

7 days of culture and there were no significant differences in the

death rate among the various types of cells, demonstrating that the

TLR KO macrophages do not have a generalized survival

deficiency (Figure 9 A). The viability of TLR4/TLR2-/-

macrophages infected with B. abortus also decreased, although

not at the same rate as the uninfected controls (Figure 9 B). On the

contrary, no decrease in the viability was detected in B. abortus-

infected WT, TLR4 -/- and TLR2 -/- macrophages. Similar

results were obtained with HK-Brucella, suggesting that steady

replication within macrophages was not necessary to promote

survival (Figure 9 C). Since the IL-1b and IL-18 receptors signal

through the MyD88 molecule like TLRs, we tested if IL-1b and

IL-18 signaling contributed to macrophage survival after B. abortus

infection. As shown in Figure 9 D, the decrease in viability was

also suppressed in Brucella infected IL-1b/IL-18-/- macrophages.

Figure 7. Macrophages activated before infection are significantly more brucellacidal than macrophages activated after infection. (A) Naı̈ve or
activated RAW264.7 macrophages with EcLPS 0.5 mg/well 15 h prior to infection, were infected with B. abortus 2308 at 1065 bacteria/cell and the
microbicidal function estimated after 2 h post inoculation. Under these conditions no significant cytotoxicity was recorded in these phagocytic cells.
(B) Naı̈ve macrophages were infected at rate of 1065 bacteria/cell and bacteria replication estimated; after 24 h, half of the infected macrophages
were activated with 0.5 mg/well EcLPS (black squares) and the rest of the cells treated with PBS (white squares) and bacterial replication followed until
48 h post inoculation. Immunofluorescence of replicating Brucella at 24 h of infection (arrows) is shown in the inserted figure. (C) TNF-a measured in
the supernatants of non-infected EcLPS 0.5 mg/well activated macrophages (black circles), non-activated B. abortus infected cells (white triangles), or
EcLPS activated cells after 24 h of B. abortus infection (red circles). Value of p,0.0005 (***) is indicated.
doi:10.1371/journal.pone.0000631.g007
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Figure 8. Brucella intracellular replication is TLR4 and TLR2 independent but TNF-a production is TLR4 and TLR2 dependent. (A) BM
macrophages from WT, TLR4-/-, TLR2-/- and TLR4/TLR2-/- C57Bl/6 mice were inoculated with 50 mg/well of B. abortus OMF, 50 mg/well of BrLPS or
0.1 mg/well of EcLPS (A) and TNF-a measured after 24 h. (B) BM macrophages from WT, TLR4-/-. TLR2-/- and TLR4/TLR2-/- C57Bl/6 mice were infected
with B. abortus 2308 (infection rate of 1065 bacteria/cell) or treated with 10 HK-B. abortus/cell and TNF-a measured after 48 h. (C) BM macrophages
were infected as in ‘‘(B)’’ and bacterial replication determined as the number of CFU during different periods. Values of p,0.05 (*), p,0.005 (**) and
p,0.0005 (***) are indicated.
doi:10.1371/journal.pone.0000631.g008

Figure 9. Brucella is not cytotoxic for macrophages and HeLa cells. (A) Survival rate of uninfected WT, TLR4-/-, TLR2-/- and TLR4/TLR2-/- BM
macrophages from C57Bl/6 mice was followed using MTT assay for seven days. (B) Survival of macrophages infected with B. abortus S19 at MOI of 50.
(C) Survival of macrophages treated with 50 mg/ml of HK-B. abortus S19. (D) Survival of WT and IL-1b/IL-18-/- macrophages infected with B. abortus
S19 (MOI 50). (E) Untreated (panel 1) and CNF treated (panels 2, 3 and 4) HeLa cells were infected with B. abortus 2308 at a MOI of 500 and incubated
for 48 h. Untreated cells (panel 1) were incubated with BrdU. All cells were processed for immunofluorescence [39] using anti-BrLPS antibodies (green
in panel 1 and red in panels 2, 3 and 4) or antibodies against BrdU epitope (red in panel 1). CNF treatment inhibits the cytokinesis while not affecting
karyokinesis resulting in the generation heavily infected cells during the mitotic cycle (panel 2, cell in anaphase), binucleated cells (panel 3) or
multinucleated cells (panel 4). Values of p,0.005 (**) and p,0.0005 (***) are indicated.
doi:10.1371/journal.pone.0000631.g009
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These results indicate that B. abortus, in addition to its lack of

toxicity for BM macrophages, this bacterium was able to promote

the survival of these cells, even in the absence of signaling by

relevant TLR or cytokine receptors.

Epithelial cells are decisive host cells for the establishment of

brucellosis [38]. In order to determine if extensive replication of

Brucella induced cell death through toxic effects or apoptosis, we

infected naı̈ve and E. coli cytotoxic necrotizing factor (CNF)-

treated (in order to avoid cytokinesis) HeLa cells and monitored

the cell cycle. As expected [39], extensively infected HeLa cells

were able to synthesize DNA, condense chromosomes and

perform several cycles of nuclear division, demonstrating that

even large amounts of intracellular Brucella not induce toxicity in

these cells (Figure 9 E).

B. abortus replication and immunity in vivo are not

dependent on TLR4
There are coincident results showing that TLR2 is not required for

the efficient clearance of either virulent or attenuated B. abortus in

vivo [8,11]. On the other hand, it has been described [8] that

virulent B. abortus increased up to one log in the spleens of TLR4-

deficient C3H/HeJ mice as compared to the WT counterparts.

However, a hampered response of C3H/HeJ mice to B. abortus was

not noticed in previous works [9,10] or more recently in C57BL/6

TLR4-/- mice [11]. Since the use of an attenuated Brucella strain

more easily reveals a permissive effect connected with macrophage

dysfunction [40], we first reexamined the in vivo role of TLR4

using C3H/HeJ mice and the cognate WT strain infected with

attenuated B. abortus S19. We found that B. abortus S19 replicated

and persisted similarly in C3H/HeJ as in WT mice (Figure 10 A).

Assays performed with virulent B. abortus 2308 also failed to reveal

differences in the course of the infection in these mice (not shown).

We also examined the role of TLR4 by immunizing TLR4-/- KO

and WT mice with BrLPS and challenging them with B. abortus.

Consistent with the antibody responses induced by B. abortus LPS

in TLR4 deficient mice [11], no differences in protection levels

between TLR4-/- and WT mice were observed (Figure 10 B).

These results reinforce the proposal that clearance and de-

velopment of efficient immunity to B. abortus is TLR4-independent

[11], despite of the fact that BrLPS is TLR4 dependent in vitro,

although at much higher concentrations than other kind of LPSs

[3].

DISCUSSION
We have evaluated the degree and profiles of the early

proinflammatory responses induced by B. abortus and several

PAMP-bearing molecules in comparison with those evoked by the

intracellular pathogen S. typhimurium. This comparative approach

allowed us to estimate the level at which Brucella is able to activate

innate immunity at the onset of the infection. It is important to

note that the data obtained accurately correlate with the absence

of endotoxicity signs, the rarity of leucocytosis and neutrophilia

and the almost total absence of coagulopathies in patients with

brucellosis [15,41]. Therefore, our observations are complemen-

tary to a significant body of clinical data. The picture that emerges

from this study is as follows.

After invading, the brucellae come in contact with humoral

mediators and are readily ingested by PMN and macrophages

[30,41], and probably by dendritic cells [42]. At this stage, Brucella

performs several tasks to avoid immediate destruction: first, it

circumvents strong activation of the innate immune system;

second, the bacterium withstands the direct action of complement

and other bactericidal substances; third, it resists and evades the

action of professional phagocytes, such as PMN and macrophages;

finally, Brucella maintains the host cells alive in order to establish

long lasting infections.

The first task is accomplished through a negligible induction of

proactive plasma inducers of inflammation, insignificant levels of

complement fixation and delayed and low levels of cytokines and

chemokines, as demonstrated here and in other works [3,11,43].

These effects should be connected to the low recruitment of

leukocytes at early times and the weak brucellacidal action of

PMN. Despite these low-activating properties of Brucella, it was

striking that the course of infection was unaffected in mice

depleted of granulocytes because PMN kill these bacteria at

significant higher rates than macrophages [18,31]. The brucella-

cidal activity of PMN is promoted by opsonization with normal

sera [44] but it seems that the negligible complement binding

displayed by B. abortus (Figure 4 A) which is related to the poor

complement binding of its LPS [4] would be a limiting factor. It is

noteworthy that the lack of role of PMN parallels that of NK cells

in the sense that they are not crucial for the control of B. abortus at

early times of infection [21], at least in the murine model. A

possible general consequence of these observations is that PMN,

the foremost cells of innate immunity, may serve as carriers

Figure 10. B. abortus replicates in naı̈ve and BrLPS vaccinated TLR4 deficient mice (A) TLR4 deficient mutant C3H/HeJ and the WT counterpart
C3H/HeAu mice were infected with 106 CFU B. abortus S19 and the number of replicating bacteria counted from the spleen at different time periods
(5 mice per group). (B) WT and TLR4-/- C57Bl/6 mice were injected with PBS (5 mice per group) or intraperitoneally immunized with BrLPS (5 mice per
group) and after two weeks infected with 106 CFU B. abortus S19 and the number of replicating bacteria in the spleen of mice counted at 14 days of
infection.
doi:10.1371/journal.pone.0000631.g010
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spreading viable B. abortus in the body as proposed by Spink more

than 50 years ago [41].

At first glance, these results are in apparent disagreement with

previous studies that reported PMN infiltration in B. abortus

infected organs [29] and increased and reduced bacterial

replication in mice depleted of TNF-a or IL-10, respectively

[45,46]. A close examination shows, however, that most of the

phenomena described in those studies correspond to late times,

once adaptive immunity has initiated or been established [47], and

that the cellular infiltrates in the organs are predominately

mononuclear [29]. It is also significant that the ability of

macrophages to control intracellular B. abortus is affected by IL-

10 only at very high concentrations [45], and that IL-6 and TNF-

a have no major effect [33], in contrast to INF-c which is the key

cytokine in the control of brucellosis [21]. Therefore, our

observations at the onset of B. abortus infection are not in

contradiction with those made once the adaptive immunity has

developed.

Activated macrophages control Brucella efficiently, an effect

noted even before the term ‘‘activated macrophage’’ was coined

[22]. Since then, it has remained an unsolved problem how Brucella

is able to persist in the infected host despite macrophage activation

and a patently active and long lasting adaptive immunity.

Furthermore, it has been noted that elimination of NADPH

oxidase or nitric oxide synthase activity in mice does not affect the

recovery of B. abortus in these animals [48], suggesting that these

and possibly other crucial functions of activated cells are not

relevant in brucellosis. Therefore, a very significant observation

was that, once established in naı̈ve macrophages, subsequent

activation did not lead to Brucella clearance. It has been also shown

that virulent B. abortus induces less macrophage activation than

attenuated strains, as estimated by in situ esterase staining of

mononuclear cells in vivo [22].

Live Brucella does not release cytotoxic substances [16,49] and it

seems to prolong the survival of macrophages independently of

TLR4, TLR2, IL-1b or IL-18. These properties enable Brucella to

replicate without generating obvious cell damage, a characteristic

that may be essential for establishing long lasting chronic

infections. Some dependence, however, was observed when both

TLRs were absent, suggesting that signaling by at least one of

these receptors is required to prologue survival. Similarly, Brucella

infected epithelial cells are able to cycle and consequently remain

as reservoirs for the bacteria in vivo. Dendritic cells have been

shown to sustain Brucella replication [42] and thus may participate

in immunity or serve as reservoirs, a hypothesis that deserves

experimental testing. Other cells such as lymphocytes, which are

crucial for mounting an efficient adaptive immunity at later times

[21], may not play a significant role at the onset of the infection. It

seems, therefore, that a crucial step in Brucella pathogenesis is to

sneak to its replicating niche without cell activation or cell cycle

interruption. Once there, macrophages are unable to destroy

intracellular replicating Brucella, not because they are refractory to

activation, but rather because their niche becomes unsuitable for

fusion with lysosomes. Finally, the apoptosis inhibition [37] may

be also linked to the absence of caspases mediating proinflamma-

tory activation.

It is not known whether Brucella containing vacuoles fail to fuse

with lysosomes because they are part of the endoplasmic

reticulum, because these vacuoles are modified in such a way

that they do not have the appropriate docking molecules, or both.

In this connection, the lack of significant involvement of TLR4

and TLR2 in the initial steps of B. abortus infection is remarkable.

It has been demonstrated that, whereas early involvement of

TLR4 and TLR2 promotes an inducible mode of phagocytosis

characterized by a rapid fusion with lysosomes, their absence

allows constitutive and slower maturation of the phagocyted

particles [50]. Based on the biogenesis of B. abortus containing

vacuoles in macrophages [18], the slow and low modulation of

TLRs in B. abortus infected cells [11] and the unaltered replication

profiles displayed in TLR4, TLR2 and TLR4/2 KO phagocytes

(Figure 8 B), we propose that maturation of the Brucella containing

phagosome initially follows the constitutive pathway which is then

diverted by the activity of Brucella factors. Indeed, the b-1,2-

glucans and VirB system have been demonstrated to hamper

lysosomal fusion and redirect Brucella to its replicating niche, once

the bacterium has invaded and localized in early vacuoles [17,18].

The absence of a TLR4 effect on Brucella replication in

macrophages is in agreement with the results observed in the

C3H/HeJ mice, here and in other works [9,10,51], and with our

previous experiments in TLR4-/- mice [11], but in apparent

contradiction with others [8,12]. Although we do not know the

reasons for these discrepancies, there are several considerations

that can be made. First, the Brucella and mice strains used (e.g. B.

abortus versus B. melitensis; Brucella resistant versus sensitive mice) as

well as the bacterial doses and experimental settings, differ among

the various works. Second, the differences in CFU observed at

early times between TLR4 KO and WT mice, although

statistically demonstrable display low significance and it is

manifested at early times but not at later times [12], suggesting

low influence of this TLR in the course of Brucella infection. It is

also significant that TLR4-/-, TLR4/2-/- and C3H/HeJ mice

infected with Brucella or immunized with BrLPS generate strong

anti-LPS antibody responses [11,52], and that these antibodies

were protective in TLR4-/- mice (Figure 10), suggesting low

relevance of TLR4 for immunity against Brucella. These observa-

tions point out that TLR4, a conspicuous LPS cell receptor of the

innate immune system, is not important for mounting an efficient

and protective immune response against Brucella as it is the case in

other gram negative infections [53]. However, Myd88, which is

the adaptor molecule for several TLRs and interleukin receptors,

is clearly required for the control of Brucella replication in mice

[11,12], suggesting that some signaling through receptors that use

Myd88 is required to control brucellosis, mainly once adaptive

immunity has taken place.

The ability of Brucella to behave as a stealthy parasite seems to

be connected to physiological and structural features and not to

classical virulence factors specifically designed to foil the immune

system [16]. It is clear that early innate immunity detection failed

mostly because of both the absence or reduced number of

molecules with canonical PAMPs and the lack of cytotoxic

substances generated by B. abortus. Indeed, Brucella is devoid of

surface structures such as capsules, fimbriae and pili, structures

that are all conspicuous in many soil living Brucella relatives [54].

In addition, BrLPS poorly binds cationic bactericidal peptides

[6,55] and, although it induces TLR4-dependent cytokine

responses, its bioactivity is markedly lower than that of canonical

LPSs, as demonstrated here and in previous works [3–5,11,20].

These differences are largely accounted for by the relative

reduction of anionic groups in the core oligosaccharide, diami-

noglucose backbone and the presence of long and very long acyl

chains in amide and acyloxyacyl linkages in the lipid A [56]. These

features may also hamper its interaction with coupling molecules

such lipid binding proteins, CD14 and MD-2, as suggested

elsewhere [57].

In addition to LPS, there are other PAMP bearing molecules in

the gram-negative OM. Based on the analysis of the activity of B.

abortus BLPs purified from recombinant E. coli, it has been

proposed that they are key elements triggering proinflammatory
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responses [14]. In our work, the cytokine levels induced in vitro and

in vivo by live- and HK-Brucella as well as by OMF are far lower

than those induced by Salmonella. Since OMF contain significant

quantities of the three major B. abortus BLPs (Figure 6 C), our

results indicate that they are poor inducers of innate immunity, at

least in the context of the whole bacterium or in OMF. It has been

noted that triggering of TLR2 by lipopeptides and lipoproteins

depends dramatically on the type of fatty acids substituting these

molecules and to less extent on their amino acid composition [58].

Thus, one possible explanation for the differences between our

observations and those with cloned B. abortus BLPs is that the latter

carry the acylation pattern characteristic of E. coli. The chain

length of the bound fatty acids is larger in Brucella than in

Enterobacteriaceae [59] and, in an early study on the trypsin fragment

of a Brucella BLP, one of us reported that the fatty acids differed

considerably from those in the peptidoglycan-linked E. coli

lipoprotein [60]. Although structural studies are necessary for

a definite conclusion, the equivalent response of WT and TLR2-/-

as well as the lower response of TLR4-/- BM macrophages treated

with OMF support the hypothesis that Brucella BLPs display

a structure with reduced or altered PAMP. An additional factor

that could account for the differences between B. abortus and

Salmonella may lay in their BLP content. Proteomic studies have

identified 15 different BLPs in B. abortus OMF [61], a number that

contrasts with the more than 100 putative BLPs present in

Salmonella genomes [62]. Cell envelope ornithine-containing lipids

from several bacteria have also been shown to be strong inducers

of cytokines and prostaglandins [63]. However, the structures of

Brucella ornithine-containing lipids (also present in the OMF) differ

from those of Achromobacter, Bordetella and Flavobacterium in at least

the type of fatty acids [59,63]. Concerning flagella, although the

brucellae are non-motile, this structure can be expressed on the

surface of these bacteria [64]. However, Brucella flagellin, the

putative cognate PAMP molecule for TLR5, displays an amino

acid sequence not recognized by this receptor [65].

The cytokine profiles and TLR dependence observed in vivo or

in cultured cells with live- and killed-bacteria or their isolated

PAMPs display a good correlation in many pathogens, including

Salmonella [66,67]. This was not the case with B. abortus. In contrast

to OMF (devoid of DNA and peptidoglycan), unwashed HK-B.

abortus induced cytokine profiles that were not dependent on TLR4

and TLR2. It is likely that TLR9 and NOD-like receptors which

are the cognate receptors for Brucella DNA [12] and may be for its

canonical peptidoglycan [60], respectively, are the responsible

receptors for inducing these TLR4 and TLR2 independent

responses in vitro. It may be also that TLR9 [12] and eventually

NOD-like receptors functioning intracellularly, are the relevant

TLRs for controlling Brucella infection through specialized

dendritic cells acting in concert with other cells for generating

IFN-c [12]. However, this still does not explain the negligible levels

of proinflammatory cytokines in vivo, mainly when PAMPs such as

DNA and peptidoglycan are readily accessible in HK-Brucella.

Why did HK-B. abortus induce a low level of cytokines in vivo and

why did the live bacteria show TLR4 and TLR2 dependence for

cytokine release in macrophages and no dependence on these

TLRs during replication in vivo [11] or in vitro (Figure 8 C)? This is

surprising because a number of B. abortus are killed by

macrophages during the first hours of infection [18,68] without

significant activation of the infected cells, as demonstrated here.

All these results indicate that the availability of Brucella PAMPs

within infected cells or elsewhere in the host is not straightforward

and that those interpretations based on the interaction between

Brucella molecules putatively bearing PAMPs and cell receptors

require careful attention.

It is tempting to speculate that the stealthy strategy of Brucella

corresponds to an evolutionary path that has been followed by

several pathogenic a-Proteobacteria by taking advantage of a com-

mon structural heritage. For instance, Bartonella, another in-

tracellular parasite inducing long lasting infections in mammals,

shares with Brucella the chemical and biological characteristics of

its lipid A, core oligosaccharide, major fatty acids, low number of

BLPs, putative enzymes to built ornithine-lipids, and flagella not

recognized by TLR5 [62,65,69,70]. The brucellae, and probably

other pathogenic a-Proteobacteria have developed furtive character-

istics by eradicating, modifying or hiding otherwise moderately

active PAMP-bearing molecules, to the point that practically not

recognized by the corresponding receptors. In the case of Brucella,

this is complemented by the maintenance of b-1,2-glucans, type

IV secretion apparatus, BrLPS and sensing and regulatory systems

that allow to reach a safe intracellular niche before an effective

immune response is developed [17–21].

MATERIALS AND METHODS

Bacterial strains, fractions and biological reagents
Salmonella enterica sv. Typhimurium strain SL1344, virulent B.

abortus 2308 and attenuated B. abortus S19 were grown as described

[54,71]. Description and characterization of BrLPS, EcLPS, OMF,

b-1,2-glucans, native hapten polysaccharide (NH), cytoplasmic

fractions and HK-B. abortus are described in Table 1. The

characteristics of bactericidal cationic peptide p-EM2, PMN-

extracts, CNF and anti-Brucella and anti-S. typhimurium antibodies,

have been described previously [6,39,55,72]. Enzyme linked

immunosorbent assay (ELISA) kits for cytokine determination were

from BD Biosciences (San Diego, CA). Monoclonal antibody RB6-

8C5 against murine granulocytes was a gift from Bärbel Raupach,

MPIIB, Berlin, Germany. Monoclonal antibodies against Omp10,

Omp16 and Omp19 were a gift from Axel Cloeckaert, Unité

BioAgresseurs, Santé et Environnement, INRA, France.

Experimental animals
The characteristics, source and maintenance of Balb/c, C3H/

HeJ, C3H/HeAu, C57BL/6 and the KO counterparts TLR4-/-,

TLR2-/-, TLR4/TLR2-/- and IL-1b/IL-18-/- mice have been

described previously [11,52]. Wistar rats were maintained in the

animal facility of the Veterinary School of the National University,

Costa Rica. All animals were handled and sacrificed according to

the guidelines of the ‘‘Comité Institucional para el Cuido y Uso de

los Animales of the Universidad de Costa Rica’’, and in agreement

with the corresponding law ‘‘Ley de Bienestar de los animals

Nu74510 of Costa Rica. Mice were infected by the intraperitoneal

route with 0.1 ml of bacteria in pyrogen-free sterile PBS.

Generation of neutropenic mice
Balb/c mice were intraperitoneally injected with 100 mg of RB6-

8C5 antibody, 36 h before infection. Then mice were infected

with 106 B. abortus or 105 S. typhimurium. Controls were injected

with sterile PBS. Thereafter, mice were injected with 100 mg every

two days (one injection for S. typhimurium and 3 injections for B.

abortus) until sacrificed. One single intraperitoneal injection of

100 mg of RB6 antibody resulted in PMN depletion for at least

3 days. Under these circumstances the blood of mice bled from the

tail, did not demonstrate granulocytes during the course of

experiments, as judged by Giemsa-Wright staining of the smears.

Neither circulating nor resident populations of macrophages,

lymphocytes or other resident cells were affected by this treatment.

On day 3, mice infected with S. typhimurium and the respective

controls were sacrificed. B. abortus infected mice and the respective
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controls were sacrificed on days 7 and 14. Bacterial colonization

was determined in spleens of mice collected at the indicated times,

then weighed and homogenized in 1 ml sterile PBS. Serial

dilutions were plated on Luria agar plates for S. typhimurium and

trypticase soy agar for B. abortus and CFU per g of spleen

calculated.

Macrophage, HeLa and PMN cell cultures
Murine RAW264.7 (ATCC TIB-71), HeLa (ATCC CCL-2) cells

and BM-derived macrophages from C57BL/6 and the KO

counterparts TLR4-/-, TLR2-/-, and TLR4/TLR2-/- mice were

prepared, cultured and infected following previous protocols

[11,18,39]. Fresh preparations or PMN were obtained from air

pouches of Wistar rats (150-200 g) as described by Fukura and

Tsurufuji [73]. Human PMN were purified from heparinized

blood as described elsewhere [74]. The human cell preparations

and rat exudates were composed from 95-99 % PMN per

nucleated cells. Erythrocyte contamination was less that 5% of the

packed cells. PMN preparations were maintained at 4uC in PBS,

and used within the first h after extraction.

Cell infections
Infections of BM and RAW264.7 macrophages and HeLa cells

were carried out as described [11,36,39]. Briefly, plates containing

56105 RAW264.7 or 26105 BM macrophages were inoculated at

the ratio of 200 or 50 B. abortus per cell, respectively. For S.

typhimurium, a rate of infection of 2 bacteria per cell was used. At

these multiplicities, similar numbers of B. abortus and S. typhimurium

infected cultured macrophages as determined by immunoflures-

cence. PMN infections were performed as follows: suspensions of

106 rat PMN in 0.5 ml of PBS supplemented with 0.2 mM CaCl2,

5 mM MgCl2 and 10% of human serum, were infected with B.

abortus or S. typhimurium at multiplicity of infection (MOI) ranging

from 5 to 100 bacteria per cell, and the mixture incubated for

15 minutes at 37uC under mild rotation. PMN/bacteria mixtures

were centrifuged at 2000 g to remove non-ingested bacteria. Then,

infected PMN were suspended in supplemented PBS in the

presence of 10 mg/ml of gentamicin for 30 minutes at room

temperature to kill extracellular bacteria. Tubes were centrifuged

at 2500 g for 5 minutes and cell pellets resuspended in 400 ml of

supplemented PBS without gentamicine and incubated at 37uC
under mild rotation for additional 45 and 90 minutes. The

proportion of infected cells and the number of bacteria per cell was

directly determined by direct immunofluorescence using fluores-

cein isotiocyanate-IgG anti-Brucella LPS as described elsewhere

[39]. Under these experimental conditions, from 70–85 % of the

macrophages were infected at initial times, with 1–3 B. abortus per

macrophage, while close to 100 % of the PMN were infected with

1–10 bacteria per cell. For macrophages, plates were washed with

PBS and cells lysed by adding 0.1% Triton X-100 (Sigma) for

10 minutes. For PMN, samples were centrifuged and the infected

cells resuspended 50 ml of PBS and then lysed by adding 200 ml of

0.1% Triton X-100. For determination the number of B. abortus,

aliquots were plated in tryptic soy agar; for S. typhimurium CFU

determination, LB agar plates were used.

Cell functions and immunofluorescence
In situ respiratory burst of infected and non-infected rat PMN was

estimated by the reduction of nitroblue tetrazolium (NBT, from

Sigma) to dark-blue insoluble formazan granules trapped within

vacuoles as described [74]. The number of non-infected rat PMN

with positive NBT granules was considered as background and

subtracted from the total number of infected cells presenting

positive granules. Degranulation of rat PMN was estimated by

counting in the number of intact cells remaining in a 406 field by

phase contrast microscopy. For this, infected and non-infected

PMN were incubated at 37uC in supplemented PBS without

antibiotics or serum, under mild rotation during different time

periods. Macrophage activation was performed on infected and

non-infected cells by adding 0.5 mg/ml of EcLPS in the well.

Medium samples from infected and uninfected cells were taken at

different times and frozen at 220uC until used for TNF-

a determination. Procedures for immunofluorescence microscopy

have been described elsewhere [39]. For B. abortus detection, the

fluorescein isotiocyanate-conjugated anti-Brucella antibody was

directly used. For S. typhimurium detection, cells were first incubated

with mouse anti-S. typhimurium antibody and then with TRITC-

conjugated anti-mouse antibody. Counts of cell associated bacteria

were performed in at least 100 infected cells.

Toxicity of replicating Brucella in cells was estimated in BM

macrophages and HeLa cells as previously described [39,75].

Briefly, 3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bro-

mide (MTT, from Sigma Chemical Co., St. Louis, Mo) was added

to monolayers of BM macrophages at each time point. Then, cells

were incubated for 2 h at 37u C, 7% CO2, lysed and the rate of

survival estimated by colorant release at the optical density of

570 nm. Two-fold dilutions of cells were freshly seeded and used

to make a standard curve. DNA synthesis was estimated by

immunofluorescence in 48 h B. abortus infected HeLa cells, using

10 mg/ml bromodeoxyuridine (BrdU; Sigma) in combination with

monoclonal anti-BrdU (Clone BU-33; Sigma). Nuclei were

contrasted with Hoescht stain (Sigma). Replication of Brucella in

dividing HeLa cells treated with CNF was recorded by

immunofluorescence after 48 h.

Determination of fibrinogen, fibrin dimers, and

cytokines
For fibrinogen, fibrin dimers were determined from the plasma of

infected mice by the clotting method of Clauss [76], and the semi-

quantitative D-Di testH latex agglutination assay (Diagnostica Stago),

respectively. The levels of IL-10, IL-1b, IL-6 and TNF-a were

estimated by ELISA according to the manufacturer’s specifications,

in the culture supernatants of macrophages or in the sera of Balb/c

mice intraperitoneally infected with S. typhimurium, B. abortus, or

intraperitoneally inoculated with fresh killed HK-B. abortus.

Platelets and leukocyte counts
Balb/c mice from 18 and 20 g were intraperitoneally injected with

105 CFU of B. abortus , S. typhimurium or 0.1 ml pyrogen-free sterile

PBS, and blood from tail collected in heparinized glass capillary

tubes at different time points. Alternatively, 5 ml of ice cold PBS

were injected in the peritoneal cavity of killed the mice, and the

fluids collected with a syringe (from 3.8 to 4.5 ml) from exposed

peritoneal cavity [77]. Then fluids were centrifuged and the

peritoneal cells resuspended in 0.2 ml of PBS and counted. Four

estimating the recruitment of leukocytes sterile in air pouches

Balb/c 25–30 g mice, the procedure of Garcı́a-Ramallo et al. [78]

was followed. Briefly, anesthetized animals were subcutaneous

injected with 2.5 ml of sterile air under the dorsal skin on day 0 and

day 3; three days after, 106 of B. abortus or 105S. typhimurium in 1 ml

PBS were injected into the air pouch cavities. Animals were

sacrificed at different time points and fluids from the pouches

harvested and cells counted. Total leukocytes, PMN, red blood

cells and platelets were counted in each sample using an ABX

Micros 60 analyzer (ABX Hematologie, France) and confirmed in

blood smears. The number of cells recruited in the peritoneum or
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in air pouches was corrected according to the volume of fluid

collected in each animal.

Determination of complement consumption and

bactericidal action of molecules
Complement consumption estimated as the reduction of the

hemolytic activity of serum complement incubated with live

bacteria, was determined as described elsewhere [77]. Bactericidal

action mediated by PMN-extracts and cationic peptide pEM-2

was performed as previously described [55,72]. For the estimation

of complement bactericidal activity the protocol performed

previously was followed [20].

Statistics
Student’s t test for was used for determining the statistical

significance in the different assays. For bacterial colonization

experiments, the Mann-Whitney test was performed accordingly

(http://faculty.vassar.edu/lowry/utest.html).
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