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Abstract

BSPlib is a small communications library for bulk synchronous parallel (BSP) program-

ming which consists of only 20 basic operations. This paper presents the full de®nition of

BSPlib in C, motivates the design of its basic operations, and gives examples of their use. The

library enables programming in two distinct styles: direct remote memory access (DRMA)

using put or get operations, and bulk synchronous message passing (BSMP). Currently, im-

plementations of BSPlib exist for a variety of modern architectures, including massively

parallel computers with distributed memory, shared memory multiprocessors, and networks of

workstations. BSPlib has been used in several scienti®c and industrial applications; this paper

brie¯y describes applications in benchmarking, Fast Fourier Transforms (FFTs), sorting, and

molecular dynamics. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the earliest days of computing it has been clear that, sooner or later, se-

quential computing would be superseded by parallel computing. This has not yet

happened, despite the availability of numerous parallel machines and the insatiable

demand for increased computing power. For parallel computing to become the

normal form of computing we require a model which can play a similar role to the

one that the von Neumann model has played in sequential computing. The emer-

gence of such a model would stimulate the development of a new parallel software

industry, and provide a clear focus for future hardware developments. For a model

to succeed in this role it must o�er three fundamental properties.

Scalability ± the performance of software and hardware must be scalable from a

single processor to several hundreds of processors.

Portability ± software must be able to run unchanged, with high performance, on

any general purpose parallel architecture.

Predictability ± the performance of software on di�erent architectures must be

predictable in a straightforward way.

It should also, ideally, permit the correctness of parallel programs to be de-

termined in a way which is not much more di�cult than for sequential pro-

grams.

Recent research on Bulk Synchronous Parallel (BSP) algorithms, architectures

and languages has shown that the BSP model can achieve all of these requirements

[39,30,38,16,9,32].

The BSP model decouples the two fundamental aspects of parallel computation:

communication and synchronisation. This decoupling is the key to achieving uni-

versal applicability across the whole range of parallel architectures. A BSP compu-

tation consists of a sequence of parallel supersteps. Each superstep is subdivided into

three ordered phases consisting of: (1) simultaneous local computation in each

process, using only values stored in the memory of its processor; (2) communication

actions amongst the processes, causing transfers of data between processors; and (3)

a barrier synchronisation, which waits for all of the communication actions to

complete, and which then makes any data transferred visible in the local memories of

the destination processes.

This approach to parallel programming is applicable to all kinds of parallel

architecture: distributed memory architectures, shared memory multiprocessors,

and networks of workstations. It provides a consistent, and very general, frame-

work within which to develop portable parallel software for scalable parallel ar-

chitectures.

In this work, we describe BSPlib, a small communications library for BSP pro-

gramming in a Single Program Multiple Data (SPMD) manner. The main features of

BSPlib are two modes of communication, one capturing a one-sided direct remote

memory access (DRMA) paradigm and the other re¯ecting a bulk synchronous

message passing (BSMP) approach.

BSPlib is not the only communication library for parallel computing. One

prominent alternative is the Message Passing Interface (MPI) [34,19].
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MPI and BSPlib are similar in that they are both designed for the development of

scalable and portable parallel code. The fundamental di�erence between the two is

that BSPlib is based on the superstep programming discipline, while MPI is not.

Associated with BSPlib's programming discipline is a simple cost model for the

transmission of bulked messages. In contrast, MPI has no exposed cost model, and if

one were exposed it would necessarily be based upon single messages rather than

supersteps.

One consequence of the BSPlib philosophy is that BSPlib is concise and consis-

tent, making it easy to implement e�ciently. MPI's greater ¯exibility leads to a huge

library with competing functionalities, making e�cient implementation far more

problematic.

The speci®cs of BSPlib were in¯uenced by experience with the Oxford BSP library

[32], the Cray SHMEM library [3], the split-phase assignments in Split-C [10], and

the Green BSP library [17].

This paper presents the full de®nition of the C interface to BSPlib in Sections 2±4

(the Fortran interface is described in Ref. [24]). A quick reference table of all the 20

primitives can be found on page 35. Section 5 presents a brief description and results

of applications in benchmarking, Fast Fourier Transforms, sorting, and molecular

dynamics. The paper is concluded in Section 6, which discusses possible future ex-

tensions.

2. SPMD framework

Like many other communications libraries, BSPlib adopts an SPMD pro-

gramming model. The task of writing an SPMD program will typically involve

mapping a problem that manipulates a data structure of size n into p instances of

a program that each manipulate an n=p sized block of the original domain. The

role of BSPlib is to provide the infrastructure required for the user to take care of

the data distribution, and any implied communication necessary to manipulate

parts of the data structure that are on a remote process. An alternative role for

BSPlib is to provide an architecture independent target for higher-level libraries or

programming tools that automatically distribute the problem domain among the

processes.

2.1. Starting and ®nishing SPMD code

Processes are created in a BSPlib program by the operations bsp_begin and

bsp_end. They bracket a piece of code to be run in an SPMD manner on a number

of processors. There can only be one instance of a bsp_begin/bsp_end within a

program. If bsp_begin and bsp_end are the ®rst and last statements in a pro-

gram, then the entire BSPlib computation is SPMD. An alternative mode is available

where a single process starts execution and determines the number of parallel pro-

cesses required for the calculation. See Section 2.2 for details.
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2.1.1. Syntax and parameters

void bsp_begin(int maxprocs);

void bsp_end(void);

maxprocs is the number of processes requested by the user.

2.1.2. Example

A trivial BSPlib program is shown below. The program starts as many parallel

processes as there are available, each of which prints the string ``Hello BSP

Worldwide''. The example illustrates the minimum requirements of BSPlib with

respect to I/O. When a number of processes print a message on either standard

output or standard error, the messages are multiplexed to the user's terminal in a

non-deterministic manner. Therefore, this example prints the strings in an arbitrary

order. All other types of I/O (e.g., user input and ®le access) are only guaranteed to

work correctly if performed by process zero.

void main(void) {

bsp_begin(bsp_nprocs( ));

printf(``Hello BSP Worldwide from process %d of %d\n'',

bsp_pid( ), bsp_nprocs( ));

bsp_end( );

}

2.1.3. Notes

1. An implementation of BSPlib may spawn less than maxprocs processes. The ac-

tual number of processes started can be found by the enquiry function

bsp_nprocs( ).

2. There can only be a single bsp_begin/bsp_end pair within a BSPlib program.

This excludes the possibility of starting, stopping, and then restarting parallel

tasks within a program, or any form of nested parallelism.

3. The process with bsp_pid( )� 0 is a continuation of the thread of control that

initiated bsp_begin. This has the e�ect that all the values of the local and global

variables prior to bsp_begin are available to that process.

4. After bsp_begin, the environment from process zero is not inherited by any of

the other processes, i.e., those with bsp_pid( ) greater than zero. If any of

them require part of zero's state, then the data must be transferred from process

zero.

5. bsp_begin has to be the ®rst statement of the procedure which contains the

statement. Similarly, bsp_end has to be the last statement in the same proce-

dure.

6. If the program is not run in a purely SPMD mode, then bsp_init has to be the

®rst statement executed by the program, see the next subsection.

7. bsp_begin(bsp_nprocs( )) can be used to request the same number of pro-

cesses as there are processors on a parallel machine.
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8. All processes must execute bsp_end for a BSPlib program to complete success-

fully.

2.2. Simulating dynamic processes

An alternative mode of starting BSPlib processes is available where a single

process starts execution and determines the number of parallel processes required for

the calculation. The initial process can then spawn the required number of processes

using bsp_begin. Execution of the spawned processes continues in an SPMD

manner, until bsp_end is encountered by all the processes. At that point, all but

process zero is terminated, and process zero is left to continue the execution of the

rest of the program sequentially.

One problem with trying to provide this alternative mode of initialisation is that

some parallel machines available today (almost all distributed memory machines,

e.g. IBM SP2, Cray T3E, Parsytec GC, Hitachi SR2001) do not provide dynamic

process creation. As a solution to this problem we simulate dynamic spawning in the

following way: (1) the ®rst statement executed by the BSPlib program is bsp_init

which takes as its argument a name of a procedure; (2) the procedure named in

bsp_init contains bsp_begin and bsp_end as its ®rst and last statements.

2.2.1. Syntax and parameters

void bsp_init(void(*spmd_part)(void), int argc, char

*argv[ ])

spmd_part is the name of a procedure that takes no arguments and does not

return a value. Its sole purpose is to isolate the SPMD part of the computation into a

single procedure. The procedure will contain bsp_begin and bsp_end as its ®rst

and last statements.

2.2.2. Example

int nprocs; /* global variable */

void spmd_part(void) {

bsp_begin(nprocs);

printf(``Hello BSP Worldwide from process %d of %d\n'',

bsp_pid( ),bsp_nprocs( ));

bsp_end( );

}

void main(int argc, char *argv[ ]) {

bsp_init(spmd_part,argc,argv);

nprocs�ReadInteger( );

spmd_part( );

}
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Unlike the previous example, when the above program is executed a single process

will begin execution and read a number from standard input that speci®es the

number of parallel processes to be spawned. The desired number of processes will

then be spawned within the procedure spmd_part, and each process will print the

string Hello BSP Worldwide.

2.3. One process stops all

The function bsp_abort provides a simple mechanism for raising errors in

BSPlib programs. A single process in a potentially unique thread of control can print

an error message followed by a halt of the entire BSPlib program. The routine is

designed not to require a barrier synchronisation of all processes.

2.3.1. Syntax and parameters

void bsp_abort(char *format,...);

format is a C-style format string as used by printf. Any other arguments are

interpreted in the same way as the variable number of arguments to printf.

2.3.2. Notes

1. If more than one process calls bsp_abort in the same superstep, then either one,

all, or a subset of the processes that called bsp_abort may print their format

string to the terminal before stopping the BSPlib computation.

2.4. Local enquiry functions

The BSPlib enquiry functions are local operations that do not require commu-

nication among the processes. They return information concerning: (1) the number

of parallel processes involved in a BSPlib calculation; (2) a unique process identi®er

of the SPMD process that called the enquiry function; and (3) access to a high-

precision clock.

If the function bsp_nprocs is called before bsp_begin, then it returns the

number of processors which are available. If it is called after bsp_begin it returns

p, the actual number of processes allocated to the program, where 16 p6maxprocs,

and maxprocs is the number of processes requested in bsp_begin. Each of the p

processes created by bsp_begin has a unique value m in the range 06m6 p ÿ 1.

The function bsp_pid returns the integer m.

The function bsp_time provides access to a high-precision timer ± the accuracy

of the timer is implementation speci®c. The function is a local operation of each

process, and can be issued at any point after bsp_begin. The result of the timer is

the elapsed time in seconds since bsp_begin. The semantics of bsp_time is as

though there were p timers, one per process. BSPlib does not impose any synchron-

isation requirements between the timers on di�erent processes.
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2.4.1. Syntax and parameters

int bsp_nprocs(void);

int bsp_pid(void);

double bsp_time(void);

2.5. Superstep

A BSPlib calculation consists of a sequence of supersteps. During a superstep

each process can perform a number of computations on data held locally at the start

of the superstep and may communicate data to other processes. Any communica-

tions within a superstep are guaranteed to occur by the end of the superstep, where

all processes synchronise at a barrier ± BSPlib has no form of subset synchronisa-

tion.

The end of one superstep and the start of the next is identi®ed by a call to the

library procedure bsp_sync. Communication initiated during a superstep is not

guaranteed to occur until bsp_sync is executed; this is even the case for the un-

bu�ered variants of communication.

2.5.1. Syntax and parameters

void bsp_sync(void);

3. Direct remote memory access

One way of performing data communication in the BSP model is to use DRMA

communication facilities. Some parallel programming libraries require that the data

structures used in DRMA operations have to be held at statically allocated memory

locations. BSPlib does not have this restriction, which enables communication in

certain heterogeneous environments, and allows communication into any type of

contiguous data structure including stack or heap allocated data. This is achieved by

allowing a process to manipulate certain registered areas of a remote memory which

have been previously made available by the corresponding processes. In this regis-

tration procedure, processes use the operation bsp_push_reg to announce the

address of the start of a local area which is available for global remote use.

The operation bsp_put deposits locally held data into a registered remote

memory area on a target process, without the active participation of the target

process. The operation bsp_get reaches into the registered local memory of an-

other process to copy data values held there into a data structure in its own local

memory.

Allowing a process to arbitrarily manipulate the memory of another process,

without the involvement of that process, is potentially dangerous. The mechanisms

we propose here exhibit di�erent degrees of safety depending on the bu�ering re-
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quirements of the communication operations. The right choice of bu�ering depends

on the class of applications and the desired goals, and has to be made by the user.

There are four forms of bu�ering with respect to the DRMA operations:

Bu�ered on destination: Writing data into registered areas will happen at the end

of the superstep, once all remote reads have been performed.

Unbu�ered on destination: Data communication into registered areas can take

e�ect at any time during the superstep. Therefore, for safety, no process should

change the destination data structures used during the course of the superstep.

Bu�ered on source: If the source data structure is in the memory of the process

that issues a communication action (i.e., a put), then a copy of the data is made at the

time the communication action is issued; the source data structure can therefore be

changed by the user immediately after communications are issued. Alternatively, if

the source data structure is on a remote process (i.e., a get), then the data is read on

the remote process at the end of the superstep, before any remote writes are per-

formed.

Unbu�ered on source: The data transfer resulting from a call to a communication

operation may occur at any time between the time of issue and the end of the su-

perstep.Therefore, for safety, no process should change the source data structures

used during the course of the superstep.

The various bu�ering choices are crucial in determining the safety of the com-

munication operation, i.e., the conditions which guarantee correct data delivery as

well as its e�ects on the processes involved in the operation. However, it should be

noted that even the most cautious choice of bu�ering mode does not completely

remove non-determinism. For example, if more than one process transfers data into

overlapping memory locations, then the result at the overlapping region will be non-

deterministically chosen; it is implementation dependent which one of the many

``colliding'' communications should be written into the remote memory area.

3.1. Registration

A BSPlib program consists of p processes, each with its own local memory. The

SPMD structure of such a program produces p local instances of the various data

structures used in the program. Although these p instances share the same name,

they will not, in general, have the same physical address. Due to stack or heap al-

location, or due to implementation on a heterogeneous architecture, one might ®nd

that the p instances of variable x have been allocated at up to p di�erent addresses.

To allow BSPlib programs to execute correctly we require a mechanism for re-

lating these various addresses by creating associations called registrations. A regis-

tration is created when each process calls bsp_push_reg and, respectively,

provides the address and the extent of a local area of memory. Both types of in-

formation are relevant as processes can create new registrations by providing the

same addresses, but di�erent extents. The semantics adopted for registration enables

procedures called within supersteps to be written in a modular way by allowing

newer registrations to temporarily replace older ones. However, the scheme adopted

does not impose the strict nesting of push±pop pairs that is normally associated with
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a stack. This provides the bene®ts of encapsulation provided by a stack, whilst

providing the ¯exibility associated with a heap-based discipline. In line with super-

step semantics, registration takes e�ect at the next barrier synchronisation.

A registration association is destroyed when each process calls bsp_pop_reg

and provides the address of its local area participating in that registration. A runtime

error will be raised if these addresses (i.e., one address per process) do not refer to the

same registration association. In line with superstep semantics, de-registration takes

e�ect at the next barrier synchronisation.

One interpretation of the registration mechanism is that there is a sequence of

registration slots that are accessible by all the processes. If each process i executes

bsp push reg�indenti; sizei�
then the entry hhident0; size0i; . . . ; hidentpÿ1; sizepÿ1ii is added to the front of the se-

quence of registration slots. The intent of registration is to make it simple to refer to

remote storage areas without requiring their locations to be explicitly known. A

reference to a registered area in a bsp_put or bsp_get is translated to the address

of the corresponding remote area in its most recent registration slot. For example, if

tgtl is used in a put executed on process l,

bsp put�r; src; tgtl; offset; nbytes�
and the registration sequence 1 is , where entry s is the most recent entry

containing tgtl (i.e., the lth element of s is htgtl; nli, and there is no entry s in ss such

that the lth element of s is htgtl;mli), then the e�ect is to transfer nbytes of data from

the data structure starting at address src on process l into the contiguous memory

locations starting at tgtr � offset on process r, where the base address tgtr comes

from the same registration slot s as tgtl. Rudimentary bounds checking may be

performed on the communication, such that a runtime error can be raised if

offset � nbytes > nr.

The e�ect of the de-registration

bsp pop reg�identl�
is that given the registration sequence

and suppose that there does not exist an entry s in ss such that the lth element of s is

hidentl;mli, then the registration sequence is changed to at the start of the

next superstep. A runtime error will be raised if di�ering processes attempt to de-

register a di�erent registration slot during the same de-registration. For example, if

process p0 registers x twice, and process p1 registers x followed by y, then a runtime

error will be raised if both processes attempt to de-register x. This error is due to the

active registration for x referring to a di�erent registration slot on each process.

1 The operator , is used to concatenate two sequences together.
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3.1.1. Syntax and parameters

void bsp_push_reg(const void *ident, int size);

void bsp_pop_reg(const void *ident);

ident is a previously initialised variable denoting the address of the local area being

registered or de-registered.

size is a non-negative integer denoting the extent, in bytes, of the area being

registered for use in bounds checking within the library.

3.1.2. Notes

1. bsp_push_reg takes e�ect at the end of the superstep. DRMA operations may

use the registered areas from the start of the next superstep.

2. DRMA operations are allowed to use memory areas that have been de-registered

in the same superstep, as bsp_pop_reg only takes e�ect at the end of a super-

step.

3. Communication into unregistered memory areas raises a runtime error.

4. Registration is a property of an area of memory and not a reference to the mem-

ory. There can therefore be many references (i.e., pointers) to a registered memory

area.

5. If only a subset of the processes are required to register data because a program

may have no concept of a commonly named memory area on all processes, then all

processes must call bsp_push_reg although some may register the memory

area NULL. This memory area is regarded as unregistered.

6. While registration is designed for ``full duplex'' communication, a process

can do half duplex communication by, appropriately, registering an area of

size 0.

7. It is an error to provide negative values for the size of the registration area.

8. Since on each process static data structures are allocated at the same address (this

is not always the case, as some optimising C compilers un-static statics), the reg-

istration slot in such cases will have the form:

Even though static data structures are allocated at the same address, they still have

to be registered.

3.2. Copy to remote memory

The aim of bsp_put and bsp_hpput is to provide an operation akin to me-

mcpy available in the Unix <string.h> library. Both operations copy a speci®ed

number of bytes, from a byte addressed data structure in the local memory of one

process into contiguous memory locations in the local memory of another process.
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The distinguishing factor between these operations is provided by the bu�ering

choice.

The semantics bu�ered on source, bu�ered on destination is used for bsp_put

communications. While the semantics is clean and safety is maximised, puts may

unduly tax the memory resources of a system. Consequently, BSPlib also provides a

high performance put operation bsp_hpput whose semantics is unbu�ered on source,

unbu�ered on destination. The use of this operation requires care as correct data

delivery is only guaranteed if: (1) no communications alter the source area; (2) no

subsequent local computations alter the source area; (3) no other communications

alter the destination area; and (4) no computation on the remote process alters the

destination area during the entire superstep. The main advantage of this operation is

its economical use of memory. It is therefore particularly useful for applications

which repeatedly transfer large data sets.

3.2.1. Syntax and parameters

void bsp_put(

int pid, const void *src,

void *dst, int offset, int nbytes);

void bsp_hpput(

int pid, const void *src,

void *dst, int offset, int nbytes);

pid is the identi®er of the process where data is to be stored.

src is the location of the ®rst byte to be transferred by the put operation.

The calculation of src is performed on the process that initiates the put.

dst is the location of the ®rst byte where data is to be stored. It must be a

previously registered area.

offset is the displacement in bytes from dst where src will start copying into.

The calculation of offset is performed by the process that initiates the put.

nbytes is the number of bytes to be transferred from src into dst.It is assumed

that src and dst are addresses of data structures that are at least nbytes in size. The

data communicated can be of arbitrary size. It is not required to have a size which is a

multiple of the word size of the machine.

3.2.2. Example

The reverse function shown below highlights the interaction between regis-

tration and put communications. This example de®nes a simple collective commu-

nication operation, in which all processes have to call the function within the same

superstep. The result of the function on process i will be the value of the parameter x

from process bsp nprocs� � ÿ iÿ 1.

int reverse(int x) {

bsp_push_reg(&x,sizeof(int));

bsp_sync( );
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bsp_put(bsp_nprocs( )-bsp_pid( )-1,&x,&x,0,sizeof(int));

bsp_sync( );

bsp_pop_reg(&x);

return x;

}

By the end of the ®rst superstep, identi®ed by the ®rst bsp_sync, all the processes

will have registered the parameter x as being available for remote access by any

subsequent DRMA operation. During the second superstep, each process transfers

its local copy of the variable x into a remote copy on process

bsp nprocs� � ÿ bsp pid� � ÿ 1. Although communications occur to and from

the same variable within the same superstep, the algorithm does not su�er from

problems of concurrent assignment because of the bu�ered on source, bu�ered on

destination semantics of bsp_put. This bu�ering ensures con¯ict-free communi-

cation between the outgoing communication from x, and any incoming transfers

from remote processes.The de-register at the end of the function reinstates the reg-

istration properties that were active on entry to the function at the next bsp_sync

encountered during execution.

3.2.3. Example

The procedure put_array shown below has a semantics de®ned by the con-

current assignment:

8i 2 f0; . . . ; nÿ 1g xs�xs�i�� :� xs�i�
Conceptually, the algorithm manipulates a global array xs of n elements that are

distributed among the processes. The role of BSPlib is to provide the infrastructure

for the user to take care of the data distribution, and any implied communication

necessary to manipulate parts of the data structure that are on a remote process.

Therefore, if the user distributes the global array in a block-wise manner (i.e., pro-

cess zero gets elements 0 to n/p ÿ 1, process one gets n/p to 2n/p ÿ 1, etc.) with each

process owning an n/p chunk of elements, then the BSPlib communications necessary

to perform the concurrent assignment are shown below.

void put_array(int *xs, int n) {

int i,dst_pid,dst_idx,p�bsp_nprocs( ),n_over_p�n/p;

if ((n % p) !�0

bsp_abort(``{put_array} n�%d not divisible by

p�%d'',n,p);

bsp_push_reg(xs,n_over_p*sizeof(int));

bsp_sync( );

for(i�0;i<n_over_p;i++)f
dst_pid�xs[i]/n_over_p;

dst_idx�xs[i]%n_over_p;

bsp_put(dst_pid,&xs[i],xs,dst_idx*sizeof(int),size-

of(int));
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}

bsp_sync( );

bsp_pop_reg(xs);

}

The procedure highlights the use of bsp_abort and the o�set parameter in

bsp_put. Each process's local section of the array xs is registered in the ®rst su-

perstep. Next, n/p puts are performed, in which the global numbering used in the

distributed array (i.e., indices in the range 0 through n ÿ 1), are converted into pairs

of process identi®er and local numbering in the range 0 to n/p ÿ 1. Once the con-

version from the global scheme to process-id/local index has been performed, ele-

ments of the array can be transferred into the correct index on a remote process. It

should be noted that if the value of the variable dst_pid is the same as

bsp_pid( ), then a local assignment (i.e., memory copy) will occur at the end of the

superstep. In this example, bu�ering is necessary as processes need to read data

before it is overwritten.

3.2.4. Notes

1. The destination memory area used in a put has to be registered. It is an error to

communicate into a data structure that has not been registered.

2. The source of a put does not have to be registered.

3. If the destination memory area dst is registered with size x, then it is a bounds

error to perform the communication bsp put�pid;src;dst; o; n� if o� n > x.

4. A communication of zero bytes does nothing.

5. A process can communicate into its own memory if pid � bsp pid� �. How-

ever, for bsp_put, due to the bu�ered at destination semantics, the memory copy

only takes e�ect at the end of the superstep.

6. The process numbering and o�set parameter start from zero.

3.3. Copy from remote memory

The bsp_get and bsp_hpget operations reach into the local memory of an-

other process and copy previously registered remote data held there into a data

structure in the local memory of the process that initiated them.

The semantics bu�ered on source, bu�ered on destination is used for bsp_get

communications. This semantics means that the value taken from the source on the

remote process by the get, is the value available once the remote process ®nishes

executing all its superstep computations. Furthermore, writing the value from the

remote process into the destination memory area on the initiating process only takes

e�ect at the end of the superstep after all remote reads from any other bsp_get

operations are performed, but before any data is written by any bsp_put. Therefore,

computation and bu�ered communication operations within a superstep can be

thought to occur in the following order:

1. local computation is performed; also, when a bsp_put is excecuted, the associ-

ated source data is read;
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2. the source data associated with all bsp_gets are read;

3. data associated with any bsp_put or bsp_get are written into the destination

data structures.

A high-performance version of get, bsp_hpget, provides the unbu�ered on source,

unbu�ered on destination semantics in which the two-way communication can take

e�ect at any time during the superstep.

3.3.1. Syntax and parameters

void bsp_get(

int pid, const void *src, int offset,

void *dst, int nbytes);

void bsp_hpget(

int pid, const void *src, int offset,

void *dst, int nbytes);

pid is the identi®er of the process where data is to be obtained from.

src is the location of the ®rst byte from where data will be obtained. srcmust be

a previously registered memory area.

offset is an o�set from src where the data will be taken from. The calculation

of offset is performed by the process that initiates the get.

dst is the location of the ®rst byte where the data obtained is to be placed. The

calculation of dst is performed by the process that initiates the get.

nbytes is the number of bytes to be transferred from src into dst. It is as-

sumed that src and dst are addresses of memory areas that are at least nbytes in

size.

3.3.2. Example

The function bsp_sum de®ned below is a collective communication (i.e., all

processes have to call the function), such that when process i calls the function with

an array xs containing nelemi elements, then the result on all the processes will be

the sum of all the arrays from all the processes.

int bsp_sum(int*xs,intnelem){

int *local_sums,i,j,result�0,p�bsp_nprocs( );

for(j�0;j<nelem;j++) result +� xs[j];

bsp_push_reg(&result,sizeof(int));

bsp_sync( );

local_sums�calloc(p,sizeof(int));

if (local_sums� �NULL)

bsp_abort(``{bsp_sum} no memory for %d int'',p);

for(i�0;i<p;i++)

bsp_hpget(i,&result,0,&local_sums[i],sizeof(int));

bsp_sync( );

result�0;
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for(i�0;i<p;i++) result +�local_sums[i];

bsp_pop_reg(&result);

free(local_sums);

return result;

}

The function contains three supersteps. In the ®rst, the local array xs of each process

is summed and assigned to the variable result. This variable is then registered for

communication in the subsequent superstep. Next, each local result is broadcast

into the bsp pid� �th element of local_sums on every process. Unlike the pre-

vious examples, an unbu�ered communication is used in preference to a bu�ered

bsp_get because the variable result is not used in any local computation during

the same superstep as the communication. In the ®nal superstep of the algorithm,

each process returns the sum of the p values obtained from each process.

3.3.3. Notes

1. The source memory area used in a get has to be registered. It is an error to fetch

from a data structure that has not been registered.

2. The destination of a get does not have to be registered.

3. If the source memory area src is registered with size x, then it is a bounds error

to perform the communication bsp get�pid;src; o;dst; n� if o� n > x.

4. A communication of zero bytes does nothing.

5. A process can read from its own memory if pid � bsp pid� �. However, due to

the bu�ered at destination semantics of bsp_get, the memory copy only takes ef-

fect at the end of the superstep; i.e, the source data is read and then written at the

end of the superstep.

4. Bulk synchronous message passing

DRMA is a convenient style of programming for BSP computations which can be

statically analysed in a straightforward way. It is less convenient for computations

where the volumes of data being communicated in supersteps are irregular and data

dependent, and where the computation to be performed in a superstep depends on

the quantity and form of data received at the start of that superstep. A more ap-

propriate style of programming in such cases is BSMP.

In BSMP, a non-blocking send operation is provided that delivers messages to a

system bu�er associated with the destination process. The message is guaranteed to

be in the destination bu�er at the beginning of the subsequent superstep, and can be

accessed by the destination process only during that superstep. If the message is not

accessed during that superstep it is removed from the bu�er. In keeping with BSP

superstep semantics, the messages sent to a process during a superstep have no

implied ordering at the receiving end; a destination bu�er may therefore be viewed as

a queue, where the incoming messages are enqueued in arbitrary order and are de-

queued (accessed) in that same order. Note that although messages are typically
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identi®ed with tags, BSPlib provides no tag-matching facility for the out-of-order

access of speci®c incoming messages.

In BSPlib, bulk synchronous message passing is based on the idea of two-part

messages, a ®xed-length part carrying tagging information that will help the receiver

to interpret the message, and a variable-length part containing the main data pay-

load. We will call the ®xed-length portion the tag and the variable-length portion the

payload. The length of the tag is required to be ®xed during any particular superstep,

but can vary between supersteps. The bu�ering mode of the BSMP operations is

bu�ered on source, bu�ered on destination. We note that this bu�ering classi®cation is

a semantic description; it does not necessarily describe the underlying implementa-

tion.

4.1. Choose tag size

Allowing the user to set the tag size enables the use of tags that are appropriate for

the communication requirements of each superstep. This should be particularly

useful in the development of subroutines either in user programs or in libraries.

The procedure must be called collectively by all processes. A change in tag size

takes e�ect in the following superstep; the tag size then becomes valid.

4.1.1. Syntax and parameters

void bsp_set_tagsize (int *tag_nbytes);

tag_nbytes on entry to the procedure, speci®es the size of the ®xed-length portion

of every message in the subsequent supersteps; the default tag size is zero. On return

from the procedure, tag_nbytes is changed to re¯ect the previous value of the tag

size. This can be used to reinstate the previous state of the system.

4.1.2. Notes

1. The tag size of outgoing messages is prescribed by the tag size that is valid in the

current superstep.

2. The tag size of messages in the system queue is prescribed by the tag size that was

valid in the previous superstep.

3. bsp_set_tagsize must be called by all processes with the same argument in

the same superstep. In this respect, it is similar to bsp_push_reg.

4. bsp_set_tagsize takes e�ect in the next superstep.

5. Given a sequence of bsp_set_tagsize within the same superstep, the value of

the last of these will be used as the tag size for the next superstep.

6. The default tag size is 0.

4.2. Send to remote queue

The bsp_send operation is used to send a message that consists of a tag and a

payload to a speci®ed destination process. The destination process will be able to
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access the message during the subsequent superstep. The bsp_send operation

copies both the tag and the payload of the message before returning. The tag and

payload variables can therefore be changed by the user immediately after the

bsp_send. Messages sent by bsp_send are not guaranteed to be received in any

particular order by the destination process. This is the case even for successive calls

of bsp_send from one process with the same value for pid.

4.2.1. Syntax and parameters

void bsp_send(

int pid, const void *tag,

const void *payload, int payload_nbytes);

pid is the identi®er of the process where data is to be sent.

tag is a token that can be used to identify the message. Its size is determined by

the value speci®ed in bsp_set_tagsize.

payload is the location of the ®rst byte of the payload to be communicated.

payload_nbytes is the size of the payload.

4.2.2. Notes

1. The size of the tag used in bsp_send will depend on either the size of tag that

was valid in the previous superstep, or the size speci®ed by the last bsp_set_-

tagsize issued in the previous superstep.

2. If the payload size is zero, then a message that only contains the tag will be sent.

Similarly, if the tag size is zero, then a message just containing the payload will be

sent. If both the tag and payload are zero, a message that contains neither tag nor

payload will be sent.

3. If the tag size is zero, then the tag argument may be NULL. Similarly, if the pay-

load size is zero, then the payload argument may be NULL.

4.3. Number of messages in queue

The function bsp_qsize is an enquiry function that returns the number of

messages that were sent to this process in the previous superstep and have not yet

been consumed by a bsp_move. Before any message is consumed by bsp_move,

the total number of messages received will match those sent by any bsp_send

operations in the previous superstep. The function also returns the accumulated size

of all the payloads of the unconsumed messages. This operation is intended to help

the user to allocate an appropriately sized data structure to hold all the messages that

were sent to a process during a superstep.

4.3.1. Syntax and parameters

void bsp_qsize(int *nmessages, int *accum_nbytes);
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nmessages becomes the number of messages sent to this process in the previous

superstep by using bsp_send.

accum_nbytes is the accumulated size of all the message payloads sent to this

process.

4.3.2. Notes

1. bsp_qsize returns the number of messages and their accumulated size in the

system queue at the point the operation is called; the number returned therefore

decreases after any bsp_move operation.

4.4. Getting the tag of a message

To receive a message, the user should use the procedures bsp_get_tag and

bsp_move. The operation bsp_get_tag returns the tag of the ®rst message in the

queue. The size of the tag will depend on the value set by bsp_set_tagsize.

4.4.1. Syntax and parameters

void bsp_get_tag(int *status, void *tag)

status becomes )1 if the system queue is empty. Otherwise it becomes the length of

the payload of the ®rst message in the queue. This length can be used to allocate an

appropriately sized data structure for copying the payload using bsp_move.

tag is unchanged if the system queue is empty. Otherwise it is assigned the tag of

the ®rst message in the queue.

4.5. Move from queue

The operation bsp_move copies the payload of the ®rst message in the system

queue into payload, and removes that message from the queue.

Note that bsp_move serves to ¯ush the corresponding message from the queue,

while bsp_get_tag does not.This allows a program to get the tag of a message (as

well as the payload size in bytes) before obtaining the payload of the message. It

does, however, require that even if a program only uses the ®xed-length tag of in-

coming messages the program must call bsp_move to get successive message tags.

4.5.1. Syntax and parameters

void bsp_move(void *payload, int reception_nbytes);

payload is an address to which the message payload will be copied. The system

will then advance to the next message.

reception_nbytes speci®es the size of the reception area where the payload

will be copied into. At most reception_nbytes will be copied into payload.
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4.5.2. Example

In the algorithm shown below, an n element vector distributed into n/p chunks on

p processes undergoes a communication whereby all the non-zero elements from all

the p chunks are broadcast to all the processes. Due to the sparse nature of the

problem, the communication pattern is well suited to BSMP as the amount and

placement of data is highly data dependent.

int all_gather_sparse_vec(float *dense,int n_over_p,

float **sparse_out,

int **sparse_ivec_-

out){

int global_idx,i,j,tag_size,p�bsp_nprocs( ),

nonzeros,nonzeros_size,status, *sparse_ivec;

float *sparse;

tag_size�sizeof(int);

bsp_set_tagsize(&tag_size);

bsp_sync( );

for(i�0;i<n_over_p;i++)

if (dense[i]!�0.0) {

global_idx�(n_over_p*bsp_pid( ))+i;

for(j�0;j<p;j++)

bsp_send(j,&global_idx,&dense[i],sizeof(float));

}

bsp_sync( );

bsp_qsize (&nonzeros,&nonzeros_size);

if (nonzeros>0) {

sparse�calloc(nonzeros,sizeof(float));

sparse_ivec�calloc(nonzeros,sizeof(int));

if (sparse� �NULL || sparse_ivec� �NULL)

bsp_abort(``Unable to allocate memory'');

for(i�0;i<nonzeros;i++){

bsp_get_tag(&status,&sparse_ivec[i]);

if (status!�sizeof(float))

bsp_abort(``Should never get here'');

bsp_move(&sparse[i],sizeof(float));

}

}

bsp_set_tagsize(&tag_size);

*sparse_out�sparse;

*sparse_ivec_out�sparse_ivec;

return nonzeros;

}

The algorithm contains three supersteps. In the ®rst superstep, the tag size of the

messages in the subsequent supersteps is set to the size of an integer. The size of the

tag prior to the bsp_set_tagsize is remembered so that it can be reinstated at
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the end of the procedure. Next, the non-zero elements of the vector are broadcast to

each process using bsp_send. The tag for each send operation is set to be the

position of the vector element within the global array of n elements; the payload of

the message will be the non-zero element. A bsp_sync is used to ensure that all the

bsp_send operations are delivered to the system queue on the remote processes,

and then bsp_qsize is used to determine how many messages arrived at each

process. This information is used to allocate a pair of arrays (one for array indices,

and one for values), which have the messages copied into them by a bsp_move

operation.

4.5.3. Notes

1. The payload length is always measured in bytes.

2. bsp_get_tag can be called repeatedly and will always copy out the same tag

until a call to bsp_move.

3. If the payload to be received is larger than reception_nbytes, the payload

will be truncated.

4. If reception_nbytes is zero this simply ``removes'' the message from the sys-

tem queue.This should be e�cient in any implementation of the library.

4.6. A lean method for receiving a message

The operation bsp_hpmove is a non-copying method of receiving messages that

is available in languages with pointers such as C.

We note that since messages are referenced directly they must be properly aligned

and contiguous. This puts additional requirements on the library implementation

that would not be there without this feature, as it requires the availability of su�-

cient contiguous memory. The storage referenced by these pointers remains valid

until the end of the current superstep.

4.6.1. Syntax and parameters

int bsp_hpmove(void **tag_ptr, void **payload_ptr);

bsp_hpmove is a function which returns ÿ1 if the system queue is empty. Otherwise

it returns the length of the payload of the ®rst message in the queue and: (1) places a

pointer to the tag in tag_ptr; (2) places a pointer to the payload in payload_ptr;

and (3) removes the message (by advancing a pointer representing the head of the

queue).

5. Applications

BSPlib has been developed hand in hand with a number of applications. The

design of BSPlib is based on the theory of the BSP model, but the library has been

tested in applications and it was further re®ned based on practical experience. The
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primitives of BSPlib have all been found useful in applications. Together, the

primitives form a complete set. In this section, we present four applications:

benchmarking, Fast Fourier Transform, sorting, and molecular dynamics. The ®rst

two use the DRMA approach, while the others use BSMP.

5.1. Benchmarking

One of the strengths of the BSP model is the ability to accurately predict the cost

of parallel algorithms [21,33]. This is achieved by constructing analytical formulae

that are parameterised by three constants capturing the computation, communica-

tion, and synchronisation performance of a parallel machine. In this subsection, a

series of synthetic benchmarks are described which empirically calculate these con-

stants.

5.1.1. BSP cost analysis

The superstep structure of BSP programs facilitates cost analysis because the

barrier synchronisation that delimits a superstep ensures that the cost of a sequence

of supersteps is simply the sum of the costs of the separate supersteps. As a single

superstep can be decomposed into three distinct phases of local computation,

communication, and barrier synchronisation, it is natural to express the cost of a

superstep by formulae that have the structure:

cost of a superstep � MAX
processes

wi � MAX
processes

hi g � l;

where i ranges over the processes. Intuitively, the cost of a superstep is the cost of the

process that performs the largest local computation (i.e., MAX wi), added to the cost

of the process that performs the largest communication (MAX hig), added to a

constant cost l that arises from the barrier synchronisation. Communication costs

are based on the observation that the process that has the largest amount of data

entering or leaving will form the bottle-neck in the system. The global size of the

communication phase is expressed by h � MAX hi, and the phase is called an h-re-

lation. Multiplying the maximum number of words h by g, the communication cost

per word, gives the cost in the same units as for the computation.

To make the costs meaningful, and to allow comparisons between di�erent par-

allel computers, we express the costs in ¯op time units, where one unit is the time it

takes to perform one ¯oating point operation (¯op) on the target architecture.

Therefore, we are interested in benchmarking the following three architecture-de-

pendent BSP machine parameters:

s is the speed of computation of a process in ¯op/s (i.e., the number of ¯oating

point operations per second). It is used to calibrate g and l.

g is the cost in ¯op time units to communicate a single word to a remote process,

under the conditions where all processors are simultaneously communicating.

l is the synchronisation latency cost in ¯op time units. It is the amount of time

needed for all processors to synchronise.
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5.1.2. Calculating the BSP machine parameters

Values of the BSP cost parameters that were calculated using the Oxford imple-

mentation of BSPlib [25] are shown in Table 1. 2 The machines are ordered by de-

creasing computing rate s. Note that a low value of the dimensionless parameters g

and l may either mean that the machine has a powerful communication network, or

that it is has a particularly poor computing rate. The motivation for expressing g and

l in ¯op time units is that it gives a measure of the ``resource balance'' of the system,

which is important to the algorithm designer.

The computing rate s depends heavily on the kind of computations being done; to

express the rate in a single value, we use the average of the following two measured

rates: (1) The rate for an inner product computation that is mostly out of cache; this

serves as a lower bound on the achievable rate. (2) The rate for a dense matrix

multiplication that is mostly in cache; this serves as an upper bound. Note that

taking the average yields a value of s that is far lower than the peak computing rate.

The BSP parameter l is obtained by timing a mid-stream sample of a repeated

number of barrier synchronisations.

The BSP parameter g is obtained as follows. It is clear from the BSP cost formula

that a good strategy for writing e�cient BSP programs is to balance communication

between processes; this is because h is a maximum over the processes. Therefore, we

measure g by using balanced communications. In our benchmark, we use two

communication patterns. The ®rst is a localised communication pattern that per-

forms a cyclic shift of n 32-bit words between neighbouring processors using the

bsp_hpput operation. This is an n-relation. As the expected cost of this benchmark

is ng � l, we can obtain the value of g from the measured time t in seconds by

g � �tsÿ l�=n, where n is chosen su�ciently large. Note that g is an asymptotic

value. As g represents the cost of communication when all processors are simulta-

neously communicating, this benchmark provides a lower bound on g because each

processor only injects one message into the communication network.

The second pattern may be called global, since it is a total exchange where each

processor sends a message of n=�p ÿ 1� 32-bit words to each of the p ÿ 1 other

processors.This is also an n-relation; g can be obtained in the same way as be-

fore.This benchmark injects the maximum of p�p ÿ 1� messages into the network.

Parallel computers have greater di�culty in achieving scalable communication for

patterns of communication that move lots of data to many destinations. As no

scalable architecture can provide O�p2� dedicated wires ± this would be too expensive

± sparser interconnection networks are used in practice. For example, the Cray T3D

and T3E use a 3D torus, while the IBM SP2 uses a hierarchy of 8-node fully con-

nected crossbar switches. This will be re¯ected in increasing communication costs.

The value of g for a total exchange therefore provides a good upper bound on g.

It is important to note that the lower and upper bounds for g are still quite close

for most machines, even though they represent very di�erent communication pat-

2 A more detailed version of this table is continuously updated at http://www.bsp-world-

wide.org/implmnts/oxtool/params.html.
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terns. This is a posteriori justi®cation for basing communication costs exclusively on

a count of h, and not on more detailed knowledge of the communication pattern.

When modelling the cost of algorithms, it is advisable to err on the safe side and use

the upper bound value of g. For a more detailed discussion on benchmarking BSP

parameters, and a description of the techniques that were used in the implementation

of BSPlib to minimise the variance in g, see Refs. [25,38,12,22].

5.2. Fast Fourier transform

The Fast Fourier Transform (FFT) is important in many areas of scienti®c

computation.A bulk synchronous parallel implementation of the FFT is part of

BSPPACK, a package of parallel numerical software that is being developed at

Table 1

The BSP cost parameters for a variety of shared memory and distributed memory parallel machines

Machine s (M¯op/s) p l g (local) g (global)

SGI Origin 2000 101 2 804 7.0 8.3

4 1789 9.1 10.2

8 3914 13.2 15.1

16 15961 38.6 44.9

SGI PowerChallenge 74 2 1132 9.8 10.2

4 1902 9.8 9.3

Pentium Pro NOW 61 2 52745 486.3 484.5

(10 Mbit/s 4 139981 1098.7 1128.5

shared Ethernet) 8 539159 2171.8 1994.1

16 2884273 3708.2 3614.6

Cray T3E 47 2 269 0.9 2.6

4 357 0.9 2.1

8 506 0.8 1.6

16 751 1.0 1.7

32 1252 1.3 1.9

IBM SP2 26 2 1903 6.3 7.8

4 3583 6.4 8.0

8 5412 6.9 11.4

Cray T3D 12 2 164 0.7 1.0

4 168 0.7 0.8

8 175 0.8 0.8

16 181 0.9 1.0

32 201 1.1 1.4

64 148 1.0 1.7

128 301 1.1 1.8

256 387 1.2 2.4

Sparc-20 SMP 10 2 54 3.0 3.4

4 118 3.3 4.1

The computing rate is for single-precision float operations and the communication rate for 32-bit words.
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Utrecht University. At present, BSPPACK contains programs for dense LU de-

composition [5], FFT, sparse matrix±vector multiplication [6], sparse Cholesky

factorisation [4], as well as a program for BSP benchmarking of parallel computers.

BSPPACK is written in C, with BSPlib used for parallelism. The main goal of

BSPPACK is to teach how to use the BSP model in numerical applications, and to

serve as a prototype for optimised numerical software. The following is a brief de-

scription of the FFT program of BSPPACK, which implements a radix-2 algorithm

[40].

A radix-2 FFT performs a sequence of operations on a complex vector of length

n, where n is a power of two. In each stage of the computation, vector components

are modi®ed in pairs, each input pair yielding a new output pair. In stage

k; 06 k < log2n, the components of a pair are at distance 2k. Assume that we have p

processors, where p is a power of 2. The basic idea of the parallel FFT is to permute

the vector such that during the next log2nÿ log2p stages both components of the

pairs are on the same processor. Papadimitriou and Yannakakis [35] observed that

this can be done. The basic idea was ®rst analysed in a BSP context by Valiant [39]

and it was incorporated in a BSP algorithm by McColl [31]. For the common case

p6
���

n
p

, this parallel FFT requires only one permutation, which costs ng=p � l. (At

the start, no permutation is needed, provided the input vector is already suitably

distributed. A permutation at the end can be avoided if we accept the output vector

in its current distribution.) This particular case has been implemented by Culler et al.

[11] within the framework of the LogP model.

The piece of code below illustrates the use of BSPlib in the permutation function

of the FFT program. The communication pattern is entirely regular, so that it is

natural to use DRMA. Note that the automatic bu�ering of bsp_put makes it

unnecessary to use a temporary array for storing the new vector. The vector x is

registered and de-registered outside the function, because this has to be done only

once, whereas the function may be invoked several times.

void bsppermute(complex_t *x, int n){

/* This function permutes the vector x of length n,

where x is distributed by the block distribution.

It is assumed that x has already been registered. */

int j, sigma, dst_pid, dst_idx, p�bsp_nprocs( ), n_over_-

p�n/p;

for (j�0; j<n_over_p; j++){

sigma�j*p + bsp_pid( );

dst_pid�sigma / n_over_p;

dst_idx�sigma % n_over_p;

bsp_put(dst_pid, & x[j], x, dst_idx*sizeof(complex_t),

sizeof(complex_t));

}

bsp_sync( );

}
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Fig. 1 presents the absolute speedup of an FFT of length 16 384 on a Cray T3E with

32 processors, using version 1.1 of the Oxford BSP Toolset implementation of

BSPlib. The speedup is obtained by comparing to a sequential program with a

similar level of optimisation, which runs at 10.9 M¯op/s. (We call the speedup of a

parallel program absolute if it is the speedup compared to a good sequential pro-

gram; we call it relative if it is obtained by comparing to the same parallel program

run with p� 1.) Note that the measured speedup is nearly ideal, but that this is

¯attered by cache e�ects; the superlinear speedup of 4.4 on four processors shows

that the local problems ®t better into the caches of the processors.

5.3. Randomised sample sort

One approach for parallel sorting that is suitable for BSP computing is ran-

domised sample sort. The sequential predecessor to the algorithm is sequential

samplesort [14], proposed by Frazer and McKellar as a re®nement of Hoare's

quicksort [26]. Samplesort uses a random sample set of input keys to select splitters,

resulting in greater balance ± and therefore a lower number of expected comparisons

± than quicksort. The fact that the sampling approach could be useful for splitting

keys in a balanced manner over a number of processors was discussed in the work of

Huang and Chow [27] and Reif and Valiant [36]. Its use was analyzed in a BSP

context by Gerbessiotis and Valiant [15].

The basic idea behind randomised sample sort in a p-processor system is the

following.

Fig. 1. Absolute speedup of parallel FFT on a Cray T3E with 32 processors. The problem size is

n� 16 234. Speedups are relative to the sequential execution time of 0.108 s of a radix-2 FFT program.
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1. A set of p ÿ 1 splitter keys is selected. Conceptually, the splitters will partition the

input data into p buckets.

2. All keys assigned to the ith bucket are sent to the ith processor.

3. Each processor sorts its bucket.

The selection of splitters that de®ne approximately equal-sized buckets is a crucial

issue. The standard approach is to randomly select pr keys from the input set, where

r is called the oversampling ratio. These keys are sorted, and the keys with ranks

r; 2r; 3r; . . . ; �p ÿ 1�r are selected as the splitters. By choosing a large enough over-

sampling ratio, it can be shown with high probability that no bucket will contain

many more keys than the average [27].

Since randomised sample sort is suitable for general-purpose parallel computing,

it is not surprising that the approach has been used in numerous experimental

studies. Blelloch et al. [8] describe randomised sample sort experiments on a Con-

nection Machine CM-2. Hightower et al. [20] use randomised sample sort on a

MasPar MP-1. Dusseau et al. [13] implement randomised sample sort on a Con-

nection Machine CM-5 using the Split-C programming language [10] and the LogP

cost model [11]. Randomised sample sort has also been implemented in direct BSP

style by Juurlink and Wijsho� [28], Shumaker and Goudreau [37], and Hill et al. [23].

In terms of a BSPlib implementation, randomised sample sort is interesting in that

the sending of keys to appropriate buckets requires irregular communication. For

such routing patters, BSMP is a natural communication approach.

The piece of code below shows how the input data is sent to the appropriate

buckets. The input data is stored in the array of doubles a of size a_size. The

splitters have already been selected and distributed, and are stored in array s of size

p ) 1. The function bucket( ) takes a double and the array s and returns the ap-

propriate bucket to send the double to. Each process will store its bucket in array b

of size b_size.

/* Distribute each element of a [ ] to appropriate processor */

for(i�0; i<a_size; i++) {

j�bucket(a[i], s, p-1);

bsp_send(j, NULL, &a[i], sizeof(double));

}

bsp_sync( );

/* Queue size needed to allocate bucket (dummy not used) .*/

bsp_qsize(&b_size, &dummy);

/* Allocate memory for bucket. */

b�(double*) calloc(b_size, sizeof(double));

/* Read in messages, store in b[ ]. */

for(i�0; i<b_size; i++)

bsp_move(&b[i], sizeof(double));

Some experimental results on an SGI Power Challenge with 16 MIPS R4400 pro-

cessors are shown in Fig. 2. The Power Challenge is a shared memory platform. The

®gure shows the speedup relative to the standard C library qsort (quicksort) run on
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one processor. The input data was randomly generated. Only one test was run in

each case.

5.4. Barnes±Hut N-body algorithm

The N-body problem is the problem of simulating the movement of a set of N

bodies under the in¯uence of gravitational, electrostatic, or other type of force. The

problem has numerous applications, e.g. in astrophysics, molecular dynamics, ¯uid

dynamics, and even computer graphics. The basic approach taken by most N-body

algorithms is to simulate the system in discrete time steps, thus reducing the problem

to that of computing the forces among the N bodies. While this can be done for long-

range forces in a straightforward way by computing all N 2 pairwise interactions,

several more e�cient algorithms have been proposed that use a tree data structure to

approximate the forces among N bodies in close to linear time, e.g., see Refs.

[1,2,18,42].

In this section, we describe a BSPlib implementation of the Barnes±Hut al-

gorithm [2], which achieves a running time of O�N log N� (under certain as-

sumptions about the input distribution). The algorithm ®rst inserts all bodies into

an oct-tree structure, such that no leaf of the tree contains more than some ®xed

number of bodies. Then an upward pass through the tree is performed to com-

pute the centre of mass (or some higher-order approximation of the mass dis-

Fig. 2. Absolute speedup for a randomised sample sort on an SGI Challenge with 16 processors. The

problem size is n � 107 double-precision ¯oating point numbers with an oversampling ratio of r� 100.

Speedups are relative to the sequential execution time of 128.04 s for the C standard library qsort

function.
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tribution) of the bodies in each subtree. Finally, the force exerted on each body is

approximated by performing a truncated depth-®rst traversal of the oct-tree,

during which the force due to a su�ciently far away cluster of bodies is ap-

proximated using the centre of mass (or higher-order approximation) of the

corresponding subtree.

In our parallel implementation, we use Orthogonal Recursive Bisection (ORB) to

partition the domain into rectangular regions. Each processor ®rst constructs an oct-

tree locally by inserting all bodies that are located in its computational domain and

computing the centres of mass of that tree. Then appropriate subtrees, called locally

essential trees, are exchanged between the processors, using a replication scheme

similar to those of Warren and Salmon [41] and Liu and Bhatt [29]. Afterwards,

every processor has a local oct-tree that contains all the data needed to perform the

tree-traversal on its bodies, and whose structure is consistent with that of the global

oct-tree constructed by the sequential algorithm. The BSPlib implementation was

obtained by porting a code originally written for the Green BSP library. A more

detailed description of the replication scheme and its extension to other N-body

algorithms can be found in Ref. [7].

The Barnes±Hut implementation is a good example for the use of the message

passing primitives in BSPlib. As said before, BSMP often has advantages over

DRMA for applications that manipulate irregular data structures, such as the oct-

tree structure in the Barnes±Hut algorithm. During the replication phase of the

parallel implementation, processors use a sender-driven protocol to send out all data

that is needed by another processor. At the receiving end, the data is inserted back

into the local tree structure. As the ®nal format and destination of the data depends

on the locally held data, it would be di�cult to implement this replication phase with

DRMA operations.

Our implementation performs only six supersteps per iteration; this makes the

program e�cient even on fairly small problem sizes and high-latency platforms. The

application is irregular and dynamic, due to the changing positions of the bodies.

However, the load distribution can be predicted fairly accurately from that of the

previous iteration, as the system evolves only slowly. Under certain uniformity as-

sumptions, the size of the h-relation in the replication phase is O�p � n2=3� where n is

the number of particles per processor. For reasonably large n, these bandwidth re-

quirements are fairly modest, as we were careful in minimising the amount of data

sent during the replication phase.

Fig. 3 shows the speedup of the Barnes±Hut code on a 16-processor SGI Chal-

lenge shared memory machine. The timings were obtained by running several iter-

ations of the Barnes±Hut algorithm, and taking the average running time over all

except the ®rst two iterations. We used the separation parameter h � 0:5 and centre

of mass approximations, and allowed up to 40 bodies in a leaf of the oct-tree. The

reported speedups are relative to the running time of our code on a single processor

(which incurs none of the parallel overheads, and which we believe to be a reasonable

sequential implementation of the Barnes±Hut algorithm).

For our smallest input size (4000 particles), we observe that the speedup increases

to a peak of about 9.5 on 13 processors, after which it stays essentially ¯at up to 16
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processors. 3 This behaviour can be explained by the fact that for small input sizes,

the cost of the replication phase is relatively large. We point out that 4000 particles is

indeed a very small input size in many simulations, and that the replication phase

was not designed with this case in mind.

Fig. 3 also shows that the speedup quickly improves as we increase the input size.

In particular, for 64 000 particles, we obtain essentially linear speedup (15.93 on 16

processors). The speedup is actually slightly superlinear for many data points,

probably due to cache e�ects.

6. Conclusions and future work

This work has identi®ed a complete set of 20 core primitives, or level 0 operations,

that are needed to write parallel programs conveniently in BSP style. Together, these

operations de®ne BSPlib; an overview is given in Table 2. The limited size of BSPlib

makes it easy to learn how to use the library, and also relatively easy to implement

the library on a new architecture. In particular, this will help hardware and system

3 The slight variations between 13 and 16 processors are probably due to the di�erent partitionings of the

data under our partitioning scheme.

Fig. 3. Relative speedup for a molecular dynamics computation on an SGI Challenge with 16 processors.

Speedups are relative to the parallel program with p� 1, which takes 13.64 s per iteration for 4000 par-

ticles, 102.32 s for 16 000, and 474.7 s for 64 000.
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software developers in focusing their e�orts to design e�cient implementations of a

communications library for their systems.

Some message passing systems, such as MPI [34,19], provide operations for

various specialised collective communication patterns which arise frequently in

message passing programs. These include broadcast, scatter, gather, total exchange,

reduction (fold), pre®x sums (scan), etc. These standard communication patterns

also arise frequently in the design of BSP algorithms. It is important that such

structured patterns can be conveniently expressed and e�ciently implemented in a

BSP programming system, in addition to the more primitive operations such as

put, get, and send which generate arbitrary and unstructured communication

patterns.

The library we have described can easily be extended to support such structured

communications by adding bsp_bcast, bsp_fold, bsp_scan, bsp_gath-

er, bsp_scatter, bsp_exchange, etc. as higher level operations. We call these

level 1 operations. Such operations can be implemented in terms of the level 0 op-

erations, or directly on top of the architecture if that is more e�cient. For modu-

larity and safety, all level 1 operations have the following semantics: (1) Remote

memory areas that are accessed by DRMA operations must be registered and de-

registered within the level 1 operation. Registration must be followed by a syn-

chronisation; for de-registration this is not necessary. (2) The tag size of messages

sent by a BSMP operation must be set within the level 1 operation. This requires a

synchronisation. The tag size must be reset to the previous value on exit. This does

not require a synchronisation. (3) The messages issued by a BSMP operation must be

delivered within the level 1 operation. This requires a synchronisation. They must be

moved from the system queue, which must be empty on exit. This does not require a

synchronisation.

We have not included level 1 operations in the BSPlib de®nition, since this would

lead to a proliferation of primitives, which in turn would diminish the focus provided

by a small size of the library. Furthermore, it is still unclear which level 1 operations

are really useful in applications; in di�erent application areas there may be a need for

many di�erent types of operations.

BSPlib ®nalises the de®nition process of a BSP communications library, and it is

unlikely to be changed in the future. The work that remains to be done in the future

includes, ®rst of all, developing more and better implementations of BSPlib. In

particular, we pose the challenge to hardware vendors to provide good implemen-

tations that are characterised by high values of s but low values of g and l. Fur-

thermore, there is much work to be done in the area of level 1 operations. We

envision a situation where application developers will release separate level 1 li-

braries containing those operations they found useful. For reasons of portability,

such libraries should be formulated in terms of the level 0 operations. Once a con-

sensus emerges about the important level 1 operations, some hardware or software

developers could take the opportunity to provide added value or distinguish their

products by developing more e�cient implementations directly on top of the hard-

ware. Finally, other directions in which BSPlib could be extended are parallel I/O

and fault tolerance. This could again be done by developing separate libraries.
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