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Abstract. We present a new blockcipher mode of operation named
BTM, which stands for Bivariate Tag Mixing. BTM falls into the cate-
gory of Deterministic Authenticated Encryption, which we call DAE for
short. BTM makes all-around improvements over the previous two DAE
constructions, SIV (Eurocrypt 2006) and HBS (FSE 2009). Specifically,
our BTM requires just one blockcipher key, whereas SIV requires two.
Our BTM does not require the decryption algorithm of the underlying
blockcipher, whereas HBS does. The BTM mode utilizes bivariate poly-
nomial hashing for authentication, which enables us to handle vectorial
inputs of dynamic dimensions. BTM then generates an initial value for its
counter mode of encryption by mixing the resulting tag with one of the two
variables (hash keys), which avoids the need for an implementation of the
inverse cipher.

Keywords: Bivariate, universal hash function, counter mode, random-
until-bad game, systematic proof.

1 Introduction

The modes of operation for blockciphers can be divided into the following three
groups: encryption modes, message authentication codes, and authenticated en-
cryption modes. The first group achieves privacy, the second ensures integrity,
and the third does both at the same time. On one hand, the third group is
attractive to users for its providing both kinds of security concurrently. On the
other hand, the third group tends to employ rather complex mechanisms, since
authenticated encryption modes are essentially a combination of an encryption
mode and a message authentication code [2].

The complexity of authenticated encryption adds variety to the constructions,
such as CCM [16], GCM [10] and OCB [14]. These constructions, however, have
one thing in common—their security is based on the so-called nonce assumption.
The assumption requires that nonce values be never repeated. Otherwise, the
security of the overlying scheme is seriously compromised, which is a difficult
aspect of the nonce-based constructions.

The problem of the nonce assumption was settled by the notion of Determinis-
tic Authenticated Encryption (DAE), which Rogaway and Shrimpton introduced
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at Eurocrypt 2006 [15]. DAE constructions are more robust than nonce-based
ones. Namely, a DAE construction can be used as a nonce-based one by embed-
ding a nonce value into part of its input, in which case the DAE construction
achieves the same security level as a nonce-based one. Furthermore, a DAE
construction maintains a certain level of security even when no nonce value is
combined with. In such a scenario, an adversary can detect a repetition of exactly
the same inputs being encrypted, but nothing more.

Though more robust, DAE modes are also more difficult to construct than
nonce-based ones. To date, there have been two concrete DAE constructions,
SIV [15] and HBS [7]. The SIV construction utilized blockcipher iteration both
for its encryption algorithm and for authentication. SIV had a number of attrac-
tive features but had one major disadvantage that it required two blockcipher
keys. This disadvantage was removed by the more recent single-key HBS con-
struction. HBS also accelerated the speed by employing polynomial hashing,
rather than blockcipher iteration, for its authentication algorithm.

Nevertheless, at the same time, the HBS construction sacrificed many of SIV’s
advantages in the interest of single-key usage and of polynomial-hashing design.
In the following we point out those disadvantages which HBS suffered.

1. Inverse-Cipher Requirement. The decryption process of the HBS mode
required the decryption algorithm of the underlying blockcipher. This re-
quirement involved numerous drawbacks. First, HBS increased the size of
its footprint (e.g., the number of gates or slices). Second, the security proof
of HBS relied on the stronger SPRP (Strong Pseudo-Random Permutation)
assumption about the underlying blockcipher. Third, the tag size of HBS
was fixed to the full n-bit, disabling any kind of tag truncation for saving
the bandwidth. These problems did not exist within the SIV construction,
which worked without the inverse cipher.

2. Worse Security Bound. The security bound of HBS was of the form
�2q2/2n, where � denotes the maximum length of each query and q the total
number of queries. This should be contrasted with the security bound of SIV
which was of the form σ2/2n, where σ denotes the maximum query complex-
ity (i.e., the total length of all queries). The former becomes markedly worse
than the latter when queries are of varying lengths.

3. Inflexible Vector Dimensions. HBS needed to fix in advance the di-
mension of vectorial inputs (i.e., the maximum number of headers). Note
that handling flexible vector dimensions is an important advantage, because
some applications may be unable to set a limit reflecting the unpredictable
nature of the dimension, or some applications may want to update and in-
crease the limit on the dimension while maintaining backward compatibility.
HBS suggested using the square-root operation √ as a remedy for dynamic
changes in the dimension, but such a technique was more complex and less
elegant than the vectorized-CMAC [6,13] solution offered by SIV.

4. Enlarged Counter Register. The HBS mode specified an unusual in-
crement method S⊕1n, S⊕2n, . . . , where S denotes an initial value, ⊕ the
bitwise xor operation, and an an n-bit binary representation of an integer a.
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Table 1. Comparison between SIV, HBS and BTM. The figures show the number
of computations for a single header H and a message M , where h = �|H |/n� and
m = �|M |/n�.

SIV HBS BTM

# of blockcipher keys 2 1 1

Inverse-cipher-free yes no yes
Blockcipher assumption PRP SPRP PRP

Tag truncation possible impossible possible

Security bound O(σ2/2n) O(�2q2/2n) O(σ2/2n)
Vector dimension dynamic static dynamic
Counter register size n-bit 1.5n-bit n-bit

Total # of computations h + 2m + 2 h + 2m + 4 h + 2m + 2
# of blockcipher calls h + 2m + 2 m + 2 m + 3

# of multiplications 0 h + m + 2 h + m − 1

This method required a 1.5n-bit register in order to maintain the current
counter value, namely n bits for keeping the value S and 0.5n bits for in-
crementing a. On the other hand, SIV worked with almost any increment
method, such as S +1, S +2, . . . (arithmetic addition modulo 2n) and 2n ·S,
22

n · S, . . . (doubling in the finite field of 2n elements). These usual methods
require only an n-bit register and maintain smaller sizes of footprints.

5. Increased Number of Computations. Although HBS accelerated the
speed for large data by employing polynomial hashing, the total number of
computations, which is the sum of the number of blockcipher calls plus that
of finite-field multiplications, increased by 2. This caused the degradation in
performance for short messages, depending on implementations.

The goal of the current work is to overstep this line of tradeoff and to construct
a new single-key, polynomial-hashing DAE mode of operation which does not
counterbalance any of the advantages that SIV had. For this, we propose a new
mode of operation called BTM, which stands for Bivariate Tag Mixing. See
Table 1 for summary. The BTM construction achieves our goal by utilizing the
following two techniques.

1. Bivariate Polynomial Hashing. Our polynomial hashing utilizes two
variables (keys) L and U , which are derived from a single blockcipher key
K as L := EK(0n) and U := EK(1n). The bivariate hashing is capable of
handling vectorial inputs of dynamic dimensions. The bivariate hashing also
contributes to reducing the number of finite-field multiplications.

2. Tag Mixing. The tag value T is mixed with the hash key U via a special
type of arithmetic addition, for which we write T � U . The mixed value is
used as an initial value for the counter mode of encryption. In this way we
avoid the use of the inverse cipher. In addition, this mixing allows us to use
the increment �1n, saving the register size of the counter.
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2 Preliminaries

Notation. We have already introduced the symbols X ⊕ Y , an and X · Y .
The symbol X‖Y denotes the concatenation of two strings X and Y . Given a
string X , we write |X | to represent its length in bits. If X is a finite set, then |X |
denotes its cardinality. We write x

$← X for sampling an element from the set X
uniformly at random and assigning its value to the variable x. Given a positive
integer a and a string X such that a ≤ |X |, msb(a, X) represents the leftmost a
bits of the string X . The set {0, 1}n of n-bit strings is regarded in multiple ways.
It corresponds to the set {0, 1, . . . , 2n− 1} of non-negative integers less than 2n.
It is also treated as the finite field GF (2n) of 2n elements (with respect to some
irreducible polynomial).

Blocks and Vectors. Throughout the paper we fix the block size n. Typical
values of n are 64 and 128. The block decomposition X [0] · · ·X [x− 1] of a string
X ∈ {0, 1}∗ is computed as follows. If X = ∅ (the null string), then we set
x ← 1 and X [0] ← ∅. Otherwise (i.e., when |X | ≥ 1), we set x ←

⌈
|X |/n	,

and blocks X [0], . . . , X [x− 1] are defined as the unique set of strings satisfying
the conditions X [0]

∥
∥ · · ·

∥
∥ X [x − 1] = X ,

∣
∣X [0]

∣
∣ = · · · =

∣
∣X [x − 2]

∣
∣ = n, and

1 ≤
∣
∣X [x− 1]

∣
∣ ≤ n. We call x the block length of the string X .

Given a string X ∈ {0, 1}∗ such that |X | ≤ n, we define

π(X) :=

{
X‖1‖0n−1−|X| if 0 ≤ |X | ≤ n− 1,

X if |X | = n,

so that we always have
∣
∣π(X)

∣
∣ = n. Similarly, we define

δ(X) :=

{
1n if 0 ≤ |X | ≤ n− 1,

2n if |X | = n.

We consider d-dimensional vectors
−→
X = (X0, . . . , Xd−2, Xd−1) of strings Xi ∈

{0, 1}∗ for i = 0, . . . , d− 2, d− 1.

Headers and Messages. A plaintext (i.e., data which is input to the encryp-
tion algorithm) consists of header information

−→
H = (H0, . . . , Hd−2) and a mes-

sage M , being a d-dimensional vector
(−→
H, M

)
= (H0, . . . , Hd−2, M) of strings.

In the paper it is understood that when d = 1 the notation
(−→
H, M

)
represents

the 1-dimensional vector (M) (i.e., the case of no header information). Note that
the message part M of a plaintext gets both authenticated and encrypted, while
header information

−→
H gets authenticated but remains unencrypted.

Blockciphers and DAEs. A blockcipher is a family of permutations. We often
write E : {0, 1}k × {0, 1}n → {0, 1}n for a blockcipher, where K ∈ {0, 1}k
is a key and EK := E(K, ·) : {0, 1}n → {0, 1}n is the permutation specified
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by the key K. An adversary A is an oracle machine that outputs a bit. The
goal of a PRP(Pseudo-Random Permutation)-adversary A is to distinguish the
blockcipher EK (with a random key K) from a truly random permutation P :
{0, 1}n → {0, 1}n [9,1]. The success probability of A is measured by

Advprp
E (A) := Pr

[
AEK(·) = 1

]
− Pr

[
AP (·) = 1

]
,

where in the first game A has access to the EK oracle and in the second the
P oracle. We fix a model of computation and a choice of encoding. We write
Advprp

E (t, σ) := maxA Advprp
E (A), where max runs over adversaries A whose

time complexity is at most t and whose query complexity is at most σ. The time
complexity is the running time plus the code size. The query complexity is the
total length in blocks of the queries made to the oracles.

A DAE scheme is a pair of algorithms EK and DK . The encryption algo-
rithm EK takes a vectorial input

(−→
H, M

)
and outputs a pair of a tag T and

a ciphertext C, where |T | = n and |C| = |M |. The decryption DK takes an
input

(−→
H, T, C

)
and outputs either the corresponding plaintext M or a special

symbol ⊥. The goal of a DAE-adversary A is to distinguish between the pair
(EK ,DK) and the pair (R,⊥), where R is an oracle that returns, upon a query(−→
H, M

)
, random strings of n + |M | bits, and ⊥ is an oracle that always returns

the ⊥ symbol. We define

Advdae
E,D(A) := Pr

[
AEK(··· ),DK(··· ) = 1

]
− Pr

[
AR(··· ),⊥(··· ) = 1

]
,

where trivial queries are excluded. As before we also define Advdae
E,D(t, σ).

3 Bivariate Polynomials and L-Polynomials

A bivariate polynomial is a polynomial in two variables L and U over the field
of 2n elements, i.e., an element of GF (2n)[L, U ]. A function G of two arguments
L and U is said to be an L-polynomial if the following conditions are satisfied.

1. G(L, U) is a polynomial in the variable L. Let x be the degree of G(L, U) as
a polynomial in L.

2. We then have x ≥ 1.
3. The coefficient of the leading term Lx is a polynomial function of U . Let y

be the degree of this coefficient function as a polynomial in U .

We define degL G := x and degU
L G := y. Observe that any non-constant bivariate

polynomial is either an L-polynomial or a U -polynomial (or both). Also note that
if G is a bivariate polynomial, then we have degU

L G ≤ degU G. Now the following
lemma is a basic result, and its proof can be found in Appendix A.

Lemma 1. Let G be an L-polynomial. We have

Pr
[
G(L, U) = 0n

∣
∣ L

$← {0, 1}n, U
$← {0, 1}n

]
≤ degU

L G + degL G

2n
.
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4 Specification of BTM

In this section we give the specification of the BTM algorithms. First, we define
the bivariate polynomial hashing FL,U . Second, we describe the way of mixing
the tag value with one of the hash keys. Finally, we give the definition of the
BTM encryption and decryption algorithms.

4.1 Bivariate Hashing FL,U

We begin with defining a polynomial fL in one variable L. Given a string X ∈
{0, 1}∗, define

fL(X) := δ
(
X [x− 1]

)
·
(
Lx ⊕ Lx−1 ·X [0]⊕ · · · ⊕ L ·X [x− 2]⊕ π(X [x− 1])

)
,

where the addition and the multiplication are done in the finite field GF (2n) of 2n

elements, so that fL(X) is an element of GF (2n)[L]. Recall that the polynomial
fL(X) can be computed recursively, using the relation

fL(X) = δ
(
X [x− 1]

)
·
((
· · ·

(
(L ⊕X [0]) · L⊕X [1]

)
· · ·

)
· L⊕ π(X [x− 1])

)
.

Note that the polynomial fL(X) always has a degree x due to the leading
term Lx.

Now we define the polynomial FL,U in two variables L and U as

FL,U

(−→
H, M

)
:= Ud−1 · fL(H0)⊕ · · · ⊕ U · fL(Hd−2)⊕ fL(M),

which is an element of GF (2n)[L, U ]. Roughly speaking, we first hash each of
H0, H1, . . . , Hd−2, M in terms of the variable L, which results in d-many hash
values fL(H0), . . ., fL(M), and then we hash these values in terms of the vari-
able U . See Fig. 1 for an illustration.

Observe that fL(X) requires x − 1 multiplications by L. Neglecting the xor
operations and the last multiplication by 1n/2n, the computation of fL(X) can

Fig. 1. Illustration of the bivariate hashing FL,U (H0, H1, . . . , Hd−2, M). The symbol
X � Y denotes the multiplication X · Y in the field of 2n elements. The multiplication
by 1n/2n corresponds to the function δ

(
π(X[x− 1])

)
.
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Algorithm BTM.EncK

(−→
H, M

)

1. L← EK(0n), U ← EK(1n)

2. T ← MACL,U
K

(−→
H, M

)

3. C ← CTRT�U
K (M)

4. return (T, C)

Subroutine MACL,U
K

(−→
H, M

)

1. S ← FL,U

(−→
H, M

)

2. T ← EK(S)
3. return T

Algorithm BTM.DecK

(−→
H, (T, C)

)

1. L← EK(0n), U ← EK(1n)
2. M ← CTRT�U

K (C)

3. T ′ ← MACL,U
K

(−→
H, M

)

4. if T �= T ′ then
5. M ← ⊥
6. end if
7. return M

Subroutine CTRN
K(X)

1. x← ⌈|X|/n
⌉

2. for i← 0 to x− 1 do
3. R[i]← EK

(
N � in

)

4. end for
5. R← R[0]

∥
∥ · · · ∥∥ R[x− 1]

6. Y ← X ⊕msb
(|X|, R)

7. return Y

Fig. 2. Pseudocode of the BTM encryption and decryption algorithms. The subroutines
MAC and CTR are extracted from the algorithms and shown on the right-hand side.

be done in about x − 1 finite-field multiplications. This means that for a two-
dimensional vector (H, M) the computation of FL,U (H, M) can be done in about
(h − 1) + (m − 1) + 1 = h + m − 1 finite-field multiplications (The last “+1”
comes from the multiplication by U). This explains the figures in Table 1. More
generally, for a d-dimensional vector

(−→
H, M

)
, it takes about

(h0−1)+(h1−1)+ · · ·+(hd−2−1)+(m−1)+d−1 = h0+h1+ · · ·+hd−2+m−1

finite-field multiplications to compute the bivariate hashing FL,U

(−→
H, M

)
(the

value hi being the block length of Hi and m that of M).
It can be directly verified that if

(−→
H, M

)
�=

(−→
H ′, M ′) are two distinct inputs,

then we have an inequality of polynomials FL,U

(−→
H, M

)
�= FL,U

(−→
H ′, M ′). This

fact plays an important role in our security analysis.

4.2 Tag Mixing T � U

The operation � is defined as follows. For two strings X, Y ∈ {0, 1}n, divide
them into two equal-length parts as X = X1‖X2 and Y = Y1‖Y2, so that
X1, X2, Y1, Y2 ∈ {0, 1}n/2.1 Then define

X � Y := (X1 + Y1)‖(X2 + Y2),

where the addition + is done modulo 2n/2. We use � rather than + modulo 2n,
because � is less costly and is sufficient for security up to the birthday bound.
1 We assume that the block size n is an even number.
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Fig. 3. Illustration of the BTM encryption algorithm

4.3 BTM Encryption and Decryption Algorithms

We are now ready to describe our BTM mode of operation. The encryption
algorithm BTM.Enc and the decryption BTM.Dec are described in Fig. 2. See
also Fig. 3 for a diagrammatic representation of the BTM encryption algorithm.

Note that when |M | = 0 (i.e., M = ∅ the null string), the algorithm BTM.Enc
returns only the tag T . Also note that the one-dimensional input (M) (without
a header) and the two-dimensional input (H, M) with H = ∅ generally result in
different outputs for the same value of M .

5 Security Analysis of BTM

We prove the security of our BTM mode as a DAE construction. We first in-
troduce a simple tool which makes our analysis easy. We then prove the privacy
and the integrity of BTM. Thanks to the tool, our proofs are quite systematic,
consisting of counting “bad” events and computing their probabilities.

5.1 A Simple Tool: Random-Until-Bad Games

We consider a special type of game called a “random-until-bad” game. This
type of game can be systematically analyzed, making our security proofs simple
and easy.

In a random-until-bad game, the adversary’s goal is to set a bad flag written
somewhere in the description of the overlying game. There may be multiple bad
flags, as bad[0], bad[1], etc. The adversary wins the game as soon as one of
the bad flags gets set. The only way for the adversary to set a bad flag is by
making a query to its oracle. A query is processed according to the description
of the game. If a query sets a bad flag, then the game terminates immediately.
Otherwise, the oracle returns a truly random string of a specified length2 to the
adversary.

In a random-until-bad game, we only need to consider non-adaptive adver-
saries. Recall that oracles only return random strings to an adversary until the
2 We consider the special symbol ⊥ as a random string of length zero.
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game terminates. This means that any adaptive adversary can be transformed
into a non-adaptive one without changing its winning probability, by feeding a
random tape to the adversary. More precisely, let A be an adaptive adversary
which makes (exactly) q queries. Using A, we can construct a non-adaptive ad-
versary B which has about the same running time as A and exactly the same
winning probability, as follows: We let B run A by simulating A’s oracles via
B’s internal random coins. The adversary B records A’s queries x1, x2, . . . , xq.
Then B outputs the sequence of queries x1, x2, . . . , xq. Note that at this point B
has made no queries to B’s oracles, and the values of the queries x1, x2, . . . , xq

have been already fixed. Hence we see that B is non-adaptive. It is also easy to
see that B’s winning probability is exactly the same as that of A.

Furthermore, we only need to consider deterministic adversaries. For this,
we show that for any non-adaptive, probabilistic adversary there exists a non-
adaptive, deterministic adversary having the same or better winning probabil-
ity. So let A be a non-adaptive, probabilistic adversary making q queries to its
oracles. For each sequence of queries x1, x2, . . . , xq (the total length being no
more than σ) the adversary A outputs this sequence with some probability. The
winning probability of A is the weighted average (arithmetic mean) of the win-
ning probabilities over all sequences x1, x2, . . . , xq. Then there exists a sequence
x∗

1, x
∗
2, . . . , x

∗
q having the maximum winning probability. So let A∗ be the ad-

versary that always outputs the sequence x∗
1, x

∗
2, . . . , x

∗
q . Then we see that the

winning probability of A∗ is no less than that of A.
In a random-until-bad game, we can systematically compute each probability

that a bad flag gets set and then sum up the probabilities. This gives us the
bound of the adversaries’ winning probability.

5.2 From Computational to Information-Theoretic

The first step is to replace the blockcipher EK (using a random key K) with
a random permutation P : {0, 1}n → {0, 1}n. We write BTM[P ] for such a
DAE scheme. Let A be a DAE-adversary whose time and query complexities are
at most t and σ, respectively. We can directly construct an adversary B that
uses A and tries to distinguish between the blockcipher EK and the random
permutation P . The simulation requires two calls to E for computing L and U , q
calls to E for computing tags (together with necessary polynomial hashing), and
σ calls to E for encrypting the messages. Any difference between Advdae

BTM[E](A)
and Advdae

BTM[P ](A) contributes to B’s advantage Advprp
E (B), so we have

Advdae
BTM[E](t, σ) ≤ Advprp

E (t′, 2 + q + σ) + Advdae
BTM[P ](σ),

where the running time t′ is about t plus the complexity to compute 2+q+σ times
the blockcipher E (and the complexity to perform corresponding polynomial
hashing). Note that we have omitted the time complexity from the notation,
since it becomes irrelevant to the context of BTM[P ].
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We then replace P with a random function F : {0, 1}n → {0, 1}n (not to be
confused with FL,U ). Using the PRP/PRF switching lemma [3], we obtain

Advdae
BTM[P ](σ) ≤

(
2 + q + σ

2

)
· 1
2n

+ Advdae
BTM[F ](σ).

Therefore, it amounts to evaluating the security of the scheme BTM[F ].
Now let EF and DF denote the encryption and decryption algorithms of the

BTM[F ] scheme, respectively. For an adversary A we have

Advdae
BTM[F ](A) = Pr

[
AEF (··· ),DF (··· ) = 1

]
− Pr

[
AR(··· ),⊥(··· ) = 1

]

= Pr
[
AEF (··· ),DF (··· ) = 1

]
− Pr

[
AEF (··· ),⊥(··· ) = 1

]
(integrity)

+ Pr
[
AEF (··· ),⊥(··· ) = 1

]
− Pr

[
AR(··· ),⊥(··· ) = 1

]
. (privacy)

We shall evaluate the privacy first and then integrity.

5.3 Privacy Proof of BTM[F ]

Theorem 1. Let A be an adversary whose total query complexity is at most σ
blocks. Then we have

Pr
[
AEF (··· ),⊥(··· ) = 1

]
− Pr

[
AR(··· ),⊥(··· ) = 1

]
≤ 8σ2

2n
.

Proof. Consider the eight bad events listed in Table 2. These bad flags are
placed in the description of the EF oracle. Observe that these bad events cause
the EF oracle to return some non-random values by invoking the function F on
some “old” inputs. In other words, as long as none of these bad flags gets set,
the EF oracle behaves exactly the same as the ideal R oracle, since the values
returned by the EF oracle are then outputs of the random function F on some
fresh inputs.

Therefore, by the fundamental lemma of game playing [3], we get

Pr
[
AEF (··· ),⊥(··· ) = 1

]
− Pr

[
AR(··· ),⊥(··· ) = 1

]
≤ Pr

[
AEF (··· ),⊥(··· ) sets bad

]
,

and now the game under consideration is random-until-bad. Hence, we can
systematically compute the winning probability of A. We simply sum up the
probabilities in Table 2 as

Pr
[
AEF (··· ),⊥(··· ) sets bad

]
≤ σ + · · ·+ 2(q − 1)(σ − q)

2n
≤ 8σ2

2n
,

which gives us the desired bound. 
�

5.4 Integrity Proof of BTM[F ]

Theorem 2. Let A be an adversary whose total query complexity is at most σ
blocks. Then we have

Pr
[
AEF (··· ),DF (··· ) = 1

]
− Pr

[
AEF (··· ),⊥(··· ) = 1

]
≤ 11σ2

2n
.
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Table 2. The bad events in the privacy game. The superscript (i) means that the
variable comes from the i-th query. The adversary makes q queries. The indices run
over 1 ≤ i ≤ q, 1 ≤ j ≤ i− 1, 0 ≤ α ≤ m(i)− 1 and 0 ≤ β ≤ m(j)− 1, where m(i) is the
length in blocks of the queried message M (i). The computations of the probabilities
can be found in Appendix B.

flag event type probability

bad[0] S(i) = 0n σ/2n

bad[1] S(i) = 1n σ/2n

bad[2] S(i) = S(j) bivariate polynomial (q − 1)σ/2n

bad[3] S(i) = T (j) � U � β
n

L-polynomial σ2/2n

bad[4] T (i) � U � αn = 0n σ/2n

bad[5] T (i) � U � αn = 1n σ/2n

bad[6] T (i) � U � αn = S(j) L-polynomial σ2/2n

bad[7] T (i) � U � αn = T (j) � U � β
n

2(q − 1)(σ − q)/2n

Proof. The two games are identical unless the DF oracle returns something other
than ⊥. Therefore, by the fundamental lemma of game playing, we have

Pr
[
AEF (··· ),DF (··· ) = 1

]
− Pr

[
AEF (··· ),⊥(··· ) = 1

]
≤ Pr

[
AEF (··· ),DF (··· ) forges

]
.

Using the adversary A, we shall construct a new adversary B that finds a forgery
of the message authentication code GF :

(−→
H, M

)
�→ T . We let B gain access to

an auxiliary oracle OF , which returns the value F (U � W ) upon a query W ∈
{0, 1}n. Here recall that U := F (0n). We let B simulate oracles for A in the
natural way. This yields

Pr
[
AEF (··· ),DF (··· ) forges

]
≤ Pr

[
BGF (··· ),VF (··· ),OF (·) forges

]
,

where VF is the verification oracle of the message authentication code GF . We
note that B makes at most σ − q queries to the OF oracle.

Now we introduce a random oracle Rn
n : {0, 1}n → {0, 1}n (independent of F )

and replace OF with the ideal Rn
n. Then we have

Pr
[
BGF (··· ),VF (··· ),OF (·) forges

]

≤ Pr
[
BGF (··· ),VF (··· ),OF (·) forges

]
− Pr

[
BGF (··· ),VF (··· ),Rn

n(·) forges
]

(1)

+ Pr
[
B̃GF (··· ),VF (··· ) forges

]
, (2)

where B̃ is the adversary that runs B by simulating the Rn
n oracle using B̃’s

internal random coins.
First we evaluate the quantity (1). The two games proceed exactly the same

as long as the oracle OF returns only random strings. Consider the bad flags
listed in Table 3. The flags bad[8− 11] are placed in the description of the OF

oracle, with the hash values S(i) being recorded upon queries to the GF and VF



324 T. Iwata and K. Yasuda

Table 3. The bad events in the integrity game. The index runs over 1 ≤ r ≤ σ − q.
The computations of the probabilities can be found in Appendix C.

flag event type probability

bad[8] W (r) � U = 0n (σ − q)/2n

bad[9] W (r) � U = 1n (σ − q)/2n

bad[10] W (r) � U = S(j) L-polynomial (σ − q)(σ + q)/2n

bad[11] S(i) = W (r) � U L-polynomial (σ − q)(σ + q)/2n

bad[12] S(i) = 0n σ/2n

bad[13] S(i) = 1n σ/2n

bad[14] S(i) = S(j) bivariate polynomial (q − 1)σ/2n

bad[15] VF (· · · ) �= ⊥ q/2n

oracles. The OF oracle behaves just like the ideal Rn
n unless one of these bad

flags gets set. Therefore, by the fundamental lemma of game playing, we get

(1) ≤ Pr
[
BGF (··· ),VF (··· ),OF (·) sets bad[8− 11]

]
.

Using the adversary B, we shall construct a new adversary C that has access
only to the GF and OF oracles. The adversary C simulates the VF oracle in
the natural way using its GF oracle. We add more flags bad[12 − 14], listed in
Table 3, to the description of the GF oracle. Clearly we have

Pr
[
BGF (··· ),VF (··· ),OF (·) sets bad[8− 11]

]
≤ Pr

[
CGF (··· ),OF (·) sets bad[8− 14]

]
,

and we see that C plays a random-until-bad game. Therefore, we have

Pr
[
CGF (··· ),OF (·) sets bad[8− 14]

]
≤ σ + · · ·+ σ

2n
≤ 6σ2

2n
,

rather than 7σ2/2n, since one of the σ’s gets cancelled out by (q− 1)σ = qσ− σ
in bad[14].

It remains to evaluate the quantity (2). For this, we introduce a random oracle
Rn which returns an n-bit random string upon a query

(−→
H, M

)
. We replace the

GF oracle with the ideal Rn, as

Pr
[
B̃GF (··· ),VF (··· ) forges

]

= Pr
[
B̃GF (··· ),VF (··· ) forges

]
− Pr

[
B̃Rn(··· ),VF (··· ) forges

]
(3)

+ Pr
[
B̃Rn(··· ),VF (··· ) forges

]
. (4)

By the fundamental lemma of game playing, we see that

(3) ≤ Pr
[
B̃GF (··· ),VF (··· ) sets bad[12− 14]

]
,
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where the bad flags are placed across the two oracles GF and VF . We obtain the
following random-until-bad games.

(3) ≤ Pr
[
B̃GF (··· ),VF (··· ) sets bad[12− 15]

]
≤ 4σ2

2n
, and

(4) = Pr
[
B̃GF (··· ),VF (··· ) sets bad[15]

]
≤ σ2

2n
,

which gives us (6 + 4 + 1)σ2/2n = 11σ2/2n as desired. 
�

6 Alternative Way of Tag Mixing

Here we mention a variant of BTM. We could use T ⊕U in place of T �U . Then
the counter increment is done via the multiplication by 2n in the finite field of
2n elements. This variant has both advantages and disadvantages. After careful
consideration, we have decided to choose T � U .

The T ⊕U method does not require the arithmetic addition, which somewhat
reduces the size of hardware footprint. Moreover, there exist quite efficient hard-
ware implementations of the multiplication by 2n. On the other hand, however,
the software implementations of the multiplication by 2n become a bit costly,
depending on the block size n and on the available word size(s) of the platform.

We have observed that the software inefficiency of the T ⊕U method appears
to be a little high price to pay for the hardware efficiency. There also exist fairly
efficient hardware implementations of the � operation, and the �1n increment
gains much better software performance on most of the platforms.

7 Improving Security via Tweakable Blockciphers

BTM gives excellent performance but provides security only up to the standard
birthday bound. Here we consider the problem of constructing DAE whose se-
curity is beyond the birthday bound (BBB). The problem was addressed in [7],
and BBB constructions are of particular interest if we consider key wrap [12],
an important application of DAE. With a key-wrap algorithm, one encrypts and
authenticates specialized data such as cryptographic keys, where one might de-
sire to ensure the highest security possible. BBB constructions can be used also
when one prefers to use a 64-bit blockcipher as the underlying primitive and at
the same time ensure security better than the O(232) birthday bound.

The BBB construction described in [7] requires about twelve blockcipher calls
to encrypt two blocks of a message, which is hopelessly inefficient and imprac-
tical. Here we present a BBB construction that uses a tweakable blockcipher [8]
as the underlying primitive, instead of using an ordinary blockcipher. Our con-
struction is somewhat more efficient than the one in [7] in a situation where one
can start with such a tweakable blockcipher.

Let ẼK : T × {0, 1}n → {0, 1}n be a tweakable blockcipher, where T =
{0, 1}n is a tweak space. First construct a 2n-to-2n-bit blockcipher E′

K1,K2,K3
:
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{0, 1}2n → {0, 1}2n, by using the sENR (simplified Extended Naor-Reingold)
construction [11], where K1 and K2 are the keys for the underlying tweakable
blockcipher, and K3 ∈ {0, 1}n. Recall that one call to E′ requires one multipli-
cation over GF (2n) and two calls to Ẽ. Then construct the BTM mode having
a block size of 2n bits, using E′ as its underlying blockcipher. This construction
ensures security beyond the O(2n/2) bound. The construction is not too ineffi-
cient; to encrypt two blocks of a message, it requires about one multiplication
over GF (22n), one multiplication over GF (2n), and two calls to Ẽ.

Unfortunately, the construction still has the following problems.

1. The key length is more than n bits; the key space of E′ is rather large.
2. The tag size is 2n bits instead of n bits; the ciphertext is somewhat long.

It remains open to provide a BBB construction (based on a tweakable blockci-
pher) which resolves the two problems. Also, our unorthodox method involves
using a tweakable blockcipher as the underlying primitive, which itself must have
BBB security. This implies that the standard construction of a tweakable blockci-
pher in [8] is not suitable for our purpose. Although the constructions in [5,4,11]
stand as potential candidates for our Ẽ, there is no known construction that
completely fulfills our requirements. The basic problem of designing an efficient
tweakable blockcipher with BBB security, possibly from scratch, still remains to
be solved.
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A Proof of Lemma 1

We have

Pr
[
G(L, U) = 0n

∣
∣ L, U

$← {0, 1}n
]

=
∑

U0∈{0,1}n

Pr
[
U = U0 ∧G(L, U) = 0n

∣
∣ L, U

$← {0, 1}n
]

=
∑

U0∈{0,1}n

Pr
[
U = U0

∣∣ U
$← {0, 1}n

]
· Pr

[
G(L, U0) = 0n

∣∣ L
$← {0, 1}n

]
.

Now put x := degL G and let Z ⊂ {0, 1}n be the set of U0 which makes the
coefficient of Lx zero. Note that we have |Z| ≤ degU

L G. We get
∑

U0∈Z

Pr
[
U = U0

∣
∣ U

$← {0, 1}n
]
· Pr

[
G(L, U0) = 0n

∣
∣ L

$← {0, 1}n
]

+
∑

U0 /∈Z

Pr
[
U = U0

∣
∣ U

$← {0, 1}n
]
· Pr

[
G(L, U0) = 0n

∣
∣ L

$← {0, 1}n
]

≤|Z| · 1
2n
· 1 +

∑

U0 /∈Z

1
2n
· degL G

2n

≤degU
L G + degL G

2n
,

as desired.

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
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B Computing the Probabilities in Table 2

In the following computations we introduce a variable

µ := max{h0, . . . , hd−2, m}.

In other words, µ denotes the maximum length of a component in the vec-
tor

(−→
H, M

)
. We also introduce a new variable

λ := h0 + · · ·hd−2 + m.

The superscript (i) denotes the fact that the variable comes from the i-th query.
We compute the probabilities one by one. We start with bad[0]. This event

corresponds to outputting the hash key L. From Lemma 1 we have

Pr
[
bad[0]

]
≤

q∑

i=1

Pr
[
FL,U

(
H

(i)
0 , . . . , H

(i)

d(i)−2
, M (i)

)
= 0n

]

≤
q∑

i=1

d(i) − 1 + µ(i)

2n
≤

q∑

i=1

λ(i)

2n
,

which is then bounded by σ/2n.
The probability of bad[1] can be done in the exactly same manner, as this cor-

responds to outputting the other hash key U . We have Pr
[
bad[1]

]
= Pr

[
bad[0]

]

≤ σ/2n.
The event bad[2] means a collision among the hash values. Using Lemma 1,

we compute

Pr
[
bad[2]

]
≤

q∑

i=2

i−1∑

j=1

Pr
[
FL,U

(−→
H (i), M (i)

)
= FL,U

(−→
H (j), M (j)

)]

≤
q∑

i=2

i−1∑

j=1

max
{
d(i) − 1, d(j) − 1

}
+ max

{
µ(i), µ(j)

}

2n

≤ (q − 1)
q∑

i=1

d(i) − 1 + µ(i)

2n
≤ (q − 1)

q∑

i=1

λ(i)

2n
,

which is then bounded by (q − 1)σ/2n.
We proceed to bad[3]. We use Lemma 1 to get

Pr
[
bad[3]

]
≤

q∑

i=2

i−1∑

j=1

m(j)−1∑

β=0

Pr
[
FL,U

(
H

(i)
0 , . . . , H

(i)

d(i)−2
, M (i)

)
= T (j) � U � β

n

]

≤
q∑

i=2

i−1∑

j=1

m(j)−1∑

β=0

d(i) − 1 + µ(i)

2n

≤
q∑

i=2

i−1∑

j=1

m(j)−1∑

β=0

λ(i)

2n
=

q∑

i=2

λ(i)

2n

i−1∑

j=1

m(j)−1∑

β=0

1 =
q∑

i=2

λ(i)

2n

i−1∑

j=1

m(j),
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which we can bound as σ/2n · σ = σ2/2n.
The quantity Pr

[
bad[4]

]
can be evaluated relatively easily. We get

Pr
[
bad[4]

]
≤

q∑

i=2

m(i)−1∑

α=0

Pr
[
T (i) � U � αn = 0n

]
≤

q∑

i=2

m(i)

2n
,

which must be less than σ/2n.
The event Pr

[
bad[5]

]
can be treated in a way similar to Pr

[
bad[4]

]
. We have

Pr
[
bad[5]

]
= Pr

[
bad[4]

]
≤ σ/2n.

Also, the quantity Pr
[
bad[6]

]
is exactly the same as Pr

[
bad[3]

]
. We have

Pr
[
bad[6]

]
= Pr

[
bad[3]

]
≤ σ2/2n.

Lastly, we go on to treat the event bad[7]. We have

Pr
[
bad[7]

]
≤

q∑

i=2

i−1∑

j=1

Pr
[m(i)−1∨

α=0

m(j)−1∨

β=0

(
T (i) � U � αn = T (j) � U � β

n

)]

≤
q∑

i=2

i−1∑

j=1

Pr
[ m(j)−1∨

γ=−m(i)+1

(
T (i) = T (j) � γ

n

)]

≤
q∑

i=2

i−1∑

j=1

m(i) + m(j) − 2
2n

≤ (q − 1)
q∑

i=1

2m(i) − 2
2n

,

which is less than 2(q − 1)(σ − q)/2n. This concludes the computation of the
probabilities in Table 2.

C Computing the Probabilities in Table 3

Again we use the variable

µ := max{h0, . . . , hd−2, m}.

As usual, the superscript (i) denotes the fact that the variable comes from the
i-th query that the adversary makes.

We begin with Pr
[
bad[8]

]
. We get

Pr
[
bad[8]

]
≤

σ−q∑

r=1

Pr
[
W (r) � U = 0n

]
≤

σ−q∑

r=1

1
2n

,

which must be bounded by (σ − q)/2n.
The event bad[9] can be treated in a similar way. We obtain Pr

[
bad[9]

]
=

Pr
[
bad[8]

]
≤ (σ − q)/2n.
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Next we evaluate the probability Pr
[
bad[10]

]
. Using Lemma 1, we compute

as

Pr
[
bad[10]

]
≤

σ−q∑

r=1

q∑

j=1

Pr
[
W (r) � U = FL,U

(
H

(j)
0 , . . . , H

(j)

d(j)−2
, M (j)

)]

≤
σ−q∑

r=1

q∑

j=1

max{d(j) − 1, 1}+ µ(j)

2n
,

which can be bounded by (σ − q)(σ + q)/2n.
The probability Pr

[
bad[11]

]
is exactly the same as Pr

[
bad[10]

]
. We have

Pr
[
bad[11]

]
= Pr

[
bad[10]

]
≤ (σ − q)(σ + q)/2n.

The events bad[12], bad[13] and bad[14] can be treated in ways similar to
bad[0], bad[1] and bad[2], respectively, whose probabilities have been already
computed in Appendix B. We get

Pr
[
bad[12]

]
= Pr

[
bad[0]

]
≤ σ

2n
,

Pr
[
bad[13]

]
= Pr

[
bad[1]

]
≤ σ

2n
,

Pr
[
bad[14]

]
= Pr

[
bad[2]

]
≤ (q − 1)σ

2n
,

as expected.
Lastly, we handle bad[15]. Observe that this event is nothing but a forgery

by making random guesses. So we obtain

Pr
[
bad[15]

]
≤

q∑

i=1

Pr
[
VF (· · · ) �= ⊥

]
≤ q

2n
.

Thus we have completed computing the probabilities in Table 3.
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