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A B S T R A C T

Discovery of Bruton’s tyrosine kinase (BTK) mutations as the cause for X-linked agammaglobu-
linemia was a milestone in understanding the genetic basis of primary immunodeficiencies. Since
then, studies have highlighted the critical role of this enzyme in B-cell development and function,
and particularly in B-cell receptor signaling. Because its deletion affects mostly B cells, BTK has
become an attractive therapeutic target in autoimmune disorders and B-cell malignancies.
Ibrutinib (PCI-32765) is the most advanced BTK inhibitor in clinical testing, with ongoing phase
III clinical trials in patients with chronic lymphocytic leukemia and mantle-cell lymphoma. In
this article, we discuss key discoveries related to BTK and clinically relevant aspects of BTK
inhibitors, and we provide an outlook into clinical development and open questions regarding
BTK inhibitor therapy.

J Clin Oncol 32:1830-1839. © 2014 by American Society of Clinical Oncology

INTRODUCTION

In 1952, Ogden Bruton, a pediatrician at the Walter

Reed Army Hospital in Washington, DC (Fig 1),

reported the first case of congenital agammaglobu-

linemia in an 8-year-old boy who suffered from recur-

rent pneumococcal sepsis. Protein electrophoresis

revealed lack of the serum globulin fraction in this

first patient1 and in a subsequent series of patients

analyzed in collaboration with Charles Janeway.2

Immunoglobulin (Ig) replacement therapy was sub-

sequently demonstrated to be effective in preventing

infections and became central to the foundation of

the discipline of clinical immunology.3,4 Today, this

primary immunologic deficiency (PID) is called

X-linked agammaglobulinemia (XLA) or Bruton’s

agammaglobulinemia, and its estimated incidence is

approximately 1:250,000.3 After Bruton’s and Jane-

way’s discoveries in the 1950s, it was approximately

four decades until the genetic basis of XLA was iden-

tified5,6 (Fig 2). In 1993, two laboratories cloned

BTK independently,7,8 and deciphered the coding

sequence and Bruton’s tyrosine kinase (BTK) muta-

tions.7 Before that, the gene locus for XLA in the

Xq22 region was already narrowed down with DNA

probes,13,14 which served as the basis for the cloning

strategy. Because of its involvement in XLA, this

kinase was named after Bruton. With these ground-

breaking discoveries, XLA became the first example

of mutations in a tyrosine kinase that cause a PID.

Mutation analyses of larger series of patients with

XLA detected a wide variety of BTK gene abnormal-

ities (more than 800 different mutations, collected in

a mutation database [BTKbase]15) distributed across

the entire BTK gene, which include promoter muta-

tions and missense mutations in the Tec (tyrosine

kinase expressed in hepatocellular carcinoma) ho-

mology and SH1 domains.16,17 Importantly, no cor-

relations between distinct genotypes and clinical

phenotype were noted.17

As a consequence of functional null BTK mu-

tations, B-lymphocyte precursors in the bone mar-

row fail to develop into mature B lymphocytes and,

consequently, patients with XLA lack peripheral

blood B cells and have markedly decreased or absent

serum immunoglobulins of all isotypes.18 Charac-

teristically, XLA-related immunodeficiency mani-

fests in young boys within their first 2 years of life,

after depletion of protective maternal antibodies

with recurrent bacterial and enteroviral infections.

To prevent these opportunistic infections, patients

with XLA typically are treated with intravenous or

subcutaneous gamma globulin infusion, which re-

duces the number of and duration of infections and

improves life expectancy. Alternatively, gene ther-

apy strategies explore the transfer of normal BTK

into Btk-deficient mice.19,20 The advantage of this

experimental approach is that it may offer a poten-

tial for cure, but technical problems and severe com-

plications of this approach in patients with another

type of PID—lymphoproliferative disorders result-

ing from insertional mutagenesis in patients with
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the X-linked form of severe combined immunodeficiency (XSCID)—

have decelerated the clinical development of gene replacement ther-

apy for XLA.21

Shortly after the discovery of the human BTK gene, a mutation of

a single conserved residue within the pleckstrin homology (PH) do-

main of Btk was discovered as the genetic basis for murine X-linked

immunodeficiency (xid).22,23 Btk gene–deleted mice subsequently

confirmed that Btk deficiency is the basis for xid.24-26

GENETICS AND BIOCHEMISTRY OF BTK

The BTK gene encodes a cytoplasmic nonreceptor protein tyrosine

kinase, which belongs to the Tec kinase family, the second largest class

of nonreceptor protein tyrosine kinases.27,28 Tec kinases have four

structural modules: the PH domain at their N terminus, a character-

istic feature of these kinases, along with SH3 (Src homology 3) do-

main, SH2 (Src homology 2) domain, and kinase (Src homology 1)

domain. In humans, members of this protein family are primarily

expressed in hematopoietic cells, and their activation is one of the first

steps in antigen-receptor signaling.28 BTK is a 659-amino-acid protein

that contains five signaling domains (Fig 3)—characteristic for mem-

bers of the Tec family—and has diverse partner molecules.29,30 The

PH domain at the N terminus is essential for BTK membrane localiz-

ing and is followed by the proline-rich Tec homology domain, which

is unique to the Tec family. The Tec homology domain comprises the

BTK motif, a highly conserved zinc finger motif that mediates binding

and coordination of BTK to zinc ions (Zn2�). BTK requires Zn2� for

optimal activity and stability.31 The Src homology domains SH3 and

SH2 have binding functions and contain the autophosphorylation site

tyrosine 223, whereas the SH1 kinase domain has a catalytic function

Table 1. Phase III Clinical Trials of the BTK Inhibitor Ibrutinib

Study Title
Study
Phase

Primary
Objective Secondary Objective

Estimated
Enrollment

ClinicalTrials.gov
Identifier Status

A Phase 3 Study of Ibrutinib (PCI-32765)
Versus Ofatumumab in Patients
With Relapsed or Refractory
Chronic Lymphocytic Leukemia
(RESONATE)

III PFS OS, hematologic improvements,
improvement of disease-
related symptoms

350 NCT01578707 Finished accrual; estimated
completion in July 2015

A Multicenter, Open-label, Phase 3
Study of the Bruton’s Tyrosine
Kinase Inhibitor PCI-32765 Versus
Chlorambucil in Patients 65 Years
or Older With Treatment-naive
Chronic Lymphocytic Leukemia or
Small Lymphocytic Lymphoma
(RESONATE-2)

III PFS Efficacy ORR, safety 272 NCT01722487 Recruiting; estimated
completion in February
2016

A Study of Ibrutinib in Combination With
Bendamustine and Rituximab in
Patients With Relapsed or
Refractory Chronic Lymphocytic
Leukemia or Small Lymphocytic
Lymphoma

III PFS ORR, OS, adverse effects 580 NCT01611090 Recruiting; estimated
completion in August
2015

Study of Ibrutinib (a Bruton’s Tyrosine
Kinase Inhibitor), Versus
Temsirolimus in Patients With
Relapsed or Refractory Mantle Cell
Lymphoma Who Have Received at
Least One Prior Therapy

III PFS ORR, OS, duration of response,
time to next treatment, safety

280 NCT01646021 Recruiting; estimated
completion in August
2014

A Study of the Bruton’s Tyrosine Kinase
Inhibitor Ibrutinib Given in
Combination With Bendamustine
and Rituximab in Patients With
Newly Diagnosed Mantle Cell
Lymphoma

III PFS ORR, OS, safety, MRD, response
duration

520 NCT01776840 Recruiting; estimated
completion in October
2019

Rituximab and Bendamustine
Hydrochloride, Rituximab and
Ibrutinib, or Ibrutinib Alone in
Treating Older Patients With
Previously Untreated Chronic
Lymphocytic Leukemia

III PFS CR rate, MRD, toxicity and
tolerability

523 NCT01886872 Not yet recruiting; estimated
completion in March 2018

A Study of the Bruton’s Tyrosine Kinase
Inhibitor, PCI-32765 (Ibrutinib), in
Combination With Rituximab,
Cyclophosphamide, Doxorubicin,
Vincristine, and Prednisone in
Patients With Newly Diagnosed
Non-Germinal Center B-Cell
Subtype of Diffuse Large B-Cell
Lymphoma

III EFS PFS, OS, CR rate 800 NCT01855750 Not yet recruiting; estimated
completion in June 2020

Abbreviations: BTK, Bruton’s tyrosine kinase; CR, complete response; EFS, event-free survival; MRD, minimum residual disease; ORR, overall response rate; OS,
overall survival; PFS, progression-free survival.
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and contains the phosphorylation site tyrosine 551.32 Detailed struc-

ture, function, and specific mutations of individual BTK domains and

deep insights into the kinetics have been well characterized.29,33-35

DIVERSE BIOLOGIC ROLES OF BTK

BTK transmits, diversifies, and amplifies signals from a wide vari-

ety of surface molecules that cells use to communicate with their

microenvironment. These include growth factor and cytokine recep-

tors, G protein-coupled receptors such as chemokine receptors, anti-

gen receptors (especially the B-cell receptor [BCR]), and integrins.

BTK in turn activates many of major downstream signaling pathways,

including the phosphoinositol-3 kinase (PI3K)-AKT pathway,

phospholipase-C (PLC), protein kinase C, and nuclear factor kappa B

(NF-�B).36 Among these various functions, the involvement of BTK

in BCR signaling and in cell migration has been well established, and

these functions appear to be primary targets of BTK inhibitors.37,38 In

the following paragraphs, we will focus on the role of BTK in BCR

signaling and in B-cell migration and homing.

BTK in BCR Signaling

Signaling through the BCR transmits not only signals for adap-

tive immune responses after contact with specific antigen, it also plays

a fundamental role in B-cell development, promoting antigen-

independent B-cell maturation and resulting in the presence of ma-

ture B cells in the peripheral blood. BTK plays an important role in

antigen-induced BCR signaling (Fig 4).39,40 BTK activation in re-

sponse to BCR engagement by antigens induces a range of protein

interactions and the recruitment of signaling molecules, resulting in

B-cell survival, proliferation, differentiation, and the production of

antibodies.41-43 One of the first steps after BCR engagement is cluster-

ing of the signal transduction molecules Ig� and Ig� (CD79a and

CD79b) and phosphorylation within the cytoplasmic tails of their

immunoreceptor tyrosine [kinase] activation motifs (ITAMs). This

phosphorylation is mediated by nonreceptor tyrosine kinases of the

Src family, such as Lyn. Subsequently, the spleen tyrosine kinase (SYK)

binds to the ITAM motifs, in which it is activated in a multistep

process. SYK, in turn, phosphorylates multiple tyrosine residues in the

B-cell linker scaffold protein (BLNK, also known as SLP65 or BASH).

Lyn also phosphorylates BTK and CD19, which leads to the activation

of PI3K and consequently to increased phosphatidylinositol 4,5-

triphosphate (PIP3) levels on the cytoplasmic side of the plasma mem-

brane. The first key regulatory step in BTK activation on antigen

receptor stimulation is its localization to the plasma membrane. This is

mediated by interaction of the PH domain with PIP3 and is generated

by PI3K activity.44 BTK has been shown to target to specific mem-

brane microdomains (lipid rafts or glycolipid-enriched membrane

Fig 1. Ogden Bruton, MD. Photo with personalized autograph kindly provided by

Billy F. Andrews, MD, Department of Pediatrics, University of Louisville, Louis-

ville, KY.

xid, the murine counterpart to XLA, 

is described

BTK mutations identified as the molecular 

basis of XLA7,8

Characterization of ibrutinib, first-in-man 

BTK inhibitor9

1952

1972

1993

2009

Start of clinical trials with ibrutinib in 

patients with B-cell malignancies10,11,122010

Ibrutinib (Imbruvica) receives FDA approval

for previously treated MCL11/2013

2013

Ibrutinib receives FDA breakthrough therapy

designation for MCL, Waldenström’s

macroglobulinemia, and CLL with 

deletion 17p

Ogden Bruton describes

agammaglobulinemia (XLA), the first 

primary immunodeficiency1

Ibrutinib receives FDA approval for 

previously treated CLL2/2014

Fig 2. Milestones in Bruton’s tyrosine kinase (BTK) research. CLL, chronic

lymphocytic leukemia; FDA, US Food and Drug Administration; MCL, mantle-cell

lymphoma; xid, X-linked immunodeficiency; XLA, X-linked agammaglobulinemia.
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microdomains).45 PIP3 serves as a docking site for the PH domains of

PLC�2 and BTK, whereas their SH2 domains bind to BLNK. Phos-

phorylation of BTK at tyrosine 551 within the activation loop of the

kinase domain leads to its autophosphorylation at tyrosine 223 in its

SH3 domain, constituting the second key regulatory step in BTK

activation on BCR stimulation and inducing the full activation of

BTK. This allows BTK to phosphorylate PLC�2, which triggers the

conversion of PIP2 into the second messenger molecules inositol

1,4,5-triphosphate and diacylglycerol, inducing an increase in intra-

cellular Ca2� concentrations. Btk is also critically important for acti-

vating the NF-�B transcription factor in response to BCR46,47 and

Toll-like receptor 9 (TLR9)48 activation.

In the absence of BTK, BCR signaling is insufficient to induce late

transitional B cells to differentiate into mature peripheral B cells.49

BTK mutant cells and cell lines are defective in their response to BCR

signaling, resulting in impaired Ca2� mobilization, activation of MAP

kinases, cytoskeleton rearrangements, and transcriptional activa-

tion.41,42 This leads to altered development and defects in functional

responses, including cellular proliferation, expression of activation

markers, cytokine and antibody production, and responses to infec-

tious diseases. Interestingly, and consistent with these results from

BTK deletion, BTK overexpression in B cells results in the spontane-

ous formation of germinal centers, increased plasma cell numbers,

antinuclear autoantibody production, and a systemic lupus erythem-

atosus (SLE)–like autoimmune disease. These changes were the result

of hyper-responsive BCR signaling and increased NF-�B activation

and could be reversed by treatment with the BTK inhibitor ibruti-

nib (PCI-32765).50

BTK Effects on Other B-Cell Functions

Besides its role in BCR signaling, BTK also plays a role in the

signaling of a wide variety of B-cell molecules such as cytokine recep-

tors, CD19, CD38, CD40,45,51 G protein-coupled receptors52 such as

the CXCR4 chemokine receptor,53 tumor necrosis factor receptors,

and TLRs. For example, BTK can form complexes with endosomal

major histocompatibility complex class II molecules, CD40, and

MyD88,54 promoting TLR signaling. TLR9-induced BTK activa-

tion in turn can provoke excessive autoantibody production

and autoimmunity.55

Of particular clinical and translational interest are the effects of

BTK on cell motility and tissue homing, given that the BTK inhibitor

ibrutinib causes redistribution of tissue-resident chronic lymphocytic

PHH
2
N

Y223
P

Y551
P

Src kinases

Autophosphorylation

TH SH3 SH2 Kinase COOH

Fig 3. Schematic domain structure of Bru-

ton’s tyrosine kinase (Btk). PH, Pleckstrin ho-

mology domain; TH, Tec homology domain;

SH2 and SH3, Src homology domains.
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Fig 4. Role of Bruton’s tyrosine kinase

(BTK) in the B cell signaling. By signaling

through the B-cell receptor (BCR), complex

signaling cascades are initiated that recruit

BTK to the cell membrane and activate other

kinases, which leads to an increase in intra-

cellular Ca2� and activation of transcription

�B (NF-�B). BTK also plays a role in chemokine

receptor and adhesion molecule (integrin)

signaling pathways and in signaling of mul-

tiple other surface receptors. BLNK, B-cell

linker scaffold protein; GPCR, G protein-

coupled receptor; PI3K, phosphoinositol-3

kinase; PIP, phosphatidylinositol; PLC�2,

phospholipase-C-�2.
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leukemia (CLL)10 and mantle-cell lymphoma (MCL)56 B cells into the

peripheral blood, causing lymphocytosis that depends on the contin-

uous presence of the BTK inhibitor.10 The molecular basis for this

striking activity could have been predicted from earlier work on the

role of BTK in chemokine receptor and integrin signaling in normal B

cells.53,57 G�� subunits of G proteins can bind directly to the PHTH

domain of BTK, consequently increasing its activity. In addition, the

chemokine CXCL12 (SDF-1) as well as the neutrophil chemotactic

factor fMet-Leu-Phe and a wide range of receptors can activate PI3Ks,

which induce translocation of BTK to the plasma membrane. The

chemokine CXCL12 induces BTK activation; in Btk-deficient murine

(pre) B cells, human B cells, B-cell lines, and DT40 cells, the integrin-

mediated adhesion and migration (as a response to stimulation with

CXCL12 or CXCL13) and in vivo homing to lymphoid organs are

impaired.53 Chemokine-controlled B-cell migration, trafficking, and

homing to lymphoid organs play an important role in the pathogen-

esis of B-cell malignancies as well as chronic inflammatory or autoim-

mune diseases. BTK is also an essential mediator in BCR-controlled

adhesion of B cells to vascular cell adhesion molecule-1 (VCAM-1)

and fibronectin.57

BTK Expression and Function in Other

Hematopoietic Cells

BTK is expressed in most cells of the hematopoietic system,

especially in B cells, myeloid cells, and platelets, whereas T lympho-

cytes and plasma cells have low or undetectable BTK levels.58,59 B

lymphocytes are the only cells known to be affected in XLA, and

therefore the physiologic importance of BTK expression in other cell

types remains to be established. Nonetheless, multiple reports have

described effects of BTK in the development of other cell types such as

platelets, macrophages,60,61 and osteoclasts.62 BTK may play a role in

platelet aggregation63 by transmitting signals from platelet membrane

glycoprotein Ib. Quek et al64 reported that BTK is important for

signaling via the collagen receptor glycoprotein VI in platelets. How-

ever, the findings of this in vitro study need to be interpreted with

caution, as emphasized by Jackson et al,65 and patients with XLA who

have defective BTK do not have an increased risk for bleeding events.18

Farooqui et al66 presented data about platelet numbers and function in

25 patients treated with ibrutinib. Their analysis indicates that ibruti-

nib does not have any significant effects on platelet function, and

platelet counts improved rapidly in the majority of patients.

BTK in Inflammation, Especially in

Autoimmune Diseases

Autoimmunity is thought to be related to extensive innate im-

mune system activation by bacterial or viral pathogens, involving

leukocyte activation via TLRs. TLRs are pattern recognition receptors

essential for the detection of specific viral and bacterial components.

For example, bacterial lipopolysaccharides initiate a proinflammatory

response via recognition by TLRs. BTK has a central role in TLR

signaling, in which it is part of a signaling cascade leading to the

activation of the transcription factor NF-�B55,67-70 as well as the regu-

lation of pro- and anti-inflammatory cytokine production.71 Experi-

mental overexpression of Btk in mouse B cells causes antinuclear

autoantibody production and SLE-like autoimmunity, which could

be reversed by the BTK inhibitor ibrutinib, and which was absent in

Btk transgenic mice overexpressing a kinase-inactive Btk mutant.50

Pan et al72 reported that the ibrutinib-related Celera compound 4

significantly inhibited arthritis development in a dose-dependent

manner, with more than 95% inhibition of disease development in a

murine rheumatoid arthritis (RA) model. Honigberg et al9 reported

that ibrutinib inhibited collagen-induced arthritis (CIA) as well as

autoantibody production and development of kidney disease in the

MRL-Fas(lpr) lupus model. Along the same lines, BTK blockade with

a different inhibitor (CGI1746) inhibited BCR-dependent B-cell pro-

liferation and reduced autoantibody levels in CIA.73 Moreover, in this

mouse model, BTK inhibition diminished Fc�RIII-induced produc-

tion of proinflammatory cytokines (TNF-�, interleukin-1� [IL-1�],

IL-6),73 suggesting multiple targets of BTK inhibition in RA. Chang et

al74 tested ibrutinib in a series of arthritis and immune complex

animal models including CIA, collagen antibody-induced arthritis,

reversed passive anaphylactic reaction, and passive cutaneous anaphy-

laxis. The authors reported the high efficacy of ibrutinib in CIA and in

immune complex models that do not depend on autoantibody pro-

duction, indicating again that ibrutinib targets not only B cells but also

other proinflammatory cells, such as monocytes, macrophages, and

mast cells. The complex role of BTK in autoimmunity is further

highlighted in an elegant mouse model reported by Kubo et al,55

demonstrating a link between augmented TLR9-induced BTK activa-

tion in PIR-B–deficient B-1 cells, causing excessive autoantibody pro-

duction and autoimmunity. Kil et al50 reported about a mouse model

in which Btk was overexpressed in B cells, resulting in spontaneous

formation of germinal centers, increased numbers of plasma cells,

antinuclear autoantibody production, and SLE-like autoimmune dis-

ease affecting kidneys, lungs, and salivary glands. These pathologic

changes were absent in Btk transgenic mice overexpressing a kinase-

inactive Btk mutant, and ibrutinib decreased germinal center B cells

and plasma cells and normalized B-cell activation and differentiation.

Finally, in lupus-prone B6.Sle1 and B6.Sle1.Sle3 mice, ibrutinib

dampens humoral and cellular autoimmunity as well as lupus nephri-

tis.75 BTK also plays a role in bone metabolism by transmitting signals

in osteoclasts downstream of receptor activator of NF-�B and ITAM.

Mice lacking Btk and Tec show severe osteopetrosis caused by a defect

in bone resorption.62 At this time, there are no clinical trials using BTK

inhibition in autoimmune diseases, but it is expected that these will

commence within the near future.

BTK AND ITS ROLE IN B-CELL MALIGNANCIES

On the basis of the phenotype in XLA and xid, B lymphocytes appear

to be the most vulnerable cell type regarding the functional integrity of

BTK. Consequently, research to explore function and targeting of

BTK in cancers has largely focused on B-cell malignancies. Similar to

its role in normal B cells, BTK also plays a role in signaling of critical

receptors of malignant B cells, especially in BCR signaling37,76 and

signaling of B-cell homing receptors.37,77 Chronic active BCR signal-

ing in activated B-cell–like diffuse large B-cell lymphoma (DLBCL)

can be induced by activating mutations in the BCR signaling pathway

(eg, CD79A and CD79B mutations76), and it activates multiple down-

stream pathways, including NF-�B, which normally are activated by

antigen. Tonic BCR signaling (eg, in Burkitt’s lymphoma) typically

engages the PI3K pathway.78 In contrast, antigen-induced BCR acti-

vation appears to play a role in other lymphomas and in CLL, in which

BCR activation can be triggered via binding to autoantigens and other

environmental or microbial antigens. For example, CLL BCRs can

Ponader and Burger
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bind cytoskeletal nonmuscle myosin heavy chain IIA and vimentin, as

well as the Fc tail of IgG, single-stranded DNA, double-stranded DNA,

lipopolysaccharides, apoptotic cells, insulin, and oxidized lactate

dehydrogenase.79-87 A small subset of patients with CLL have high-

affinity BCRs for an antigenic determinant of yeasts and filamentous

fungi, �-1,6-glucan,88 suggesting that ubiquitous antigens, such as

�-1,6-glucan and autoantigens could promote the expansion of cer-

tain CLL clones via antigen-specific BCR signaling. In addition, a

recent study demonstrated an interesting additional mechanism of

BCR activation in CLL, best characterized as autonomous BCR signal-

ing, in which the HCDR3 component of the BCR binds to an epitope

in the second framework region, leading to Ca2� signaling.89 Along

the same lines, Binder et al90 reported an alternative epitope for CLL

BCR self-recognition located in third framework region of Igs. This

feature of BCR self-reactivity appears to be characteristic of Igs made

by CLL cells89 and is consistent with the ability of CLL BCRs to bind Ig

components and act like rheumatoid factors.79,80,87

Increased levels of BTK protein have been detected in B-cell CLL

cells,91,92 and BTK activation in CLL can be activated via BCR and

CD40 triggering.92 BTK inhibition using the BTK inhibitor ibrutinib

decreased DNA synthesis and prosurvival signal from stromal cells,

CD154, and cytokines.92 Moreover, ibrutinib abrogated BCR- and

nurse-like cell-derived survival signals and decelerated disease pro-

gression in an adoptive transfer TCL1 mouse model of CLL.37 Ibruti-

nib also inhibited CLL cell adhesion and migration toward the

chemokines CXCL12 and CXCL13,37,77 which are critical for tissue

homing of CLL cells. These ibrutinib effects mirror the function of

BTK in normal B-cell migration and homing53 and appear to be the

basis for tissue redistribution of CLL cells during therapy with ibruti-

nib and other related kinase inhibitors.38 In another mouse model of

CLL, the IgH.ET� model, Btk deletion abrogated CLL formation, and

Btk overexpression accelerated disease onset and mortality.93 In mul-

tiple myeloma (MM) models, ibrutinib inhibited receptor activator of

NF-�B ligand/macrophage colony-stimulating factor–induced phos-

phorylation of BTK and downstream signaling in osteoclasts, resulting

in diminished bone resorption. Ibrutinib also inhibited secretion of

cytokines and chemokines from osteoclasts and stromal cells,

CXCL12-induced migration of MM cells, IL-6– and stroma-

supported growth of MM cells, and in vivo MM cell growth and MM

cell–induced osteolysis of implanted human bone chips in SCID

mice.94 In DLBCL, ibrutinib demonstrated selective toxicity in cell

lines with chronic active BCR signaling,76 it down regulates IRF4, and

synergizes with lenalidomide in killing of activated B-cell–like DLBCL

cells.95 In contrast to mature B-cell malignancies, especially in CLL

and MCL in which BTK generally is accepted as a lymphoma/

leukemia-promoting kinase, its role in immature B-cell malignancies

is controversial. BTK is generally expressed in childhood B-cell acute

lymphoblastic leukemia (B-ALL),96 but it can be altered by kinase-

deficient BTK splice variants, which can provide survival advantage to

B-ALL cells,97 or it can be silenced.98 In mouse models of B-cell

development, Btk promotes B-cell differentiation and functions as a

tumor suppressor in pre-B cells, which is independent of its catalytic

activity.99,100 The role of BTK in leukemias with constitutively active

BCR-ABL kinase is also controversial. BTK can physically interact

with c-Abl,101 and can become activated by BCR-ABL1, mimicking

constitutively active pre-BCR survival signaling.98 c-Abl can phos-

phorylate tyrosine 223 in the SH3 domain of BTK,101 but the deletion

of BTK in such leukemia cells had no significant effects on cell growth;

thus, other investigators concluded that BTK does not play a critical

role in BCR-ABL–mediated leukemogenesis.102

BTK INHIBITORS

The crucial role of BTK in B-cell malignancies makes this protein an

interesting therapeutic target. Knowledge of structural and functional

details of the BTK molecule led to the design of effective inhibitors

with a broad range of kinase selectivity profiles.72,103,104 Kinase

inhibitors can function as reversible adenosine triphosphate

(ATP) – competitive agents that target the ATP binding site of

protein kinases. The advantage of such reversible inhibitors is lack

of irreversible modifications of off-target proteins, but poor selec-

tivity and binding site competition with endogenous ATP remain

key challenges for this class of inhibitors. In contrast, irreversible

kinase inhibitors covalently bond to their target and exhibit high

selectivity, prolonged pharmacodynamics, and potency in over-

coming endogenous ATP competition.105 The following para-

graphs discuss some of the most promising compounds established

during the last few years.

LFM-A13 (leflunomide metabolite analog �-cyano-�-

hydroxy-�-methyl-N-[2,5-dibromophenyl]-propenamide) is the

first BTK-specific tyrosine kinase inhibitor.106 LFM-A13 binds to

the catalytic site within the BTK kinase domain (IC50 [concentra-

tion that inhibits 50%], 2.5 �mol/L), inhibiting its activity without

affecting the enzymatic activity of other protein tyrosine kinases.107

Despite promising antileukemia activity in B-ALL cells106 and lack

of any major toxicity in preclincal studies,107 LFM-A13 has not yet

entered clinical development.

Ibrutinib is a potent (IC50, 0.5 nmol/L), selective BTK inhibitor

that inactivates BTK through irreversible covalent bonding to Cys-481

in the ATP binding domain of BTK.9,72,108 Only a small subset of

tyrosine kinases in the human genome is predicted to contain a mod-

ifiable cysteine residue homologous to Cys-481 in BTK, and only this

subset is thought to be susceptible to irreversible and durable inhibi-

tion by ibrutinib. The Cys-containing kinases include EGFR, HER2,

HER4, ITK, BMX, JAK3, TEC, and BLK. The extent to which inhibi-

tion of one or more of these alternate kinases contributes to the

efficacy or toxicity of ibrutinib is largely unknown. Dubovsky et al109

provided compelling evidence, however, that ITK functions as an

additional target of ibrutinib in T cells. The initial development at

Celera and subsequently at Pharmacyclics was focused on RA and,

consequently, ibrutinib initially was tested in RA using in vivo mod-

els.9,72 The in vivo activity of ibrutinib in B-cell lymphoma was first

demonstrated in spontaneous canine B-cell lymphomas.9 The most

mature clinical data about effects of ibrutinib on B-cell malignancies

are available for patients with CLL,11 MCL,12 and DLBCL.10 For CLL,

ibrutinib is given orally as a once-per-day fixed dose of 420 mg on a

continuous schedule until progression or toxicity. At this dose, ibru-

tinib induces full BTK target occupancy, based on probe (fluorescently

tagged derivative of ibrutinib) assays of peripheral blood mononu-

clear cell samples from patients with CLL who were treated with

ibrutinib.10 Ibrutinib is rapidly absorbed and rapidly eliminated after

oral administration. The effective half-life of ibrutinib following oral

dosing in humans is 2 to 3 hours (as measured post time to maximum

concentration [Tmax] to 6 hours), and pharmacokinetics appear to be
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the same in patients with CLL and MCL. Ibrutinib is almost exclu-

sively metabolized by CYP3A4/5, and polymorphisms could poten-

tially influence ibrutinib metabolism. Ibrutinib is metabolized to the

dihydrodiol metabolite (PCI-45227), which is monitored in clinical

studies. Despite rapid clearance from plasma, BTK remains covalently

bound to ibrutinib for at least 24 hours. Byrd et al11 reported that

ibrutinib induces high rates of durable remissions in patients with CLL

and small lymphocytic lymphoma, including patients with high-risk

disease. This was based on data from a phase Ib/II multicenter study of

ibrutinib in 85 patients with relapsed or refractory CLL or small

lymphocytic lymphoma. The authors report an overall response rate

of 71%, and an additional 15% to 20% of patients had a partial

response with lymphocytosis. The response was independent of clin-

ical and genomic risk factors present before treatment, including

advanced-stage disease, the number of previous therapies, and the

17p13.1 deletion. At 26 months, the estimated progression-free sur-

vival rate was 75% and the overall survival rate was 83%. Tissue

redistribution of CLL cells from the tissue compartments into the

peripheral blood is a characteristic early response to ibrutinib therapy,

resulting in a surge in lymphocyte counts and resolution of enlarged

lymph nodes and organs. This lymphocytosis typically is transient and

must not be confused with disease progression according to currently

accepted guidelines.110

Even with encouraging early clinical data, which are the basis for

several ongoing phase III clinical trials in CLL, MCL, and other B-cell

malignancies (Table 1), we need to keep in mind that the follow-up of

clinical studies with ibrutinib still remains relatively short, and there-

fore we do not have a mature understanding of longer-term durability

of responses to ibrutinib therapy. To date, untreated patients with CLL

and low-risk patients seem to have the most durable remissions,

whereas high-risk patients with CLL, especially patients with del17p,

more frequently progress on therapy, either with development of

Richter’s transformation, or with more indolent progression of their

CLL. This latter type of relapse during ibrutinib therapy appears to be

associated with mutations within the ibrutinib binding site of BTK

(C481S mutation), or in a downstream pathway molecule PLC�2

(R665W mutation), suggesting that continuous therapeutic pressure

favors the emergence of clones that are more ibrutinib resistant.111

The fact that the majority of ibrutinib-treated patients with CLL do

not achieve complete remissions (CRs) likely promotes the develop-

ment of ibrutinib resistance, and therefore additional therapeutic

strategies are needed to increase the numbers of patients that achieve

CR, especially in high-risk patients with CLL. Combination therapy with

established CLL treatment modalities (monoclonal antibodies, chemo-

immunotherapy) likely will achieve the goal of higher CR rates, although

not necessarily in patients with del17p who typically have inferior re-

sponses to established CLL therapies. Likely, only long-term follow-up

will tell whether the risk-benefit ratio favors combination over single-

agent ibrutinib therapy in defined CLL subgroups. Another important

factor,age,alsoneedstobetakenintoconsideration.Elderlypatientsolder

than age 70 years typically do not tolerate chemoimmunotherapy as well

as younger patients and, consequently, ibrutinib monotherapy or

combinations with antibodies are more appropriate in this popu-

lation. More intensive chemoimmunotherapy-based combina-

tions are used in younger patients, and in younger high-risk

patients, debulking of the disease with ibrutinib followed by cellu-

lar therapies (allogeneic stem-cell transplantation, chimeric anti-

gen receptor T-cell therapy) is discussed.

Immunosuppression may have been anticipated as a conse-

quence of continuous BTK inhibition, given the clinical presenta-

tion of patients with XLA. However, in patients with CLL who are

treated with ibrutinib, the average rate of infection declined from

7.1 per 100 patient-months during the first 6 months to 2.6 per 100

patient-months thereafter; IgG and IgM levels remained relatively

stable throughout treatment, whereas IgA levels increased,11

suggesting that CLL disease control outweighs immunosup-

pressive effects and that BTK inhibition in adults does not result

in Ig depletion.

Wang et al12 reported single-agent efficacy of ibrutinib in MCL

on the basis of phase II study data on patients with relapsed or

refractory MCL, in which ibrutinib was given at a daily dose of 560

mg. In 111 patients, the investigators noted a response rate of 68%,

with a CR rate of 21% and a partial response rate of 47%. The most

common treatment-related adverse events were mild or moderate

diarrhea, fatigue, and nausea. Grade 3 or higher hematologic

events were infrequent and included neutropenia, thrombocyto-

penia, and anemia. The estimated median response duration was

17.5 months, the estimated median progression-free survival was

13.9 months, and the estimated overall survival rate was 58% at

18 months.

CC-292 is another covalent irreversible BTK inhibitor developed

by Celgene that is currently in phase I clinical trials for hematologic

malignancies. CC-292 binds to BTK protein with high specificity and

effectively inhibits constitutive and induced BTK and PLC�2 phos-

phorylation at low nanomolar concentrations. It is, however, not fully

BTK-specific and also targets other kinases containing homologous

cysteine residue, such as JAK3 and TEC.112 A first-in-human trial with

healthy volunteers demonstrated that a single oral dose of 2 mg/kg

CC-292 consistently engaged all circulating BTK protein,112 thus pro-

viding the basis for dose selection in the ongoing clinical trials in

patients with hematologic malignancies.

In conclusion, BTK gene mutations lead to XLA, the first identi-

fied PID caused by a mutated protein tyrosine kinase. Subsequent

investigations established a crucial role for BTK in several signaling

pathways that are critical in B-cell development and function. Inten-

sive efforts during the last decade led to the generation of specific

agents that target the kinase activity of BTK, consequently impairing

B-cell proliferation, differentiation, and survival. Their target sites and

modes of action have been characterized in biochemical and cellular

assays, and their beneficial effects have been confirmed in animal

models and in first clinical trials.11,12 The highly encouraging clinical

results led to breakthrough therapy designation for ibrutinib by the US

Food and Drug Administration for patients with CLL, MCL, and

Waldenström macroglobulinemia, and the recent US Food and Drug

Administration approval of ibrutinib (Imbruvica) for previously

treated patients with MCL (in November 2013) and CLL (in February

2014). With these exciting new developments, BTK has become a role

model for translational research, in which basic research defined

the genetic and molecular basis of XLA. These developments al-

lowed for innovative development of BTK inhibitors that already

have an impact on the lives of many patients suffering from B-cell

malignancies. Reflecting on the clinical developments of BTK in-

hibitors over the last few years, we come to appreciate the decades

of diligent clinical and basic research on XLA and BTK that laid the
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foundation for these novel therapies, demonstrating that substan-

tial translational discoveries often take decades of work to transi-

tion into clinical practice.
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ASCO Celebrates 50 Years of Advancing Progress Against Cancer

This historic year, as ASCO proudly commemorates its 50th anniversary and decades of evolutionary

growth, the Society also celebrates the significant progress that has been made against cancer

throughout history. ASCO’s anniversary website, CancerProgress.Net, chronicles these achievements

and more. We invite you to visit the upgraded Cancer Progress Timeline to explore advances in 18

different cancers and several types of care, peruse stories about ASCO’s evolution and progress in the

field, check out the site’s new social media features, and vote on the most significant milestones in the field. You can also

follow ASCO on ASCO Connection, Twitter, and Facebook to join in on the conversation about progress.
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