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Anaplastic thyroid cancer (ATC) is a highly aggressive and the most lethal type of thyroid

cancer. The standard-of-care for unresectable ATC is radiotherapy and chemotherapy,

usually based on doxorubicin (Dox). However, most patients develop resistance shortly

after treatment. To overcome the drug resistance, we synthesized the mesoporous

organosilica nanoparticles (MONPs) loaded with Dox and stabilized the nanocomposites

by bovine serum albumin (BSA). The surface area and pore volume of MONPs were

612.653 m2/g and 0.589 cm3/g. The loading capacity of Dox-MONPs reached 47.02%.

Compared to Dox-MONPs and free Dox, BSA-Dox-MONPs had more durable tumor-

killing power on both drug-sensitive cell line HTh74 and drug-resistant cell line HTh74R.

The cellular uptake of BSA-Dox-MONPs was 28.14 and 65.53% higher than that of

Dox-MONP in HTh74 and HTh74R. Furthermore, the BSA coating decreased the efflux

rate of nanocomposites in HTh74 (from 38.95 to 33.05%) and HTh74R (from 43.03 to

32.07%). In summary, BSA-Dox-MONPs reversed the chemotherapy resistance of ATC

cells via increased drug uptake and inhibited drug efflux, offering a promising platform

for the treatment of chemo-resistant ATC.

Keywords: anaplastic thyroid cancer, chemotherapy resistance, bovine serum albumin, drug efflux, organosilica

INTRODUCTION

Anaplastic thyroid cancer (ATC) has lately received considerable attention for reduced median
survival rate and high invasion. The median survival of patients is no longer than 5months, and the
two-year survival rate is less than 15% (Molinaro et al., 2017). Combination treatment, including
extensive resection and adjuvant chemo-radiotherapy, is recommended (Haddad et al., 2018).
Although doxorubicin (Dox) is the only chemo-drug suggested, the resistance to Dox is collective
in ATC, leading to a worse prognosis (Haddad et al., 2018). A critical mechanism behind the
Dox resistance is the excessive efflux of chemotherapy drugs (Zinzi et al., 2014; Davis et al., 2015).
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Thus, developing new strategies to overcome chemoresistance is
crucial to improve patients’ outcomes with ATC.

Nowadays, mesoporous nanoparticles have attracted extensive
interest because their high loading capacity is suitable for
drug loading and delivery (Yao et al., 2017; Teng et al., 2018;
Chen et al., 2019, 2020). Among these mesoporous materials,
considerable attention has been paid to mesoporous organosilica
nanocapsules (MONPs) since their excellent biocompatibility,
large surface area, adjustable pore volume, and easily modified
surface (Tao et al., 2018; Teng et al., 2018; Yao et al., 2020).
MONPs are synthesized using organic group-bridged siloxanes
as silicon sources, which is different from pure Si-O-Si groups
of inorganic mesoporous silica nanoparticles (MSNs) (Chen
et al., 2013; Teng et al., 2014b; Croissant et al., 2015). These
doped organic groups give MONPs more advantages, including
improved hydrothermal stability and dispersibility (Chen et al.,
2014). Furthermore, MONPs can be modified more easily than
MSNs (Yu et al., 2011; Burglova et al., 2014). By selectively
introducing organic groups, the hydrophilicity of the pores can
be adjusted for controllable drug loading and release (Chen et al.,
2014; Croissant et al., 2014; Wu et al., 2016). Moreover, MONPs
have higher blood compatibility due to attenuated interaction
between Si-OH and red blood cells. The previous studies have
shown that MONPs exhibit significantly lower hemolysis than
MSNs (Yu et al., 2011).

Recently, bovine serum albumin (BSA) has been widely
applied in the drug delivery system through coupling interaction
on account of its low cytotoxicity, minor immunogenicity, and
excellent biocompatibility (Liu et al., 2016; Fang et al., 2019;
Pan et al., 2020; Wu et al., 2020). Meanwhile, BSA can improve
the stealthiness of the nanoparticles in the blood circulation,
thereby enhancing tumor-specific accumulation (Fang et al.,
2019). Zhang’s research showed that drug-loaded MSNs are more
stable and can maintain excellent dispersibility in serum after
coated with BSA, leading to accumulation in tumor sites by
enhanced permeation and retention (EPR) effect (Zhang et al.,
2019). Because of the high metabolism rate, cancer cells need
more nutrients and internalized a greater amount of proteins
(such as BSA) and amino acids than normal cells. Therefore
the BSA coating results in increased cancer cell internalization
(Deberardinis and Chandel, 2016). Several studies have shown
that BSA modified Au-NPs and galactosylated nanoparticles
have greater tumor uptake; however, the effect of BSA coating
on MONPs has been scarcely reported (Huang et al., 2018;
Unnikrishnan et al., 2020). In our research, BSA-stabilized
MONPs were studied to be quantified not only for cellular uptake
but also for cellular efflux in ATC.

Currently, there are few nanoplatforms developed for drug-
resistant ATC (Marano et al., 2016, 2017; Wang et al., 2018).
In our previous research, we constructed Dox-loaded melanin
nanoparticles to enhance the efficacy of chemotherapy to drug-
resistant ATC (Wang et al., 2018). However, the Dox-loading
capacity of melanin nanoparticles was less than 20%, which
may be related to their limited surface-area-to-volume ratio
(Wang et al., 2018). To increase the loading capacity, herein,
we synthesized MONPs (Teng et al., 2014a) to replace melanin
nanoparticles for Dox loading. The mesoporous structure and

Dox-loading capacity of MONPs were characterized. In addition,
BSA coating was used to stabilize Dox-MONPs in chemotherapy-
resistant ATC research. The therapeutic efficacy, as well as cellular
uptake and efflux of BSA-Dox-MONPs, was compared with Dox-
MONPs in drug-sensitive and drug-resistant ATC.

MATERIALS AND METHODS

Chemicals and Materials
Cetyltrimethylammonium bromide (CTAB), concentrated
aqueous ammonia solution (25–28 wt%), anhydrous
ethanol, Dox, and dimethyl sulfoxide (DMSO) were
obtained from Aladdin Reagent. Tetraethoxysilane (TEOS),
1,4-Bis(triethoxysilyl)propane tetrasulfide (TESPTS), and 3-
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) were purchased from Sigma-Aldrich (St. Louis, MO,
United States). BSA was supplied by the Biosharp company.
Deionized water (Millipore) with a resistivity of 18.2 M�·cm
was used in all experiments. 4,6-diamino-2-phenyl indole
(DAPI) was provided by Nanjing Keygen Biotech. Co., Ltd.
(Nanjing, China). Cancer cells were cultured in F-12 medium
with 1% amphotericin, 1% 500x penicillin and streptomycin,
and 10% fetal bovine serum (FBS), which were offered by
Gibco company. Gibco company offered DMEM medium
used to culture HaCaT cells and phosphate buffer saline (PBS)
for cell experiments. YF488-AnnexinV was purchased from
United States Everbright R©Inc.

Synthesis of Mesoporous Organosilica
Nanoparticles
Mesoporous organosilica nanoparticles (MONPs) were
synthesized according to previously reported protocols (Teng
et al., 2014a). Briefly, 0.16 g CTAB was dissolved in a mixture
of 75 mL deionized water and 30 mL ethanol containing 1 mL
concentrated aqueous ammonia solution (25 wt%). After being
vortexed vigorously at 35◦C for one-hour, a mixture of TEOS
(0.1 mL) and TESPTS (0.25 mL) was then quickly added into
the solution, and the reaction was allowed to proceed for 24 h.
The product was precipitated by centrifugation and washed
thrice with ethanol. Then, the product was resuspended in 37%
hydrochloric acid solution in ethanol at a ratio of 1:500 (v/v),
gently vortexed at 60◦C for 3 h, and collected by centrifugation
for three times. Finally, the product was rewashed in pure ethanol
thrice and dried in a high vacuum.

Loading Dox to MONPs
Mesoporous Organosilica Nanoparticles stock suspension at a
final concentration of 1 mg/mL was prepared by adding MONPs
powder to deionized water. To load MONPs with Dox, the
MONPs stock suspension was mixed with various concentrations
of Dox aqueous solution and vortexed vigorously in the dark for
24 h at room temperature. To find the optimal MONPs: Dox
ratio that maximizes the loading efficiency and loading capacity,
a series of Dox: MONPs suspension with mass ratio from 0.125:
1 to 8: 1 was set. The Dox concentration in the supernatant was
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determined by measuring the UV absorbance and comparing it
to the standard curve. The loading efficiency and loading capacity
were calculated based on the free Dox concentration.

Coating BSA on Dox-MONPs
Dox-MONPs aqueous solution with a concentration of
200 µg/mL was added dropwise into the BSA aqueous solution
with a concentration of 1 mg/mL, which was gently vortexed at
physiological temperature 37◦C. After the addition, the mixture
was gently vortexed at 37◦C for 3 h, followed by centrifugation
and redispersion.

Characterization of Nanoparticles
The UV-Vis spectra of MONPs and its modified products
were obtained using PerkinElmer Lambda 35 UV-Vis
spectrophotometer. Its hydrodynamic size and Zeta potentials
were obtained from a Brookhaven Zeta PALS machine. The
transmission electron microscope (TEM) photograph was taken
by an FEI TECNAI F20s TWINmicroscope. A high angle annular
dark-field (HAADF) scanning TEM and energy dispersive X-ray
(EDX) analyses were performed (FEI TECNAI F20s TWIN)
to characterize the morphologies of nanomaterials and the
distribution of organic elements. The samples were suspended in

FIGURE 1 | TEM image of (A) MONPs and HADDF image of (B) MONPs. EDX elemental mapping images of the corresponding MONPs: (C) merge of O, Si and S

elements, (D) oxygen, (E) silicon and (F) sulfur.

FIGURE 2 | (A) Nitrogen adsorption-desorption isotherms and (B) pore-size distribution curves of the MONPs.
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FIGURE 3 | Loading efficiency and loading capacity of Dox-MONPs at

different mass ratios of Dox to MONPs.

ethanol ultrasonically and supported onto an ultrathin carbon-
coated tinned grid for TEM and EDX measurements. Nitrogen
adsorption and desorption experiments were used to measure
the pore size and uniformity of MONPs.

MTT Assay
HTh74 and HTh74R cells were routinely cultivated in 25 cm2

culture flasks at 37◦C, 5% CO2, and 95% humidity, using McCoy
F12 medium supplemented with 10% FBS, 1% penicillin and
streptomycin. For MTT assay, HTh74 and HTh74R cells at the
logarithmic growth phase were seeded in 96-well plates and
cultured for 24 h. Different concentrations of free Dox, Dox-
MONPs, and BSA-Dox-MONPs were added to 96-well plates
and incubated with HTh74 and HTh74R cells for another 24 h.
Afterward, the drug-containing culture medium was aspirated
and replaced with a complete culture solution containing 0.5%
MTT. After 4 h, the formazan produced was dispersed in DMSO
and shaken for 10 min to promote sufficient dissolution. Cell
viability was quantified by the absorbance at 570 nm with

the absorbance at 630 nm as reference. Human Keratinocyte
Cells (HaCaT) were cultured in DMEM medium supplemented
with 10% FBS, 1% penicillin and streptomycin, at 37◦C, 5%
CO2, and 95% humidity. After incubating HaCat with various
concentrations of MONPs for 24 h, MTT assays were performed
as described above.

Confocal and Fluorescence Microscope
Image Analysis
For fluorescence morphology, HTh74 and HTh74R cells were
co-incubated with Dox-MONPs and BSA-Dox-MONPs with
an equivalent Dox concentration of 25 µg/mL for 6 h and
washed gently in cold PBS thrice. Cells obtained were stained
by DAPI dye following the instructions and washed twice with
PBS. Afterward, the samples were imaged on a confocal laser
scanning microscope.

In another experiment, HTh74 and HTh74R cells were first
incubated in 12-well plates for 24 h and further incubated
with Dox-MONPs and BSA-Dox-MONPs at an equivalent Dox
concentration of 25 µg/mL for another 6 h. After incubation,
the treated cells were gently washed three times with PBS and
further stained with YF488-AnnexinV in the dark according to
the instructions. Then the cells obtained were visualized and
photographed by fluorescence microscopy.

Flow Cytometry Test
To compare the uptake of Dox-MONPs and BSA-Dox-MONPs,
the HTh74 and HTh74R were incubated with Dox-MONPs and
BSA-Dox-MONPs containing 25 µg/mL of equivalent effective
Dox for 6 h, following with PBS rinses thrice. Then the cells
were collected and digested into single cells, subjected to flow
cytometry, and the Dox fluorescence signals were measured by
Cytoflow cytometer.

In another experiment, HTh74 and HTh74R cells were
first cultured in media containing BSA-Dox-MONPs or
Dox-MONPs with an equivalent Dox concentration of

FIGURE 4 | (A) The hydrodynamic size and (B) Zeta potential of MONPs, Dox-MONPs and BSA-Dox-MONPs.
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FIGURE 5 | Cell viability of (A) HTh74 and (B) HTh74R after incubation with various concentrations of MONPs, Dox-MONPs and BSA-Dox-MONPs for 24 h,

respectively. *P < 0.05, **P < 0.01, comparison to BSA-Dox-MONPs.

FIGURE 6 | The fluorescence microscope images of YF488-AnnexinV

fluorescence staining with HTh74 and HTh74R after incubation with

Dox-MONPs and BSA-Dox-MONPs at equivalent Dox concentration of

25 µg/mL for 6 h. The green fluorescence represents early apoptosis and the

red fluorescence represents the drug loaded nanoparticles.

25 µg/mL. After 6 h, the nanoparticle-containing media
were removed, and the cells were cultured in fresh media for
an additional 18 h to allow the efflux of nanoparticles. The
cell fluorescence signals before and after culture in fresh media
were recorded to evaluate the efflux of nanomaterials. The
formula for the efflux ratio of drug-loaded nanoparticles is
(F1-F2)/F1 × 100%, where F1 represents the average intracellular
fluorescence intensity before culture in fresh media, and F2
indicates the average intracellular fluorescence intensity after
culture in fresh media.

Statistical Analysis
All data were analyzed using Graphpad Prism 7.0 software. All
quantitative data are expressed as mean± SD and analyzed using

the one-way ANOVA or t-test. The value of 0.05 was defined as a
statistically significant threshold.

RESULTS AND DISCUSSION

Mesoporous Organosilica Nanoparticles were successfully
synthesized and characterized. TEM image results show
that the MONPs are spherical with an average diameter of
224.3 ± 21.2 nm. Notably, the EDX elemental mapping results
show that the Si, O, and S elements are uniformly distributed,
demonstrating the S elements were successfully doped in the
organosilica frameworks (Figure 1).

The nitrogen adsorption-desorption isothermal curve
conforms to the type IV curve, revealing the typical
characteristics of MONPs with uniform mesopore size
distribution. The surface area and pore volume of MONPs
are 612.653 m2/g and 0.589 cm3/g, respectively. The pore size
distribution was calculated to be peaked at 2.2 nm according to
the NLDFT method (Figure 2).

In order to quantitatively evaluate the Dox loading efficiency
and capacity of MONPs, a constant amount of MONPs was
incubated with various concentrations of Dox. As the Dox-
to-MONPs ratio increases, the loading capacity increases and
plateaus to about 45% when the mass ratio is equal or greater
than four (Figure 3 and Supplementary Figures 1, 2). However,
the Dox loading efficiency fluctuates around 20% and drops when
the Dox concentration is high. Taking account of both loading
efficiency and capacity, the mass ratio of Dox-to-MONPs was set
at 4:1 for the following experiments.

To stabilize MONPs for biomedical applications, the obtained
Dox-MONPs were vortexed with BSA solutions. The hydration
diameter of MONPs was 291.92 ± 11.85 nm, which was slightly
larger than the diameter measured by TEM. Additionally, the
hydration diameter of BSA-Dox-MONPs (370.12 ± 3.34 nm)
is higher than Dox-MONPs (313.03 ± 4.67 nm), confirming
the success of BSA coating (Figure 4A). Zeta potential
measurements showed that MONPs were negatively charged
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FIGURE 7 | Intracellular Dox fluorescent signal of cells incubated with Dox-MONPs and BSA-Dox-MONPs for 6 h in (A) HTh74 and (B) HTh74R cells.

(C) Intracellular fluorescence intensity in HTh74 and HTh74R cells incubated with Dox-MONPs and BSA-Dox-MONPs for 6 h. *P < 0.05.

FIGURE 8 | (A) Intracellular Dox fluorescent signal of HTh74 and HTh74R cells incubated with Dox-MONPs and BSA-Dox-MONPs for 6 h and incubated with

culture medium for another 18 h, respectively. (B) The efflux ratio of drug-loaded nanoparticles. **P < 0.01.

(−18.99 ± 0.86 mV) and switched to positive (40.88 ± 1.99 mV)
after Dox loading. After BSA coating, the zeta potential of
BSA-Dox-MONPs plummeted to −21.70 ± 0.81 mV because
the BSA were negatively charged (Figure 4B). These results
suggested the Dox and BSA was successfully loaded on the
MONPs. After being stored for 5 days, BSA-Dox-MONPs’ Zeta
potential is −22.11 ± 0.96 mV, and the hydration diameter is
368.02 ± 8.90 nm, indicating good stability.

To determine the biocompatibility of MONPs, human
keratinocytes HaCaTwere incubated with various concentrations
of MONPs for 24 h and followed by MTT assays. As shown
in Supplementary Figure 3, minimal cell death was observed

despite the increase of the concentration of MONPs up to
1 mg/mL, indicating the superior biocompatibility of MONPs.

To investigate the impact of MONPs on Dox’s
therapeutic efficacy, the viability of Dox-MONPs treated
and BSA-Dox-MONPs treated ATC cells was compared at
equivalent Dox concentration. As shown in Figure 5 and
Supplementary Figure 4, at all free Dox concentrations, the
viability of HTh74R was significantly lower than HTh74,
indicating that HTh74R was drug-resistant. Moreover, the
viability of HTh74R at all concentrations and HTh74 at low
concentrations treated with Dox-MONPs was substantially lower
than with free Dox at equivalent Dox concentration. After coated
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with BSA, BSA-Dox-MONPs elicited more significant efficacy
than Dox-MONPs to HTh74 and HTh74R, suggesting that
the BSA coating further improves the therapeutic effect
of Dox-MONPs. Furthermore, the modification of MONPs
enhanced the efficacy of drug-resistant HTh74R more than
that of sensitive HTh74. It is noted that BSA-Dox-MONPs
induced significant cell toxicity to HTh74R at a concentration
of 100 µg/mL, indicating that BSA stabilization reversed
chemotherapy resistance of ATC.

Based on the encouraging results of the above-described
MTT assay, fluorescence imaging was used to visualize
the anti-tumor effect of Dox-MONPs and BSA-Dox-MONPs.
HTh74R cells have weaker red fluorescence than HTh74 cells,
which further proves to be drug-resistant cells. Yellow signal,
which is the overlap of green and red fluorescent, suggested
that the cells that ingested nanoparticles were undergoing
apoptosis (Figure 6). The overlay image further revealed
that drug-loaded nanoparticles promoted early apoptosis of
ATC cells. In detail, BSA-Dox-MONPs exhibited stronger
yellow fluorescence than Dox-MONPs, suggesting more vital
killing ability.

Insufficient intracellular accumulation of drugs due to
inefficient drug uptake and enhanced drug efflux is one of
the fundamental mechanisms behind the chemo-resistance
of ATC. Thus, to explore the mechanism of the enhanced
efficacy of BSA-Dox-MONPs, flow cytometry was employed to
determine their uptake and efflux. The fluorescence-activated
cell sorting (FACS) results showed that HTh74 internalized
drug-loaded nanoparticles more effectively than HTh74R, which
is in line with the resistance of HTh74R. As shown in
Figure 7, with Dox loaded and BSA coated, it can be
visually observed that the FACS curve shifts to the right,
suggesting that both HTh74 and HTh74R internalized the
drug-loaded nanoparticles. After covering Dox-MONPs with
BSA, the fluorescence intensity in HTh74 and HTh74R cells
increased by 28.14 and 65.53%, respectively, indicating that
BSA can effectively promote the drug uptake by ATC cells.
The fluorescence images of HTh74 and HTh74R cells after
incubation were also obtained. The images (Supplementary

Figures 5, 6) showed greater intracellular accumulation of Dox
for BSA-Dox-MONPs in both HTh74 and HTh74R cells, which
further confirmed the observation from FACS. Based on the
above results, the BSA-stabilized MONPs killed cancer cells more
effectively than Dox-MONPs, which may be partly attributed to
the enhanced Dox internalization in drug-resistant ATC cells
(Yu et al., 2011).

To quantify the efflux of the drug, HTh74 and HTh74R
were incubated with Dox-MONPs and BSA-Dox-MONPs for
6 h and cultured in fresh medium for another 18 h to
allow drug efflux. The efflux rate was defined as the ratio
of intracellular fluoresce intensity before and after culture in
fresh medium. As shown in Figure 8, the efflux rates of
Dox-MONPs and BSA-Dox-MONPs were 38.95 and 33.05%
in HTh74 cells and 43.03 and 32.07% in HTh74R cells. It
is worth noting that the BSA coating reduced the efflux

rate of MONPs, especially in drug-resistant HTh74R. Taken
together, these results indicated BSA-Dox-MONPs reversed the
resistance of HTh74R cells by enhancing drug uptake and
inhibiting drug efflux.

CONCLUSION

In summary, we have constructed a BSA-coated MONPs as
Dox carrier with high loading efficiency and capacity. The
BSA-Dox-MONPs showed stronger cancer-killing power than
free Dox and Dox-MONPs, especially for drug-resistant HTh74R
cells. This improved therapeutic efficacy can be attributed to
enhanced drug uptake and reduced drug efflux of drug-resistant
ATC cells. In brief, BSA-Dox-MONPs increased the intracellular
accumulation of Dox in drug-resistant ATC cells and thus
reversed their chemotherapy resistance via increased drug uptake
and inhibited drug efflux, offering a promising platform for the
treatment of chemo-resistant ATC.
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