Hindawi

Security and Communication Networks
Volume 2022, Article ID 1608689, 16 pages
https://doi.org/10.1155/2022/1608689

Research Article

WILEY | Q@) Hindawi

BSD-Guard: A Collaborative Blockchain-Based Approach for
Detection and Mitigation of SDN-Targeted DDoS Attacks

,** Lin Yang ©®,” Xianming Gao (»,” Yuyang Zhou (),"** Tao Feng (),

1,3,4

Shanqing Jiang
Yanbo Song®,> Kexian Liu ®,® and Guang Cheng

!School of Cyber Science and Engineering, Southeast University, Nanjing, China

2National Key Laboratory of Science and Technology on Information System Security, Institute of System Engineering,
PLA Academy of Military Science, Beijing, China

*Purple Mountain Laboratories, Nanjing, China

*Jiangsu Province Engineering Research Center of Security for Ubiquitous Network, Nanjing, China

*State Key Laboratory on Integrated Services Networks, Xidian University, Xi’an, China

®School of Computing Science, Beijing University of Posts and Telecommunications, Beijing, China

Correspondence should be addressed to Guang Cheng; gcheng@njnet.edu.cn
Received 3 January 2022; Revised 16 February 2022; Accepted 24 February 2022; Published 12 April 2022
Academic Editor: Yuling Chen

Copyright © 2022 Shanging Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Software-Defined Networking (SDN) enhances the flexibility and programmability of networks by separating control plane and
data plane. The logically centralized control mechanism makes the control plane vulnerable in both single and multiple controller
scenarios. Malicious third parties can exploit vulnerabilities of reactive forwarding mode to launch distributed denial-of-service
(DDoS) attacks against SDN controllers. Unfortunately, existing DoS/DDoS solutions under single controller can not afford
effective performance under multiple controllers due to the absence of cooperative detection and mitigation. To solve the above
problem, we propose a blockchain-based SDN-targeted DDoS defense framework (BSD-Guard) that can provide cooperative
detection and mitigation mechanism to protect SDN controllers. BSD-Guard introduces a blockchain-based secure middle plane
between control plane and data plane. The secure middle plane calculates the suspect rate of new flows based on the collected
packets’ information and reports suspect lists to blockchain for immutably storing and sharing. Besides, the smart contract
deployed on blockchain in advance constitutes collaborative defense strategies based on the suspect lists reported from multiple
SDN domains. When receiving defense strategies, the secure middle plane converts them to specific flow table actions and installs
actions into relevant switches. The experimental results indicate that BSD-Guard can efficiently detect DoS/DDoS attacks in

multiple controllers scenario and issue precise defensive strategies near the source of attack by identifying the attack path.

1. Introduction

Software-Defined Network (SDN) is a novel network ar-
chitecture designed to help network operators better manage
infrastructures. The separation of control and data planes
and logical centralized control bring network with high
availability and programmability [1]. The logical centralized
control plane conducts the behaviors of data plane via
southbound protocols, in which the OpenFlow has de-
veloped as a typical and widely used southbound protocol.
OpenFlow allows reactive mode for installing forwarding

rules, which has greatly simplified the rules configuration
and policy deployment. The reactive mode arranges the
table-missed packets to be encapsulated into packet in
message and reports to control plane for generating new
forwarding rules. Because of the limited computational
capacity, controller may discard normal requested traffics
when the number of table-missed packets exceeds con-
troller’s processing capacity. This vulnerability can easily be
exploited by attackers to launch resource-exhausting attacks
against SDN controllers. Among them, the DoS/DDoS$ at-
tack against SDN controllers has become a critical problem

mailto:gcheng@njnet.edu.cn
https://orcid.org/0000-0002-7811-3780
https://orcid.org/0000-0002-6956-8177
https://orcid.org/0000-0002-4173-3740
https://orcid.org/0000-0001-8626-0468
https://orcid.org/0000-0001-9791-9694
https://orcid.org/0000-0003-4559-6963
https://orcid.org/0000-0003-3975-5606
https://orcid.org/0000-0001-8642-4362
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1608689

[2] in recent years. Since controller determines the com-
putation of end-to-end transmission path, when controllers
suffer DoS/DDoS attack, it will disturb the normal message
forwarding in the control domain, which may further cause
the whole network to be disrupted. In summary, DoS/DDoS
attack has become a serious security risk, affecting SDN
architecture for the following reasons. First, the interaction
mechanism based on OpenFlow protocol makes the con-
troller a target of malicious attackers [3]. Second, the attacks
are inexpensive and convenient to be implemented through
launching forged requesting messages at hijacked hosts.
Third, the attacker cannot be accurately traced and legiti-
mate messages may be misdiscarded during defense process.

Traditional DDoS detecting and mitigating methods are
often divided into four levels: attack detection, load bal-
ancing, traffic filtering, and traffic analysis [4]. (1) Attack
detection is to identify DDoS traffic from normal traffic.
Common detection methods are mainly based on message
statistics and machine learning, which need to be ensured in
real-time and accuracy of detection. (2) Load balancing
relieves the storage and computing pressure of the victim-
ized target by rerouting or traffic migrating and provides
a brief resistance to sudden abnormal traffic within the
tolerable range of the load balancing module. (3) Traffic
filtering discards DDoS attack traffic by identifying the
abnormal traffic characteristics, with the goal of improving
the accuracy of identification and ensuring that normal
traffic can be forwarded normally by network devices. (4)
Traffic analysis aims to identify the attacker’s intended be-
havior and trace the source of the attack by analyzing the
collected attack traffic data.

There are two main shortcomings in current research on
DoS/DDoS defense for SDN controllers. First, the mis-
classification of detection may cause the first packet of le-
gitimate traffic to be discarded. Unlike the packet
retransmission mechanism in traditional networks, in the
SDN environment, the first packet being dropped will lead to
more serious consequences. The subsequent messages of the
normal traffic will not be processed, and the first packet
request needs to be initiated again until controller issues
correct forwarding rules. This blocking process affects the
communication of normal service in data plane, increasing
the burden of controllers and southbound channel. Second,
the traditional DDoS detection and mitigation solutions for
single controller can not be directly applied to multiple
controllers scenario. In multiple controllers scenario, it is
difficult to detect large-scale and distributed DDoS attacks
and implement effective defense measures. Although the
centralized control of SDN provides convenience for the
monitoring of network status, for large-scale DDoS attacks,
the centralized detection method is redundant and expensive,
and the threat situation of the whole network has not been
utilized reasonably. The east-west interface is used to maintain
communication between controllers, which has not been
standardized and not enough to support collaborative
awareness and defensive decision. The collaborative pro-
tection mechanisms against DDoS in multicontroller scenario
have also been introduced in recent years. In [5], a collabo-
rative DDoS defense system can reroute crashing traffic to

Security and Communication Networks

other domains for filtering. In [6], the Redis Simple Message
Queue (RSMQ) approach was used to collaboratively share
detection and mitigation rules among multiple controllers.
The latest research begins to seek cooperation with block-
chain, and its decentralized features bring convenience to
collaborative detection and mitigation. Researches [7-9]
proposed a blockchain-based SDN framework to share threat
information between multiple controllers. However, the
smart contract was only used to share risky IP address and the
time consumption of generating new block in Ethereum
reaches flagrant 14 seconds [10].

In this paper, we propose BSD-Guard, a collaborative and
elastic blockchain-based detection and defense system to
protect SDN against controller targeted DDoS attacks. BSD-
Guard stands between control plane and data plane, con-
sisting of blockchain-based secure middle plane. In the de-
tection stage, the secure middle plane collects statistics
information about packets and ports from edge switches.
Then the suspect lists calculated by detection algorithm are
shared on the blockchain that can not be tampered by
malicious attackers. And a global threat situation can be
generated by cooperating smart contracts among multiple
SDN domains. In the mitigation stage, the defensive strategies
generated on blockchain can be installed into the edge
switches by secure middle plane. Finally, the attacking packets
can be discarded at source switches and benign packets can be
forwarded correctly. And the SDN controllers can maintain
a low level of CPU utilization when DDoS attack occurs. Our
main technical contributions are as follows:

(i) Novel Framework. We propose a novel detection
and defense framework for protecting SDN con-
trollers from DDoS attacks. The secure middle plane
can perform as a proxy for a controller to detect and
discard abnormal traffics. The blockchain becomes
a platform for information sharing and defense
policies scheduling between multiple controllers.

(ii) Fine-Grained Detection. We present an entropy
based suspect rate calculation method for fine-
grained DDoS detection. The blacklist and graylist
are generated by the type of forged addresses and its
suspect rate. The fine-grained suspect list is bene-
ficial for the subsequent development of precise
defense strategies.

(iii) Collaborative Mitigation. The detection and miti-
gation smart contracts deployed on the blockchain
can collaborate with threat information reported by
multiple secure middle planes. It can accurately
identify the scale and the path of DDoS attacks and
develop targeted defense strategies.

The rest of this paper will be organized as follows: Section
2 introduces the related works of existing detection and
defense of DDoS attacks in the SDN environment. In Section
3, we present the problem statement about the adversary
model and attack scenario. In Section 4, we introduce the
detailed designs of the BSD-Guard system. Section 5 is the
implementation and experimental evaluation of BSD-Guard.
Finally, we make the summary of this paper in Section 6.

Security and Communication Networks

2. Related Works

2.1. Detection and Mitigation Methods under Single
Controller. The DDoS attack on SDN controller has become
a serious problem that can affect cloud environments and
industrial production platforms that run over SDN net-
works, which will cause severe network security incidents.
To solve this problem, researchers have proposed a large
number of detection and defense solutions under single
controller scenario. The DDoS detection solutions can be
categorized into statistics-based schemes and machine
learning based schemes under single controller.

Firstly, the statistics-based detection and mitigation
scheme identifies DDoS attack by extracting statistical
features of data plane traffic. In [11, 12], researchers iden-
tified DDoS attack traffic by detecting the rate and char-
acteristic value of packet_in messages. You et al. [11]
deployed the traffic collection module on the controller to
collect, parse, and extract feature information of packet_in
and calculate the rate of packet_in, entropy value of desti-
nation IP address, and port number. Huang et al. [12]
predicted the number of packet in in the next cycle by
Taylor’s formula; the detection module will be activated
when the number exceeds the threshold. Then the charac-
teristic values of packet_in were extracted for entropy cal-
culation and determined whether there is a DDoS$ attack
according to the entropy value. In [13-16], researchers have
also advanced statistical analysis methods of flow tables to
detect DDoS attacks. Fouladi et al. [13] detected DDoS by
time series analysis of flow tables and determined the ag-
gregation of traffic in network using feature information of
destination IP address. Through the extraction of flow table
features, the source of attack can also be traced back. Hassan
et al. [16] used a lightweight approach to detect and defend
against DDoS in SDN based on Tsallis entropy, which is able
to detect DDoS at early stages, and the proposed dynamic
threshold mechanism allows the detection method to adapt
to dynamically changing network conditions. There also
exist some studies that extract statistical feature from sFlow
(Sampled Flow) to identify DDoS traffics [17-19]. Lawal
et al. [17] obtained CounterSample and FlowSample mes-
sages by sFlow sampling, extracting traffic features, calcu-
lating traffic rate, and determining the presence of DDoS
attack in real time by setting thresholds. Kumar et al. [18]
obtained the feature values of traffic by sFlow and used
machine learning for DDoS detection. Lu et al. [19]
employed sFlow to obtain packets rate and aggregation of
destination IP address in SDN network and jointly de-
termined whether suspicious traffic occurred in SDN. In
[20], Chen et al. proposed SDNShield, a three-stage overload
control scheme for mitigating DDoS in SDN based on NFV
technologies. The simulation results showed that SDNShield
can achieve resilient performance against brute-force DDoS
attacks and maintain excellent flow service quality at the
same time.

Secondly, the machine learning based detection and
mitigation scheme identifies and classifies DDoS traffics by
various machine learning methods. Mehr and Ramamurthy
[21] used the support vector machine to detect DDoS attacks

and install defense flow table entries to the switch, which
reduced the impact of DDoS attacks on Ryu controllers by
36%. Considering the imbalance of traffic distribution, Cui
et al. [22] introduced clustering algorithms such as the k-
means to detect malicious traffics. In addition, the authors
used packet_in message register to filter malicious traffic and
evaluate the scheme in terms of detection accuracy, defense
effectiveness, and communication latency. Some other re-
searchers proposed hybrid machine learning approaches.
Deepa et al. [23] proposed a model of hybrid machine
learning with support vector machines and self-organizing
mappings, which can effectively protect the SDN controllers
to work properly when DDoS attacks occur. Nugraha and
Murthy [24] proposed a hybrid Convolutional Neural
Network-Long-Short Term Memory (CNN-LSTM) model
to detect slow DDoS attacks in SDN networks, and exper-
iments showed that the method achieved 99% accuracy in
the considered performance metrics. Xu et al. [25] proposed
an eflicient and accurate DDoS detection method based on
SDN cloud edge collaboration. The method used an entropy
approach to select ideal SOM mappings and classify SOM
neurons, and then KD-trees were used to identify traffics at
a finer granularity, which improved the accuracy of DDoS
detection. Ujjan et al. [26] proposed a DDoS detection
method based on adaptive polling sampling of sFlow and
deep learning models. Adaptive polling sampling of sFlow
was used in the data plane to reduce the switch’s overhead.
Snort IDS and SAE deep learning models were deployed in
the control plane to improve the accuracy of detection. The
authors quantitatively investigated the trade-off between the
accuracy of attack detection and resource overhead. Luong
et al. [27] proposed a DDoS detection model in SDN based
on machine learning and deep neural networks, and authors
compared the model with decision trees and random forest
models. The results showed that complex DDoS detection
systems do not necessarily produce more accurate results
than simple ones.

2.2. Cooperative Defense under Multicontrollers. DDoS at-
tacks are complex and varied in the actual network envi-
ronment. Attackers often launch DDoS traffics from remote
locations to one target by hijacking a large number of puppet
hosts or exploiting vulnerabilities in existing communica-
tion protocols. The DDoS attack under multiple controllers
network has become one of the most difficult threats in SDN
environment. This is because traffics within disparate con-
troller domains often exhibit different characteristics, and
a more concentrated aggregation of abnormal traffic usually
emerges in the victim’s domain. The domain is defined as the
partial network managed by one controller. Usually, the
DDoS attack has already been carried out in the source
domain when detection mechanism was triggered in the
targeted domain, which will leave the defender quite limited
time to respond and defense. Therefore, it is necessary to
share threat information among multiple domains to
identify and intercept abnormal traffic during the initiation
and dissemination phase, which will save more time for
protecting the target controller.

There exist several studies on cooperative defending
against DDoS attacks. The IETF is proposing an ongoing
protocol called DOTS (DDoS Open Threat Signal) [28],
which will mitigate DDoS attacks by an intradomain and
cross-domain collaborative solution. The servers and cli-
ents of DOTS are required to broadcast blacklists or
whitelists addresses. When detecting attacks, the client
requests mitigation services from the server responsible for
cross-domain communication and coordination. However,
the DOTS is still faced with implementation complexity to
support different types of communication in distributed
and centralized architectures. A similar approach is pre-
sented in [29]. The authors employ an advertising protocol
based on FLEX (Flow-based Event eXchange) format to
simplify the deployment and collaboration between do-
mains. This protocol supports realizing the situational
awareness of the current threat posture, pooling expertise
and resources, and facilitating automated defense against
persistent cyberattacks. However, the deployments of
above solutions are complex since they need to create or
modify protocols for distributed network architectures.
Instead, these collaboration requirements can be met by the
natural characteristics of SDN, blockchain, and smart
contract, thus avoiding the complexity of deployment and
adoption of new protocols.

Blockchain and smart contracts have shown their
unique advantages in the area of collaborative threat de-
tection and defense for SDN and IoT. Javaid et al. [30]
introduced a smart contracts-enabled IoT device com-
munication framework using Ethereum, a blockchain
variant to replace the traditional centralized IoT in-
frastructure. Smart contracts are required for IoT devices
accessing the network. And trusted or untrusted devices
can be distinguished by the proposed system. Shao et al.
[31] proposed a blockchain-based SDN security system
model and a consensus algorithm SPBFT to improve the
security and consensus efficiency of the SDN control plane.
The smart contracts periodically check the status of con-
troller to detect DDoS attack. Abou et al. [7, 8] designed
a collaborative distributed DDoS mitigation framework
based on blockchain. The framework utilized smart con-
tracts to transfer attack information between SDN multiple
domains to reduce the huge cost of forwarding useless
packets across multiple domains. Extensive experiments on
both private and public networks (Ganache simulator,
Ropsten test network) show that Cochain-SC achieves
versatility, security, efficiency, and cost-effectiveness. In
[9], a blockchain-based SDN architecture was proposed to
advertise whitelisted or blacklisted IP addresses to defend
against DDoS attacks, enabling the execution of defense
rules across multiple domains. However, the advantages of
blockchain and smart contracts have not been fully
exploited in existing research. As an excellent distributed
collaborative platform, blockchain should not be limited to
sharing blacklisted and whitelisted IP addresses, but also
sharing the data plane traffic characteristics that are
originally opaque between multiple controllers. This
method will allow the characteristics of DDoS attack to be

Security and Communication Networks

jointly discovered at an earlier stage. And smart contracts
can also be used as triggers for issuing defense policies
automatically.

3. Problem Statement

In this section, we first introduce the workflow of handling
normal traffic in SDN networks. Then we present the ad-
versary model of SDN-targeted DoS and DDoS attacks.
Finally, we state the challenges of detecting and mitigating
the DDoS attacks in multiple SDN controllers networks and
the basic principles that should be kept in the process.

3.1. SDN Workflow. OpenFlow has become a widely used
standard southbound interface protocol that specifies the
pipeline for switches to handle packets and the types of
messages between the data plane and the control plane.
OpenFlow supports both proactive and reactive approaches
to install flow forwarding rules. In the proactive mode, the
controller preregisters forwarding rules on switches to
handle incoming packets. In the reactive mode, when an
OpenFlow switch receives several new incoming packets, it
will process each packet by following steps with the FIFO
(first input first output) manner [32], as shown in Figure 1.

(1) The OpenFlow Agent (OFA) traverses its flow table
to find if there exist flow table entries that match the
header of the new-coming packet. If a match occurs,
the switch will process the packet according to the
action field of the flow table entry, such as for-
warding. Otherwise, the switch treats the packet as
table-miss by caching it into the buffer area, en-
capsulating its header into packet_in message, and
sending to the controller. If the buffer is full, the
entire packet will be encapsulated into a packet _in
message (Steps A, B, and C).

(2) The SDN controller receives the packet_in message
and calculates forwarding policy based on the global
networking view and applications’ intention. The
forwarding action will be encapsulated into a pack-
et_out message and sent back to the switch (Steps D,
E).

(3) The OFA receives the packet_out message and in-
stalls the entries into the flow table and then handles
the buffered table-miss packet based on the in-
struction in packet_out (Steps F, G).

(4) When the further packets with the same header
arrive within the survival time of flow table entries,
the OFA can deal with these packets according to the
“match” and “action” instruction with linear rate.

This reactive flow table installation method enables
a flexible way to control network traffic, which is the core
principle of SDN’s control and forwarding decoupling. It is
widely used in most OpenFlow scenarios. However, due to
the limited processing capacity of hardware and software,
this method has also become a source of resource-con-
suming threats in sSDN networks.

Security and Communication Networks

(B
(D) Controller
~ J
@ R
(C) packet_in (E) packet_out
(B)
|
OFA < Buffer
(F)
unmuched install
(4) packets '(G) rules
paickets Flow Table
»
- J

Figure 1: The workflow of OpenFlow reactive method.

3.2. Adversary Model. The SDN-targeted DoS/DDoS attacks
are different from DoS/DDoS attacks in traditional networks.
The reactive method of SDN’s workflow can be exploited by
tricky attackers to launch DoS/DDoS attacks. When en-
countering table-missing packets, the OpenFlow switch must
initiate a packet_in message to controller for requiring for-
warding actions. By sending a large number of forged address
packets, attackers can stimulate switch with abundant
meaningless packet_in messages to controller, which will
result in excessive consumption of CPU and storage re-
sources, meanwhile causing switch’s buffer overflowing and
control channel blocking. When an attacker injects a large
number of forged new packets into multiple switches in the
data plane at the same time, the controller will suffer a more
serious DDoS attack, as shown in Figure 2.

We demonstrate the damage of SDN-targeted DDoS
attacks with a group of experiments. We set up an experi-
mental environment consisting of one ONOS controller and
10 OpenV Switch in mininet (with linear topology). In the first
DoS group, forged address packets are injected through one
switch with 20 pps to 200 pps. In the second DDoS group,
forged address packets are injected through 10 switches with
20 pps to 200 pps concurrently. The result in Figure 3 shows
that the CPU utilization rate of the ONOS controller in the
DDoS group increases higher than DoS. From the attacker’s
view, the DoS attack with 200 pps and DDoS attack with
20 pps * 10 will stimulate the same number of new packet_in
message theoretically. However, we can find in Figure 3 that
when the total forged packets rate is 200 pps, the CPU uti-
lization rate in the DDoS group (attack intensity = 20 pps * 10,
CPU =44.41%) is much higher than that in the DoS group
(attack intensity =200 pps * 1, CPU =11.6%). Therefore, we
can conclude that a DDoS attack launched from multiple
switches has more serious harm to the control plane than
a DoS attack when attackers equip limited attack resources.
Besides, we also make another interesting comparison. We
disconnect the links between 10 switches and perform DDoS
attack again, and the result shows that the CPU consumption
of controller decreases by 20% averagely. By capturing packets
and analyzing, the truth is that when switches are linked with

each other, the forged new packets of DDoS can be broad-
casted among switches, which makes the number of packet_in
messages reported to controller be amplified. Above all, the
control plane will be more vulnerable to DDoS attacks under
a distributed network scenario.

3.3. Scenario and Challenges. The multiple SDN controllers
environment is displayed in Figure 4. In the multiple
controllers’ scenario, the controller targeted DDoS attacks
could be launched from remote data plane managed by other
controllers. To implement DDoS attacks more stealthily, the
tricky attackers often initiate attacking packets from the
neighboring domains of the victim controller, which greatly
increases the difficulty of detection and mitigation. And the
defensive actions performed in the victim’s domain will not
be effective to mitigate such attacks. There have been a lot of
previous researches on how to detect DDoS attacks between
multiple controllers [7, 33]. However, the fine-grained threat
information can not be shared collaboratively across mul-
tiple controllers, and a complete set of defense schemes has
not been developed.

Although there has been a lot of valuable researches on
DDoS detection and defense for protecting controllers, two
key issues remain unresolved. First, existing detection
processes require data plane traffic and network state in-
formation to be reported to the centralized controller, which
will greatly increase the burden of controller and south-
bound channel. Second, in the multiple controllers’ scenario,
threat information within a domain can only be mastered by
the internal controller. However, the threat state perceived
in one domain is only local information, which cannot form
the most effective defense plan. Meanwhile, the interaction
among east-west interface will consume the resources for
synchronizing state information. Although the author in [7]
proposed a blockchain-based framework Cochain-SC to
facilitate the collaboration for smart contract-based intra-
domain DDoS$ mitigation, the sharing information between
intradomains is limited to blacklisted IPs.

Therefore, in the multiple controllers’ DDoS defense
scenario, collaborative integration of threat information and
network resources between north-south and east-west needs
to be considered simultaneously. From the north-south
view, the threat situation of DDoS traffic in the data plane
should not be completely reported to the control plane,
which can reserve the valuable computing resources of
controller and avoid single-point failure. From the east-west
view, the more fine-grained network threat information
from multiple control domains should be shared for iden-
tifying attack scenarios and tracing attacker more precisely
and preventing DDoS traffic from spreading among multiple
controllers.

4. System Overview

We design a system named BSD-Guard, which can detect and
mitigate SDN-targeted DDoS attacks among multiple con-
trollers. This system can calculate suspect lists according to
traffic statistical information from multiple controllers. The

Controller

OpenFlow
Switchs

p—

———

Security and Communication Networks

Forged

—_—-—

Malicious
- Command

—_———

FIGURE 2: The controller targeted DDoS attack in SDN.

80 -
. 70
=
S 60 A
2
£
O 50
(i
o
g (20, 44.41) . ‘
=D ke (200,11. 6)
N T T T T .
510 4 . el
) e
A -
U s
5 T T T T T
0 40 80 120 160 200
Attack intensity (pps)
--- DoS
—— DDoS

FiGURe 3: The CPU utilization rate of ONOS controller under DoS
and DDoS attacks (the upper limit of the Y-axis in DoS group is
12% and is 80% in DDoS group).

threat information can be shared on blockchain via smart
contracts. The detection module can collaboratively detect
DDoS attacks among multiple controllers and trace the source
of attack. The mitigation module can issue defense policies
near the source of attack. And the defense strength can be
adjusted in conjunction with the controller’s real-time load to
reduce the misdiscarded rate of normal traffics.

4.1. Architectural Components Overview. BSD-Guard con-
sists of two main modules: secure middle plane and
blockchain, as displayed in Figure 5. The secure middle plane

stands between the control plane and the data plane, which
contains threat detecting and policy issuing functions and
smart contract APIs interacting with the blockchain. The
threat detecting function collects sFlow and intercepts
packet_in messages sent from data plane to control plane.
The policy issuing function receives DDoS mitigating pol-
icies from blockchain and registers flow rules into the in-
trusive switches. The smart contact APIs are responsible for
reporting threat information to the blockchain and receiving
cocalculated defense strategies. The blockchain plays the role
of storage and collaborative sharing of threat state in-
formation for multiple SDN domains. It contains blockchain
nodes and smart contracts. The DDoS threat information of
multiple controllers can be aggregated in blockchain to
identify the cross-domain DDoS attack behavior. And the
information stored on blockchain can not be tampered by
malicious attackers.

In terms of workflow, the system is divided into de-
tection stage, collaboration stage, and mitigation stage. The
complete processes are introduced as the following seven
steps, and the interaction flow is shown as Figure 6.

(1) In each SDN domain, the threat collecting module
collects sFlow countersample messages periodically
by sFlow agents deployed on each OpenFlow switch.
Once detecting the velocity of flows exceeds the
specified threshold, the detection program records
the corresponding switch’s IP and port.

(2) The secure middle plane resolves the packet in
messages collected from OpenFlow switches whose
port is overspeeding. The data field will be extracted
for inspecting the original message that triggers
table-missing on switch.

(3) The fields extracted from packet_in are used to pe-
riodically calculate the suspect rate of new flow. And
the black/graylists (including SwitchIP, Port, IP, Mac,

Security and Communication Networks

Distributed Control Plane

Malicous \,~
traffic K

FiGURE 4: The DDoS scenario in SDN with multiple controllers.

Blockchain
| Detection Contracts | | Defense Contracts |
PZN
| SDN Control Plane |

Secure Middle Plane <_~

‘ Threat Collecting ’ ‘ Policy Issuing Smart Contract APIs

Data Forward Plane
| Open vSwitch | | OpenFlow Enabled Physical Devices |

FIGURE 5: The overview architecture of BSD-Guard.

Secure Middle
i Blockchain Controllers
Switches Plane
T T T T
i 1 1 1
I I I
Fl
sTiow collect » ; i :
sampling ports ! !
' overspeed ! !
« - - - trigger - - - - - —_ 1 1
packet_in ! ! !
receiving ! 1 I
collect » : | i
! black/gray lists ! !
! detection ! !
| -
1 T | 1
: : collaborative :
i | smart contracts calculation & i
! ! strategies decision |
| D . |
1 1 1
! defensive action ! !
i flow_mod message h \
DDoS g ---------- : strategies synchronization |
H 1 controller
traffics H H
droppin H) H workflow
pping +— benign traffics — >
1 I

FiGUure 6: The interaction flows of BSD-Guard.

and suspect rate) will be reported upon blockchain
through the smart contract.

(4) The data plane network topologies of multiple
controllers are also recorded on the blockchain.
Once changed, the real-time topology will be
updated by the smart contract.

(5) The collaborative detection algorithm combines the
suspect lists and multiple controllers’ topology in the
previous steps and identifies a complete attack path
on the blockchain.

(6) The mitigation algorithm establishes the defense
strategies according to the detection results and is-
sues the corresponding instructions to the secure
middle plane of the victim controller.

(7) Each secure middle plane executes the defense ac-
tions based on the received strategies and controller’s
real-time load elastically. The flow_remove and
flow_mod message are installed into switches and
synchronized to the controller to clear meaningless
flow table entries and issue new defense flow table
entries.

4.2. Fine-Grained Detection Based on Suspect Rate. Based on
the analysis of adversary model, the controller targeted DDoS
attack is launched from data plane. Large amounts of forged
packets trigger switches sending many meaningless packet_in
to the controller. In order to detect DDoS attack launched
from data plane in a timely manner, we choose the sFlow
protocol, an efficient and flexible approach that does not
consume the computing capacity and bandwidth of SDN
controller and OpenFlow switches. The sFlow agent deployed
on switches can generate FlowSample and CounterSample
messages and send them to the sFlow collector with a fixed
period. We can calculate the packet rate of switches’ inport
and outport by analyzing CounterSameple messages. When
the inport packet rate of a switch is detected to exceed the
normal threshold, it is considered that a DDoS attack may
occur. Then the packet_in parsing module is activated to
extract the original packets that crash from the overspeed
port. These information will be recorded into Elasticsearch
(ES) database with six elements’ tuple: <SwitchID, InPort,
SrcMac, SrclP, DstMac, DstIP>. These tuples will be counted
with several attributes in each fixed period, which is the same
as the sampling period of CounterSample. These attributes
describe the forged level of Mac and IP, as the SDN-targeted
DDoS attack is mainly launched by forged packets that do not
match the existing flow table on the OpenFlow switch. The
meanings of these attributes are listed in Table 1. The suspect
lists and suspect rate will be calculated based on these at-
tributes in the following description.

Inspired by [20], we present an entropy based calculation
method of packet’s suspect rate. For each element in Table 1,
we use the frequency of each element to approximately
estimate its probability in each statistical period.

—"_ (1)

Security and Communication Networks

TaBLE 1: The characteristics of six elements’ tuple in each period.

Abbreviation Explanation
Switch_IP The IP address of switch
Inport The overspeed port on switch
SrcMac_num The arising number of SrcMac
SrcIP_num The arising number of SrcIP
DstMac_num The arising number of ScrMac
DstIP_num The arising number of DstIP

X represents the element in each tuple (X will be replaced by
SwitchID, InPort, SrcMac, SrcIP, DstMac, DstIP in the cal-
culation process), and the lower corner i represents the item
number of the packet_in during the statistical period. Then
we can get the information entropy value of each attribute in
the tuple by

N
H(X)=~) pjlog p; (2)

i=1

The information entropy in (2) has been widely used in
detecting DDoS traffics. It shows good performance in
demonstrating the discrete degree of statistical features.
However, it can only represent the overall dispersion of an
attribute during the statistical period and cannot pinpoint
which specific item affects the entropy value. Therefore, we
introduce entropy based suspect rate calculation method,
which combines the entropy of each attribute with the
frequency of occurrence of the corresponding item.f is
a new flow, representing a packet_in item in ES database.
fi represents one of the attributes in six elements’ tuple.
For example, H (f ;cmac)/ P (f sremac) Teflects the suspicious
level of SrcMac in this packet_in f. If the SrcMac is forged
by random generating, H (f,;nqac) is higher than normal
level and the p(f,) value is less than normal level.
Therefore, the calculated suspect_rate, will be large when
address forged DDoS attacks occur. The normal level of
H(f;)/p(f;) can be obtained in normal traffic scenario,
recorded as 0,.,..- For the attribute of SrcMac, SrcIP,
DstMac, DstIP, if the value of H(f;)/p(f) is greater than
Oporma> the corresponding attribute can be judged as
randomly forged. The malicious or hijacked host intends
to stimulate the switch to generate a large number of
packet_in to send to controller for consuming its com-
putational load and storage. Therefore, we can detect the
packet_in categories with different combinations of forged
addresses. The real-time suspect lists can be figured out by
periodically accessing the ES database updated in real-
time. For the types of packet_in whose partial addresses
are forged, the real address can be recognized into the
blacklist and the suspect rate can be calculated based on
(3). For the type of packet_in whose addresses are all
forged, since the real source or destination address cannot
be identified, only the corresponding overspeed switch’s
port can be recorded into graylist. Therefore, the graylist
contains victim controller ID, switch IP and port, and
suspect rate. The examples of graylist and blacklist are
listed in Table 2.

Security and Communication Networks 9
TaBLE 2: The example of graylist and blacklist stored on blockchain.

Type SwitchIP SwitchID Port DstIP DstMAC SuspectRate

GrayList 192.168.188.121 1c48cc37ab254bcl ge-1/1/19 Null Null 0.764 3

BlackList 192.168.188.199 45ac29bc3714dbcl ge-1/1/3 192.168.188.201 9A-26-F7-08-0B-2 F 0.8661

suspect_rate; = Z H(fj) (3)

jetuples p(f]) .

4.3. Suspect Lists Sharing Based on Smart Contract.
Several detection and mitigation schemes have considered
collaboration among multiple switches and controllers to
tackle widely launched DDoS attacks. However, the com-
plexity of deployment and the limitation of information
sharing restrict the practical effectiveness of collaborative
defense. Abou El Houda et al. [8] reported the suspect IP
addresses from the victim domain to the collaborative do-
mains by means of smart contract, which can block the
illegal traffics in the source and intermediate domains.
However, this approach can only deal with traditional DDoS
attack against hosts. The sharing information only includes
suspect IP addresses that cannot cope with more complex
attack scenarios in which the IP addresses of malicious
packets are forged. Considering this situation, we focus on
SDN-targeted DDoS attacks in multiple controllers scenario
and share the fine-grained DDoS threat information be-
tween multiple SDN domains. More specifically, through the
collaborative sharing of the suspicious source or destination
addresses (IP or Mac), the edge switch and port, and the
suspect rate, a more precise detection and mitigation
mechanism can be established.

We design two detection strategies in this collaboratively
sharing mechanism with smart contracts. In the first
strategy, we focus on the intradomain DDoS attack. Under
the intradomain scenario, the destination Mac and IP of
attack packets are randomly forged, which results in the
forged packets not being forwarded to the neighboring
domain. Therefore, only the intracontroller can suffer from
a large number of meaningless pacekt_in request messages.
In this case, if the source Mac or IP in the original packets is
genuine, the corresponding packets will be precisely drop-
ped at the edge switch by the blacklist strategy mentioned in
Section 4.2. However, if the tricky attacker forges all the
source Mac and IP, it is impossible to locate the specific
puppet host, and only the abnormal switch’s port can be
determined. This situation makes the defender very
embarrassed. If discarding all messages coming from that
switch’s port, the normal service traffic will be affected in-
nocently. And if multiple switches are injected with low-
intensity forged packets, it will escape the threshold of
single-point detection. To solve this problem, we deploy the
smart contract to query the graylist related to the same
controller on blockchain during the period. Multiple suspect
lists from multiple switches are jointly calculated to derive
the DDoS attack strength under the global view. This method
avoids the failure of missing forged packets below the
overspeed threshold on an individual switch.

In the second strategy, we focus on the controller tar-
geted DDoS attack across domains. In the cross-domain
scenario, the attacker can construct a large number of
packets with forged source IP or Mac and real destination IP
and Mac, which will stimulate the generation of packet_in of
all switches on the path from attack source to destination.
The controller issues forwarding rules based on the real
destination address, so that the forged packets can be for-
warded to the destination host hop by hop. Finally, the last-
hop switch will be forced to generate abundant packet_in
messages due to aggregation effect. As shown in Figure 4, the
controller in destination domain suffers a serious DDoS
attack from the neighbor domains. We collect packet_in
messages of each overspeed switch port to calculate the
blacklist (contains the controller ID, six elements’ tuple, and
suspect rate) and then store them on blockchain via smart
contract. At the same time, the global topology and cross-
domain links collated from each controller will also be
uploaded to blockchain in real time. Once multiple blacklists
with the same destination Mac or IP exist on the blockchain
and the link formed by the suspect switches’ ports conforms
to the global topology, the link can be confirmed as the attack
path of cross-domain DDoS. And the first-hop switch is the
edge switch that brings in DDoS attack traffics. The co-
operative detection algorithm of cross-domain DDoS§ attack
is shown in Algorithm 1. The smart contract of blacklist is
shown in Table 3, and the functions of smart contract consist
of storing, searching, updating, and deleting blacklist. Once
deployed on the blockchain, these functions can be executed
automatically to share the blacklist of multiple control
domain on the blockchain. Similarly, the smart contract of
graylist equips the same functions to operate graylist on the
blockchain.

4.4. Elastic DDoS Mitigation Based on Controller Load.
We also design an elastic DDoS mitigation mechanism for
different attack scenarios. In terms of the graylist scenario,
a large number of meaningless packet_in come from
switches within the controller domain and no valid blacklist
features can be extracted from the raw data of messages. We
develop a defense strategy to install flow_mod message to
disable the graylisted switches’ port that generated forged
packets. And the disable time depends on the suspect rate
and the real-time load of controller. Specifically, the field of
hard_time in the flow_mod message can be calculated as

L
hard_time = SR, = NumGL

P* Nambeln, * 20 @

SR;; represents the suspect rate of port j on switch i,
NumGL,, represents the number of graylists of controller k,
and NumPktIn, represents the total received packet_in of
controller k during the continuous period. The benchmark

10

Security and Communication Networks

Output: Attack_path

(5) break

(6) else

7) fe—i+1
(8) endif

(9) end for

(20) end while

Input: Blacklists, Topology,i «—0, j «—0.
(1) for blacklist[i] in Blacklists do
(2) if blacklist[i].inport is connected with a host then

3) Attack_path [0] «— blacklist[{]
(4) Blacklists.remove (blacklist [i])

(10) while Blacklists is not empty do

if (blacklist[i], blacklist[j].inport) in Topology then

(11) for blacklist[j] in Blacklists do

(12)

(13) Attack_path.append (blacklist[j])
(14) Blacklists.remove (blacklist[j])
15) ie—j

(16) else

17) je—j+1

(18) end if

(19) end for

ALGorITHM 1: Cooperative detection of DDoS attack path.

TaBLE 3: Details of blacklist based collaborative DDoS detection smart contract.

Contract address

0x30f60167c7fb71444d6b90c9b53e93fb4edeaacl

contractName

abi

[{“constant”:false, “inputs”™: [{“name”:“switchIp
deletOneBlackList”, “outputs”:[{“name”:”, “type”:“int2567}], ...

DDoSBlackListManager

, type:

», «

string”}, {“name”:“srcIp”, “type™

»

string”}], “name”:

608060405260043610610083576000357c01000000000000000000000000000000000

bytecodeBin

Functions

000000000000000000000009004631T1TT16806353eb3d90146100885780636bde...
storeBlackList(), searchBlackList(), updateBlackList(), deletBlackList()

of 30 seconds is based on our experimental test. If too long,
the forwarding of normal traffic on this port will be affected.
Instead, too short hard_time will reduce the effectiveness of
defense. The cooperative mitigation algorithm based on
graylist is shown in Algorithm 2.

In the cross-domain scenario, the policy issuing module
on the secure middle plane will install flow_mod message to
the corresponding switches on the detected attack path
based on blacklist. Specifically, when the blacklists and attack
path are detected, the flow_mod commands take effect in all
switches on the attack path immediately to quickly eliminate
the harm of DDoS attack. When the flow table entry exceeds
the hard_timeout, only the first-hop switch is under-
monitored. If the CounterSample overspeeds again and the
incoming messages still match the blacklist, the same de-
fensive flow_mod will be directly reissued on the first-hop
switch. And the remaining switches on the path do not need
to install flow_mod again because the forged packets have
already been dropped on the first-hop switch. This mech-
anism can save switch’s flow table space and prevent the
spread of this type of DDoS attack at the source of attack.
Meanwhile, this mechanism reduces the possibility of
misdiscarding of normal traffics on the subsequent switches.

The identification of attack path can also provide a priori
knowledge for later defense.

These two mechanisms mentioned above will achieve
real-time detection and accurate defense against cross-do-
main DDoS attacks. The benefits are as follows: (1) Timely
discarding forged packets at the source of attack will occur.
(2) The attack path crossing domains can be identified. (3)
Large-scale and low-intensity DDoS attacks can also be
detected. (4) The blacklists or graylists stored on blockchain
and automated execution of smart contracts can prevent
being tampered by malicious attackers.

5. Experiment and Evaluation

We first introduce our implementation of the BSD-Guard
system and describe the experimental setups in both soft-
ware and hardware environment. Finally, we discuss the
detection and mitigation results and analyze the charac-
teristics of the BSD-Guard system.

5.1. Implementation. We implement the BSD-Guard system,
including the blockchain and secure middle plane. The
secure middle plane consists of network state collection

Security and Communication Networks

11

Input: Graylists on blockchain
Output: flow_mod message

(2) for Each victim controller C; do

(4) for Each suspect switch do

(1) Group the graylist by victim controller ID

(3) Calculate the NumGL, and NumPktIn,

(5) Calculate the hard_time of each suspect port

(6) Construct the flow_mod message according to graylist and hard_time
(7) Issue the flow_mod message to switches

(8) end for

(9) end for

ArGoriTHM 2: Elastic mitigation based on graylist.

module, DDoS detection module, defense policy issuing
module, and smart contract APIs. All of them are deployed
in Docker containers, which are convenient for management
and migration. Meanwhile, we install the ONOS controller
on the Huawei 2288H V5 server equipped with Intel(R)
Xeon(R) Gold 6130 CPU and 64 GB memory. In terms of
forwarding devices, we employ commercial OpenFlow
switch Pica8 AS4610-54T to establish the data plane. We
develop and install an application called midonos on ONOS
to keep the communication between controller and secure
middle plane. The blockchain is deployed among the secure
middle planes with distributed blockchain nodes. We also
use the Elasticsearch (ES) database to store sFlow and
packet_in messages in a high-performance server. We em-
ploy four Ubuntu hosts as attacker, victim, and normal users,
respectively, in our environment. The experimental network
topology is displayed in Figure 7. There is no east-west
interface between two ONOS controllers, and switches in the
data plane have cross-domain links. We employ FISCO and
WeBASE platform [34] to provide blockchain service.
WeBASE is a set of common components built between
blockchain applications and FISCO-BCOS nodes. It stan-
dardizes blockchain application development into five steps:
deployment, configuration, development of smart contracts,
development of application layer, and online management,
which simplifies the process of deploying smart contracts.
The interface of the node console (v2.8.0) is shown in
Figure 8, which includes the management of blockchain
nodes and smart contracts. Administrators can directly edit
the contract’s “.sol” file and then compile and deploy them
on the blockchain.

5.2. Experimental Setup. We construct four experiments
under two different attack scenarios to verify that our
proposed system can detect and mitigate DDoS attacks. The
effectiveness of the proposed system will be evaluated
compared with the OpenFlow process without defense
measures. First, we construct the DDoS attack scenario in
one control domain. The host; and host, are selected as
attackers to launch UDP flooding packets. We design two
different address random methods of forged packets to
verify the defense strategies specifically. The “UDP0000”
represents the UDP flooding packets with randomly forged

<SrcMac, SrcIP, DstMac, DstIP>. The “UDP1100” represents
the UDP flooding packets with randomly forged <DstMac,
DstIP> and genuine <SrcMac, SrcIP>. The Scapy will be used
to generate flooding UDP packets under 250 pps attack rate
on two hosts. We measure the CPU utilization rate of ONOS
controller and the rate of packet_in messages the controller
received. Second, based on the previous scenario, we adjust
the attack intensity of “UDP0000,” ranging from 100 pps to
1000 pps. We also compare the CPU utilization of ONOS
controller under the OpenFlow process and our BSD-Guard
process. Third, we construct the DDoS attack scenario across
two control domains. In Figure 7, the two controllers have
no east-west interface, and the threat information of the two
control domains is shared and synchronized through
blockchain by the smart contract APIs on secure middle
plane. We launch the TCP SYN flooding attack on host; with
forged packets “T'CP0011,” which consists of randomly
forged <SrcMac, SrcIP> and genuine <DstMac, DstIP> of
host;. Finally, we set up a comparative experiment to verify
whether the proposed defense method interferes with
normal traffic. We set the host, as a normal user and test
whether the host, and host; can keep communication
normally.

5.3. Experimental Result. In the first experiment, we com-
pare our proposed system BSD-Guard with OpenFlow (no
defense) mechanism under two types of UDP DDoS
flooding (UDP0000 and UDP1100). The CPU utilization and
received packet_in rate of ONOS controller are shown in
Figure 9. In Figure 9(a), we launch UDP0000 flooding attack
from two seconds to the end. It can be clearly seen that the
packet_in rate and CPU utilization keep a continuously high
level after the attack under OpenFlow scenario. Differently,
under the BSD-Guard scenario, these two metrics rapidly
decrease after five seconds because the defending flow_mod
has been installed on the switch at the peak position of the
curve. It can be validated by entering “ovs-ofctl dump-flows
bridge” command on Pica8 switch, and the defending flow
table entry contains suspicious inport generated by graylist.
A similar phenomenon can be observed in Figure 9(b); the
BSD-Guard takes only four seconds to detect and mitigate
UDP1100 flooding attack. The response performance is
better than the 13 seconds of Cochain-SC [7]. The packet_in

12

Security and Communication Networks

ONOS

Controllers

C; G,
[[

Security Security
Middle Layer Middle Layer
S
port 2 port7

host,

host;

DdosBlackListManager.sol [E)save © compile BS Deploy

[] DdosGrayListManagerbakl
» BB udp
» BB of13
» B8 healthcheck
> B8 ipport
> B8 maps
> B8 lock
» B instance
> B8 graph
» BB template

TableFactory tf;

"./Table.sol";

DdosBlackListManager {
CreateResult count);
InsertResult
UpdateResult(/
t RemoveResult

count) ;
count) ;
1t count) ;

TABLE_NAME = "ddos_blacklist_tablel";

0x30f60167c7fb71444d6b90c9b53e93fb4edeaael (CN
DdosBlackListManager

[{"constant":false,"inputs":[{"name":"switchip","type"
{"name":"srclp","type":"string"}],"name":"deletOneB|d

FIGURE 8: The management interface of smart contracts on WeBASE platform.

rate decreases from 779pps to 4pps within two seconds, and
the CPU utilization of controller decreases from 22.5% to 5%
within 2.5 seconds. Meanwhile, we can check the flow table
on switch, which contains the entry with suspicious inport
and <SrcMac, SrcIP> generated by blacklist, and the for-
warding action is drop. It is worth noting that the CPU
utilization of UDP0000 in Figure 9(a) is higher than
UDP1100 in Figure 9(b) under OpenFlow mechanism with
the same attack intensity. The randomly forged SrcMACs
will be regarded as large amounts of new hosts in the
controller’s view. The creation and maintenance of new
hosts” identity will consume a lot of CPU on the controller.
In contrast, just forging the destination address will only
make the controller consume CPU for calculating

forwarding rules, without creating new forged hosts. We also
construct other types of packet forged methods, including
UDP/TCP-1000/0100/1101. The results verify that our
proposed system can report corresponding blacklists and
install the special defense flow table according to the forged
packet characteristics. This precise defense pattern can ef-
fectively avoid the incorrect discarding of normal packets.

In the second experiment, we adjust the intensity of
DDoS attacks from 100pps to 1000pps and record the av-
erage CPU utilization of ONOS controller under OpenFlow
and BSD-Guard mechanisms. As is shown in Figure 10, with
the increasing of attack intensity, the CPU utilization of
controller keeps rapid growth under OpenFlow scenario.
The CPU utilization reaches amazing 85.6% when the attack

Security and Communication Networks

1000 100

800

(pps)

600

400

CPU utilization (%)

Packet_inrate

200

Time (s)

——— OpenFlow (packet_in_rate)
—— BSD-Guard (packet_in_rate)
--- OpenFlow (CPU)

—— BSD-Guard (CPU)

(a)

13

1000 100

800 -+ 80
2 s
& =
< 600 460 §
'—'I E
© 400 ~440 B
4 =)
< Ay
=¥ Q

200 —— 20

0 0

10

Time (s)

——— OpenFlow (packet_in_rate)
—— BSD-Guard (packet_in_rate)
--- OpenFlow (CPU)

—— BSD-Guard (CPU)

(b)

FIGURE 9: The packet_in rate and controller CPU utilization under udp0000 and udp1100 DDoS attack scenarios. (a) udp0000 attack;

(b) udp1100 attack.

100 -
80
g
§ %7
i
S 40
[a)
(@)
20
e
0 T g -@--0-0--9__¢g--0--0
T T T T T
0 200 400 600 800 1000

Attack rate (pps)

—=— OpenFlow
-e- BSD-Guard

F1Gure 10: The CPU utilization of controller under different attack
intensities.

rate is 1000 pps. In contrast, the values under BSD-Guard
maintain a stable low level around 5%, which indicates that
our proposed defense mechanism can resist high-intensity
SDN-targeted DDoS attacks well.

In the third experiment, we construct a TCP SYN attack
between two neighboring domains under the management
of two ONOS controllers. The forged packet TCP0011 has
randomly forged source addresses and genuine destination
address of host;, which allows the forged new packet to be
forwarded to the target controller’s domain and reach the
target host;. In this process, the two controllers are

successively involved in the calculation of forwarding pol-
icies, as shown in Figures 11(a) and 11(b). The received
packet_in rate and CPU utilization of the controller in
source domain are earlier than the controller in targeted
domain. The time difference between them is equal to the
sum of switch forwarding delay and the delay caused by the
source controller to make forwarding policies and install
them to switch. Meanwhile, an attack path “host; — S,
(porty) — S, (portss) — S, (ports;) — S, (port,) —
host; ” can be identified on blockchain, which is generated
by the detection algorithm in Algorithm 1 based on the
corresponding blacklists. We also inspect the flow table
entries on switches S; and S,, and the result shows that only
S, in source domain installs defense flow table entry
“flow_i d = 65542, priority = 200, in_port = 9,ds tmac =
00: Oc: 29: cf: 76: ca,ds tip = 192.168.188.123, actions =
drop” (the dstmac and dstip are the addresses of host;). The
above results prove that our proposed collaborative block-
chain-based defense policy is implemented. The DDoS
traffics have been intercepted in the source domain.

We also append a comparison experiment to verify the
effectiveness of our proposed method; that is, only the attack
source switch continuously updates the defense flow table,
and the normal traffics aimed to targeted domain will not be
discarded. We partially modify the proposed mechanism
called Isolated BSD-Guard, in which the detection module is
reserved, but the smart contract-based (SC-based) collab-
orative defense module is removed. The attack is performed
again in the third experiment, in which the forged
TCPSYNO011 packets are launched from host, to host; with
the same intensity. After launching an attack, the same
detection process is ongoing under BSD-Guard and Isolated
BSD-Guard. And the rate of packet_in decreases after a few
seconds. However, in the Isolated BSD-Guard group, both

14

200

150

(pps)

100

Packet_in rate

50

Time (s)

- -~ src-domain controller
—— dst-domain controller

()

Security and Communication Networks

100 -

CPU utilization (%)

Time (s)

- -~ src-domain controller
—— dst-domain controller

(b)

FIGURE 11: The packet_in rate and CPU utilization of source and destination domains controller under tcpsyn0011 DDoS attack with BSD-
Guard. The change in the attack source domain is ahead of the change in the target domain. (a) packet_in rate of source and destination
domains controller; (b) CPU utilization of source and destination domains controller.

the switches S; and S, issue and update defense flow table
entries to discard the forged packets targeted to host;. At the
same time, we launch the normal TCP SYN request from
host, to host;. The result shows that the request packets
cannot reach host; because of the defense flow table entry on
switch S,. In contrast, BSD-Guard did not discard request
packets from normal user host, while defending against DoS
attacks from host,. The compared results in Table 4 prove
that the BSD-Guard can collaborate the suspect traffic in-
formation of multidomain SDN, identify the attack path
with global view, and mitigate controller targeted DDoS
from the source of attack.

We also count the time overhead of our detection and
defense process. The detection module consists of state
collection and detection algorithm. The collected in-
formation is stored to ES database in real time. We divided
the total time overhead into four stages, including T1
(searching ES database and computing), T2 (forming black/
graylists and uploading to blockchain), T3 (cooperative
detecting by smart contract), and T4 (issuing defense
strategies). Table 5 demonstrates the time overhead of five
groups of experiments, and the average of total time is
675.02ms, which is mainly occupied by T1 and T2. The
millisecond-level block generation speed can meet the re-
quirement of defense and is much faster than 14s in
Ethereum [10]. Since what is stored on the blockchain is not
the original data of sFlow and packet_in, but the blacklist and
graylist formed by statistical analyzing, the amount of data
uploaded on the blockchain is not very large. After the
successful defense, the smart contract will also delete the
expired data to save space on the blockchain.

TaBLE 4: Comparison of BSD-Guard and Isolated BSD-Guard
under attack.

Indicators BSD-Guard Isolated BSD-Guard
Detect DDoS Yes Yes
SC-based defense Yes No
Identify attack path Yes No

Permit normal flow Yes No

Flow table space Saved Wasted

TaBLE 5: The time overhead during detection and mitigation stages
(ms).

Group 1 2 3 4 5
T1 483.37 44421 307.73 331.55 362.81
T2 276.24 258.21 311.02 206.94 262.71
T3 25.21 23.66 21.55 2593 27.13
T4 1.50 1.21 0.97 1.63 1.54
Total 786.32 727.29 641.27 566.05 654.19

5.4. Characteristics Analysis. The main objective of BSD-
Guard is to provide a collaborative, elastic, lightweight, easy-
to-deploy controller targeted DDoS attacks detection and
mitigation scheme based on blockchain and smart contract.
In this section, we will discuss how our proposed BSD-
Guard achieves these characteristics.

(1) Easy to Deploy. The implemented functional mod-
ules in the BSD-Guard system are deployed in
Docker containers, allowing for rapid deployment
and cluster scaling. The FISCO platform [34] is
employed to provide blockchain, and the official

Security and Communication Networks

WeBASE platform provides convenient nodes and
contracts management function.

(2) Collaborative Detecting and Defending. Multiple
controllers can share topology and threat in-
formation on the trusted blockchain, on which in-
formation can not be tampered by malicious
attackers. Collaborative defense makes forged attack
traffic discarded at the source switch, which reduces
the defense overhead of subsequent switches. And
the formation of attack path helps the adoption of
more precise defense strategies.

(3) Precise and Elastic Defending. The defense policies
are established based on the blacklists and graylists
stored on blockchain. The generation of defense flow
table entries is determined by the characteristics of
detected attack traffic, which can avoid dropping of
normal traffic. Meanwhile, the duration of defense
flow table depends on the real-time load of con-
troller, which makes defense more elastic.

(4) Lightweight. The system employs a private block-
chain that does not consume additional gas and does
not affect the performance of ONOS controller. The
collaborative defense policies save flow table space
on hardware switches. Compared with machine
learning based detection algorithms, in which the
features extracting and data training increase the
complexity, our proposed BSD-Guard system is
more lightweight.

6. Conclusion

In this paper, we proposed BSD-Guard, a collaborative and
elastic blockchain-based detection and mitigation frame-
work to protect SDN against controller targeted DDoS at-
tack. BSD-Guard consists of the secure middle plane and
blockchain. The secure middle plane can collect traffic in-
formation from data planes, including sFlow and OpenFlow.
The blockchain stores and shares the blacklists and graylists
via smart contracts and makes global defense strategies. We
design two types of detection and mitigation mechanisms
under the intradomain and cross-domain scenarios. We
deploy BSM-Guard on the physical environment to verify
the effectiveness of our proposed framework. Three groups
of experiments have been conducted to verify the system’s
defense abilities against various types of DDoS attacks. The
experimental results indicate that BSD-Guard can detect
DDoS attacks with global view, identify the attack path, and
install precise defending flow table entries on the near-attack
switches. The SDN controller can be well protected and
normal service traffic will not be affected by defense policy.
Compared with controller clusters, the introduction of
blockchain solves the problem of threat sharing among
multiple controllers and achieves rapid response and mit-
igation of DDoS attacks against controllers within an ac-
ceptable time and space range.

15

Data Availability

The experiment data of BSD-Guard are uploaded at https://
github.com/SeuSQ/BSD-Guard/issues/1#issue-1092568880.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2020YFB1804604 and in part by the General Program of the
National Natural Science Foundation of China under Grant
62172093.

References

[1] A. Abdou, P. C. Van Oorschot, and T. Wan, “Comparative
analysis of control plane security of sdn and conventional
networks,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 4, pp. 3542-3559, 2018.

[2] L. F. Eliyan and R. Di Pietro, “Dos and ddos attacks in
software defined networks: a survey of existing solutions and
research challenges,” Future Generation Computer Systems,
vol. 122, pp. 149-171, 2021.

[3] M. Imran, M. H. Durad, F. A. Khan, and A. Derhab, “Toward

an optimal solution against denial of service attacks in soft-

ware defined networks,” Future Generation Computer Sys-

tems, vol. 92, pp. 444-453, 2019.

M. Essaid, D. Kim, S. H. Maeng, S. Park, and H. T. Ju, “A

collaborative ddos mitigation solution based on ethereum

smart contract and rnn-lIstm,” in Proceedings of the 20th Asia-

Pacific Network Operations and Management Symposium

(APNOMS), pp. 1-6, IEEE, September 2019.

[5] M. S. Elsayed, N.-A. Le-Khac, and A. D. Jurcut, “Insdn:
a novel sdn intrusion dataset,” IEEE Access, vol. 8, Article ID
165263, 2020.

[6] O.E. Tayfour and M. N. Marsono, “Collaborative detection and

mitigation of ddos in software-defined networks,” The Journal

of Supercomputing, vol. 77, no. 11, Article ID 13166, 2021.

Z. Abou El Houda, A. S. Hafid, and L. Khoukhi, “Cochain-SC:

an intra- and inter-domain ddos mitigation scheme based on

blockchain using SDN and smart contract,” IEEE Access,

vol. 7, Article ID 98893, 2019.

Z. Abou El Houda, A. Hafid, and L. Khoukhi, “Co-iot:

a collaborative ddos mitigation scheme in iot environment

based on blockchain using sdn,” in Proceedings of the IEEE

Global Communications Conference (GLOBECOM), pp. 1-6,

IEEE, Waikoloa, HI, USA, December 2019.

[9] B.Rodrigues, T. Bocek, A. Lareida, D. Hausheer, S. Rafati, and
B. Stiller, “A blockchain-based architecture for collaborative
ddos mitigation with smart contracts,” in Proceedings of the
IFIP International Conference on Autonomous Infrastructure,
Management and Security, pp. 16-29, Springer, Zurich,
Switzerland, July 2017.

[10] J. Dheeraj and S. Gurubharan, “Ddos mitigation using

blockchain,” International Journal of Research in Engineering,
Science and Management, vol. 1, no. 10, pp. 622-626, 2018.

[4

[7

[8

https://github.com/SeuSQ/BSD-Guard/issues/1#issue-1092568880
https://github.com/SeuSQ/BSD-Guard/issues/1#issue-1092568880

16

[11] X. You, Y. Feng, and K. Sakurai, “Packet in message based
ddos attack detection in sdn network using openflow,” in
Proceedings of the 15th International Symposium on Com-
puting and Networking (CANDAR), pp. 522-528, IEEE,
Aomori, Japan, November 2017.

[12] X. Huang, X. Du, and B. Song, “An effective ddos defense
scheme for sdn,” in Proceedings of the IEEE International
Conference on Communications (ICC), pp. 1-6, IEEE, Paris,
France, May 2017.

[13] R. F. Fouladi, O. Ermis, and E. Anarim, “A ddos attack de-
tection and defense scheme using time-series analysis for
sdn,” Journal of Information Security and Applications, vol. 54,
Article ID 102587, 2020.

[14] W. Chen, S. Xiao, L. Liu, X. Jiang, and Z. Tang, “A ddos attacks
traceback scheme for sdn-based smart city,” Computers &
Electrical Engineering, vol. 81, Article ID 106503, 2020.

[15] K. Bhushan and B. B. Gupta, “Distributed denial of service
(ddos) attack mitigation in software defined network (sdn)-
based cloud computing environment,” Journal of Ambient
Intelligence and Humanized Computing, vol. 10, no. 5,
pp. 1985-1997, 2019.

[16] M. Hassan, D. Mahmood, Q. Shaheen, R. Akhtar,
W. Changda, and S-dps, “An sdn-based ddos protection
system for smart grids,” Security and Communication Net-
works, vol. 2021, Article ID 6629098, 19 pages, 2021.

[17] B. H. Lawal and A. Nuray, “Real-time detection and miti-
gation of distributed denial of service (ddos) attacks in
software defined networking (sdn),” in Proceedings of the 26th
Signal Processing and Communications Applications Confer-
ence (SIU), pp. 1-4, IEEE, Izmir, Turkey, May 2018.

[18] C.Kumar, B. P. Kumar, A. Chaudhary et al.,, “Intelligent ddos
detection system in software-defined networking (sdn),” in
Proceedings of the IEEE International Conference on Elec-
tronics, Computing and Communication Technologies
(CONECCT), pp. 1-6, IEEE, Bangalore, India, July 2020.

[19] Y. Lu and M. Wang, “An easy defense mechanism against
botnet-based ddos flooding attack originated in sdn envi-
ronment using sflow,” in Proceedings of the 11th International
Conference on Future Internet Technologies, pp. 14-20, ACM,
Nanjing, China, June 2016.

[20] K.-Y. Chen, S. Liu, Y. Xu et al., “Sdnshield: nfv-based defense
framework against ddos attacks on sdn control plane,” IEEE/
ACM Transactions on Networking, vol. 30, 2021.

[21] S. Y. Mehr and B. Ramamurthy, “An svm based ddos attack
detection method for ryu sdn controller,” in Proceedings of the
15th international conference on emerging networking exper-
iments and technologies, pp. 72-73, ACM, Orlando, FL, USA,
December 2019.

[22] J. Cui, J. Zhang, J. He, H. Zhong, and Y. Lu, “Ddos detection
and defense mechanism for sdn controllers with k-means,” in
Proceedings of the IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC), pp. 394-401, IEEE,
Leicester, UK, December 2020.

[23] V. Deepa, K. M. Sudar, and P. Deepalakshmi, “Detection of
ddos attack on sdn control plane using hybrid machine
learning techniques,” in Proceedings of the International
Conference on Smart Systems and Inventive Technology
(ICSSIT), pp. 299-303, IEEE, Tirunelveli, India, December
2018.

[24] B. Nugraha and R. N. Murthy, “Deep learning-based slow
ddos attack detection in sdn-based networks,” in Proceedings
of the IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pp. 51-56, IEEE,
Leganes, Spain, November 2020.

Security and Communication Networks

[25] Y. Xu, Y. Yu, H. Hong, and Z. Sun, “Ddos detection using
a cloud-edge collaboration method based on entropy-mea-
suring som and kd-tree in sdn,” Security and Communication
Networks, vol. 2021, Article ID 5594468, 16 pages, 2021.

R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz,
and J. Gonzdlez, “Towards sflow and adaptive polling sam-
pling for deep learning based ddos detection in sdn,” Future
Generation Computer Systems, vol. 111, pp. 763-779, 2020.
[27] T.-K. Luong, T.-D. Tran, and G.-T. Le, “Ddos attack detection
and defense in sdn based on machine learning,” in Proceedings
of the 7th NAFOSTED Conference on Information and
Computer Science (NICS), pp. 31-35, IEEE, Ho Chi Minh City,
Vietnam, November 2020.

K. Nishizuka, L. Xia, J. Xia, D. Zhang, L. Fang, and C. Gray,
Interorganization Cooperative Ddos protection Mechanism,
Internet-Draft, 2016.

J. Steinberger, B. Kuhnert, A. Sperotto, H. Baier, and A. Pras,
“Collaborative ddos defense using flow-based security event
information,” in Proceedings of the NOMS 2016-2016 IEEE/
IFIP Network Operations and Management Symposium,
pp- 516-522, IEEE, Istanbul, Turkey, April 2016.

U. Javaid, A. K. Siang, M. N. Aman, and B. Sikdar, “Mitigating
lot device based ddos attacks using blockchain,” in Pro-
ceedings of the Ist Workshop on Cryptocurrencies and
Blockchains for Distributed Systems, pp. 71-76, New York, NY,
USA, 2018.

Z. Shao, X. Zhu, A. M. M. Chikuvanyanga, and H. Zhu,
“Blockchain-based sdn security guaranteeing algorithm and
analysis model,” in Proceedings of the International Confer-
ence on Wireless and Satellite Systems, pp. 348-362, Springer,
Harbin, China, January 2019.

S. Gao, Z. Peng, B. Xiao, A. Hu, Y. Song, and K. Ren, “De-
tection and mitigation of dos attacks in software defined
networks,” IEEE/ACM Transactions on Networking, vol. 28,
no. 3, pp. 1419-1433, 2020.

K. Giotis, M. Apostolaki, and V. Maglaris, “A reputation-
based collaborative schema for the mitigation of distributed
attacks in sdn domains,” in Proceedings of the NOMS 2016-
2016 IEEE/IFIP Network Operations and Management Sym-
posium, pp. 495-501, IEEE, Istanbul, Turkey, April 2016.
Fisco-bcos, “Fisco-bcos-documentation,” 2021, https://fisco-
bcos-documentation.readthedocs.io/zh_CN/latest/.

[26

[28

[29

[30

[31

[32

(33

[34

https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/

