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Background and purpose. Buprenorphine is potent analgesic with high affinity at mu, delta, and kappa 

and moderate affinity at NOP receptors.  Nevertheless, NOP receptor activation modulates the in vivo 

activity of buprenorphine.  Structure activity studies were conducted to design buprenorphine analogs 

with high affinity at each of these receptors and to characterize them in in vitro and in vivo assays.   

Experimental approach. Compounds were tested for binding affinity and functional activity using 

[
35

S]GTPS binding at each receptor and a whole cell fluorescent assay at mu receptors.  BU08073 was 

evaluated for antinociceptive agonist and antagonist activity and for its effects on anxiety in mice.  

Key results.  BU08073 binds with high affinity to all opioid receptors. It has virtually no efficacy at 

delta, kappa, and NOP receptors, whereas at mu receptors, BU08073 has similar efficacy as 

buprenorphine in both functional assays.  Alone, BU08073 has anxiogenic activity and produces very 

little antinociception.  However, BU08073 blocks morphine and U50,488-mediated antinociception.  

This blockade is not evident at 1 h post-treatment, but is present at 6 h and remains for up to 3-6 days.   

Conclusions and Implications.  These studies provide structural requirements for synthesis of 

“universal” opioid ligands.  BU08073 has high affinity at all the opioid receptors, with moderate 

efficacy at mu receptors and reduced efficacy at NOP receptors, a profile suggesting potential analgesic 

activity.  On the contrary, BU08073 has long lasting antagonist activity, indicating that the 

pharmacokinetics of a compound dictates not only the time course of the behavior but also what 

receptor-mediated behavior will be observed. 

 

Keywords.  Antinociception, Mu opioid receptor, kappa opioid receptor, NOP receptor, binding, tail 

flick assay, zero maze, BU08073, buprenorphine. 

 A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved. 

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial 

License, which permits use, distribution and reproduction in any medium, provided the original work is 
properly cited and is not used for commercial purposes. 

Abbreviations.  Beta-FNA, beta-Funaltrexamine; CHO cells, Chinese Hamster Ovary cells; CYP-2C8, 

cytochrome P450 -2-C8; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin); DMEM, Dulbecco’s 

Modified Eagle Medium;; DMSO, dimethylsulfoxide; DPDPE, [D-Pen2,D-Pen5]Enkephalin), HBSS, 

Hanks Balanced Salt Solution; JDTic,  (3R)-7-Hydroxy-N-[(2S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-

dimethylpiperidin-1-yl]-3-methylbutan-2-yl]-1,2,3,4-tetrahydroisoquinoline-3-carboxamide; N/OFQ, 

nociceptin/orphanin FQ; NOP receptor Nociceptin OPioid receptor; PEG, polyelthylene glycol, 

SB612111, (5S,7S)-7-{[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl}-1-methyl-6,7,8,9-tetrahydro-5H-

benzo[7]annulen-5-ol; U50,488, 2-(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-pyrrolidin-1-

ylcyclohexyl]acetamide; U69,593, N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-

oxaspiro[4.5]dec-8-yl]acetamide. 
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INTRODUCTION 

The affinity and efficacy of opioid compounds generally can explain their ultimate physiological 

activity.  Based upon original observations, a compound with high efficacy at mu receptors was likely to 

be analgesic with the concomitant side effects of constipation, respiratory depression, and euphoria 

leading to abuse liability.  Conversely, a compound with high efficacy at kappa receptors was likely to 

be analgesic, with reduced constipation and respiratory depression, but dysphoria rather than euphoria 

(Martin, 1983; Martin et al., 1976).  

 

If high efficacy mu receptor opiates, such as morphine and fentanyl are plagued by dangerous 

side effects such as abuse liability and respiratory depression, in theory lower efficacy at the opioid 

receptors would potentially lead to an analgesic with a lower mu receptor-mediated side effect profile.  

This concept was epitomized by buprenorphine, a high affinity partial mu receptor agonist and high 

affinity delta and kappa antagonist (Cowan et al., 1977; Lutfy et al., 2004; Toll et al., 1998).  More 

recently it was determined that buprenorphine also has moderate affinity at NOP receptors, the fourth 

member of the opioid receptor family (Huang et al., 2001; Spagnolo et al., 2007).  Buprenorphine has 

been used successfully as an analgesic since the 1980s.  Although it is a potent analgesic, the 

antinociceptive activity is dependent upon the stimulus intensity and it can have an inverted U shaped 

dose response curve, with reduced antinociception at high doses (Cowan et al., 1977; Lutfy et al., 2003).  

Buprenorphine also has reduced abuse liability and reduced respiratory depression, compared to 

morphine, a feature attributed to the partial agonist component of its profile (Dahan et al., 2005; Mello 

et al., 1993).  Furthermore, because it is a lipophilic, long lasting compound, buprenorphine has 

demonstrated great success as an opioid abuse maintenance medication, as an alternative to methadone.  

Buprenorphine also blocks self-administration of both cocaine and alcohol in various species, including A
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people (Mello et al., 1989; Montoya et al., 2004). It has been suggested that the downward portion of 

the inverted U shaped dose response for antinociception, as well as the ability of buprenorphine to 

attenuate drug seeking is due to activation of NOP receptors (Ciccocioppo et al., 2007; Lutfy et al., 

2003).  This hypothesis is consistent with many studies demonstrating: 1. other mixed NOP/mu 

compounds, in addition to buprenorphine, also have antinociception that can be potentiated by the NOP 

antagonist SB612111, indicating that mu receptor-mediated antinociception can be reduced by the NOP 

agonist activity residing in the same molecule (Khroyan et al., 2009; Spagnolo et al., 2008); and 2. 

N/OFQ as well as selective NOP receptor agonists have been demonstrated to attenuate both conditioned 

place preference and self-administration of a variety of abused drugs (Ciccocioppo et al., 2004; 

Kotlinska et al., 2003; Sakoori et al., 2004; Shoblock et al., 2005).  

 

If activity at the NOP receptor can modulate buprenorphine’s activity, it seems reasonable that 

a buprenorphine analog with high affinity at NOP receptors would further mediate opiate behaviors.  

There are two directions in which NOP binding could modulate the activity of buprenorphine.  If NOP 

affinity and efficacy were increased, the compound might have reduced abuse liability compared to 

buprenorphine itself or act as a better drug abuse medication.  Conversely, a buprenorphine analog with 

higher affinity at NOP receptors but with reduced efficacy at this receptor might have greater 

antinociceptive activity.   

 

Accordingly, we have begun to conduct structure activity studies to identify buprenorphine 

analogs with increased affinity at NOP receptors.  To this end we produced a series of buprenorphine 

analogs with high affinity at all four receptors in the opioid receptor family with variable efficacies at 

NOP receptors (Cami-Kobeci et al., 2011).  The first compound tested from this series was BU08028, a 

partial agonist at both NOP and mu receptors which proved to have mu-mediated antinociception and A
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reward that overpowered NOP-mediated inhibition (Khroyan et al., 2011).  Here we discuss BU08073, 

which has high affinity at all four receptors, exhibits in vitro partial agonist activity at mu, similar to 

buprenorphine, but has virtually no agonist activity at kappa, delta, and NOP receptors.  However, in 

vivo, BU08073 produces an unusual profile in that it has virtually no antinociceptive activity in mice 

when tested alone, but has long-lasting antagonist activity at both mu and kappa receptors using the tail 

flick assay.  

 

Materials and Methods 

Animals. Male ICR mice weighing 25-30g at the start of the experiment were used. Animals 

were group-housed (N=10/cage) under standard laboratory conditions using nestlets as environmental 

enrichment in their cages and were kept on a 12:12-hr day/night cycle (lights on at 7:00am). Testing was 

conducted during the animals’ light cycle between 9am-2pm. Animals were handled for 3-4 days before 

the experiments were conducted. On behavioral test days, animals were transported to the testing room 

and acclimated to the environment for 1 hr. Mice were maintained in accordance with the guidelines of 

SRI International and of the Guidelines for the Care and Use of Mammals in Neuroscience and 

Behavioral Research (National Research Council, 2003). Prior to any in vivo testing, approval for the 

behavioral protocols was obtained from the institutional ACUC of SRI International. 

 

Drugs. The new buprenorphine analogues were synthesized using methods we have reported 

recently (Cami-Kobeci et al., 2011; Greedy et al., 2013) for other orvinols, but using the appropriate 

phenethyl magnesium bromide reagent in the Grignard addition step (see Supporting Information).  For 

binding studies, compounds were dissolved in DMSO and diluted into Tris buffer, pH 7.5.  For 

behavioral studies, BU08073 and U50,488 (Sigma Aldrich, St. Louis, MO)  were dissolved in 1-2% A
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DMSO and 30% PEG 400 solution. Morphine hydrochloride (Eli Lilly & Co., Indianapolis, IN) was 

dissolved in water.  Drugs were injected in a volume of 0.1 ml/30g s.c. Controls received 0.1 ml/30 g of 

the appropriate vehicle.  

 

In vitro Characterization 

Cell Culture. All receptors were individually expressed in CHO cells stably transfected with 

human receptor cDNA, The cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) with 

10% fetal bovine serum, in the presence of 0.4 mg/ml G418 and 0.1% penicillin/streptomycin, in 100-

mm polystyrene culture dishes.  For binding assays, the cells were scraped off the plate at confluence. 

Receptor expression levels were 1.2, 1.6, 1.8, and 3.7 pmol per mg protein for the NOP, mu, kappa, and 

delta opioid receptors respectively.   

 

Receptor Binding. Binding to cell membranes was conducted in a 96-well format, as described 

previously (Dooley et al., 1997; Toll et al., 1998).  Briefly, cells were removed from the plates, 

homogenized in 50 mM Tris pH 7.5, using a Polytron homogenizer, then centrifuged once and washed 

by an additional centrifugation at 27,000 x g for 15 min.  The final pellet was re suspended in Tris, and 

the suspension incubated with [
3
H]DAMGO (51 Ci/mmol, 1.6 nM), [

3
H]Cl-DPDPE (42 Ci/mmol, 1.4 

nM), [
3
H]U69593 (41.7 Ci/mmol, 1.9 nM), or [

3
H]N/OFQ (120 Ci/mmol, 0.2 nM) for binding to, mu, 

delta, kappa and NOP receptors respectively.  Non-specific binding was determined with 1 µM of 

unlabeled DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin), DPDPE( [D-Pen2,D-Pen5]Enkephalin), 

ethylketocyclazocine, and N/OFQ respectively.  Samples were incubated for 60 min at 25˚C in a total 

volume of 1.0 ml, with 15 μg protein per well.  The reaction was terminated by filtration using a Tomtec 

96 harvester (Orange, CT) through glass fiber filters and radioactivity was counted on a Pharmacia A
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Biotech beta-plate liquid scintillation counter (Piscataway, NJ).  IC50 values were calculated using 

Graphpad/Prism (ISI, San Diego, CA) and Ki values were determined by the method of Cheng and 

Prusoff (Cheng et al., 1973). 

 

[
35

S]GTPS binding. [
35

S]GTPS binding was conducted basically as described by Traynor and 

Nahorski (Traynor et al., 1995).  Cells were scraped from tissue culture dishes into 20 mM Hepes, 1 

mM EDTA, then centrifuged at 500 x g for 10 min.  Cells were resuspended in this buffer and 

homogenized using a Polytron Homogenizer.  The homogenate was centrifuged at 27,000 x g for 15 

min, and the pellet re suspended in Buffer A, containing: 20 mM Hepes, 10 mM MgCl2, 100 mM NaCl, 

pH 7.4.  The suspension was re centrifuged at 27,000 x g and suspended once more in Buffer A.  For the 

binding assay, membranes (8-15 μg protein) were incubated with [35
S]GTPS (50 pM), GDP (10 µM), 

and the appropriate compound, in a total volume of 1.0 ml, for 60 min at 25˚C.  Samples were filtered 

over glass fiber filters and counted as described for the binding assays.  Statistical analysis was 

conducted using the program Prism.  For the antagonist assay, various concentrations of BU08073 were 

incubated in the presence of 100 nM N/OFQ to determine antagonist potency. Kb was determined by a 

modification of Cheng and Prusoff such that Kb = IC50/(1+[L]/EC50), where [L] is the concentration of 

N/OFQ and the EC50 of N/OFQ was 1.1 nM. 

 

Membrane potential assay. 

Mu opioid receptor functional activity in intact cells was determined by measuring receptor-

induced membrane potential change, which can be directly read by Molecular Devices Membrane 

Potential Assay Kit (Blue Dye) using the FlexStation 3® microplate reader (Molecular Devices).  This 

experiment is similar to a recently published assay in which forskolin induced changes in cAMP levels A
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which ultimately induced hyperpolarization of CHO cells (Knapman et al., 2014).  In this experiment, 

CHO cells transfected with human mu opioid receptor were seeded in a 96-well plate (30,000 cells per 

well) one day prior to the experiments.   For agonist assays, after brief washing, the cells were loaded 

with 225 l of HBSS assay buffer (Hank’s Balanced Salt Solution with 20 mM of HEPES, pH7.4), 

containing the blue dye, and incubated at 37°C.  After 30 minutes, 25 l of the appropriate compounds 

were automatically dispensed into the wells by the FlexStation and receptor stimulation-mediated 

membrane potential change is recorded every 3s for 60s by reading 550–565 nm fluorescence excited at 

530 nm wavelength.  For the antagonist assay, the cells are loaded with 200 l HBSS buffer containing 

the blue dye and incubated at 37°C.  After 15 minutes, 25 l of naloxone was added into corresponding 

wells, and after another 15 minutes, 25 l of DAMGO or test compounds was added into wells by the 

FlexStateion, with fluorescence measured as described above.  The change in fluorescence represents 

the maximum response, minus the minimum response for each well.  Graphpad PRISM was used to 

determine the EC50 and IC50 values. 

In vivo Characterization 

Assessment of Thermal Nociception 

Tail-Flick Assay. Acute nociception was assessed using the tail flick assay with an analgesia 

instrument (Stoelting) that uses radiant heat. This instrument is equipped with an automatic 

quantification of tail flick latency, and a 15 sec cutoff to prevent damage to the animal’s tail. During 

testing, the focused beam of light was applied to the lower half of the animal’s tail, and tail flick latency 

was recorded. Baseline values for tail flick latency were determined before drug administration in each 

animal. The mean basal tail flick latency was 4.34 ± 0.10 SEM.  
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Drug Regimen. In the first experiment, the effects of BU08073 alone were tested. Animals 

received a s.c. injection of BU08073 (0.3-10 mg/kg, N=6-9/group; total N=48) and were tested ½-, 1-, 

and 4-hr post-injection. Controls received an injection of vehicle prior to testing. Because BU08073 

alone did not produce a high level of antinociception the effect of 3 mg/kg BU08073 on morphine (mu-

mediated) antinociception was examined. In addition, given that BU08073 seems to be a potent 

antagonist at kappa receptors, its effects on U50,488 (kappa agonist) antinociception was also tested. For 

these experiments animals received a s.c. injection of BU08073 and 30-min prior to testing they 

received a s.c. injection of morphine (10 mg/kg) or U50,488 (30 mg/kg). The pretreatment time for 

BU08073 was altered such that tail-flick latencies were measured 1-hr, 6-hr, 1-day, 3-day, 6-day, and 

10-day following the injection of BU08073. Different groups of animals (N=8/time point) were used at 

each post-injection time point so animals received 1 injection of BU08073 and 30-min prior to their test 

time they received an injection of either morphine or U50,488 (N=128 total for interaction experiments).  

 

Statistical Analyses. Data from all animals tested were used in the statistical analyses.  

Antinociception (% maximum potential effect; % MPE) was quantified by the following formula: % 

MPE = 100 * [(test latency - baseline latency)/(15 - baseline latency)]. If the animal did not respond 

before the 15-s cutoff, the animal was assigned a score of 100%.  Results examining the effects of 

BU08073 alone were analyzed by using repeated measures ANOVAs with dose (0, 0.3-10mg/kg) as the 

between group variable and post-injection time point (½-, 1-, and 4-hr) as the repeated measure followed 

by one way ANOVAs and Bonferonni post hoc tests where appropriate. For the effects of BU08073 on 

morphine or U50,488-induced antinociception, given that one dose of each drug were used and that 

different animals were used for each time point, a one way ANOVA with BU08073 post-injection time 

point (1hr, 6 hr, 1-day, 3-day, 6-day, and 10-day) was used as the between group variable. Significant 

effects were further analyzed by Bonferonni post hoc tests. The level of significance was set at P<0.05. A
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Assessment of Anxiety 

Elevated Zero-Maze. This maze is an elevated annular platform with two opposite quadrants 

enclosed with clear Plexiglas and two open quadrants connecting the two enclosed quadrants (Shepherd 

et al., 1994). The elevated zero maze similar to the elevated plus maze has been used as a model to 

measure anxiety in rodents repeatedly (Braun et al., 2011; Khroyan et al., 2012; Shepherd et al., 

1994). In our laboratory we have shown that diazepam significantly increased the amount of time spent 

in the open arms relative to vehicle controls indicative of its anxiolytic properties (Khroyan et al., 

2012).  Similar lighting conditions and experimental set-up were used as before (Khroyan et al., 2012) 

and animals were placed on the edge of the enclosed quadrant and behavior was assessed for 5 min. The 

amount of time spent in the open quadrants, latency to enter the open quadrant, and frequency of head 

dips over the edge of the platform were measured by an observer unaware of the animal’s treatment 

group.  

 

Animals received a s.c. injection of BU08073 (3 mg/kg) and were tested at the 6-hr, 1-day and 6-

day post-injection time points. Different groups of animals were used at each time point tested (N=10). 

Separate groups of animals served as controls and received vehicle injection and were tested at the 

various time points indicated above. From previous experiments in our laboratory given that the data 

from animals given vehicle injection at different ‘pretreatment’ time points and testing on the zero maze 

has not shown a difference we used an N=5 at each time point (unpublished data).  Because all of the 

vehicle animals at each time point did not differ (F2,12=0.006; no differences observed with scatterplot 

data), the vehicle data were combined resulting in N=15 in the vehicle group. A total number of 45 

animals were used for these experiments.  

  A
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Statistical Analyses. The amount of time spent in the open quadrants, latency to enter the open 

quadrant, and the frequency of head dips were analyzed with one way ANOVAs with BU08073 post-

injection time point (6-hr, 1-day, and 6-day) as the between group variable. Significant effects were 

further analyzed by Bonferonni post hoc tests. The level of significance was set at P<0.05. 

 

Nomenclature.  Receptor nomenclature in this manuscript conforms to BJP's Guide to Receptors 

and Channels (Alexander et al., 2011; Cox et al., 2014). 

 

Results 

 

In vitro Characterization: Receptor Binding and Functional Activity.  A series of analogs of 

buprenorphine were designed and constructed for the purpose of increasing affinity at NOP receptors but 

maintaining affinity at the opioid receptor (Figure 1).  Similar to our previously described compound 

BU08028, several compounds had high affinity, with Ki values of less than 10 nM, at all four opioid 

receptors (Table 1).  The new ligands bound with high affinity to mu, kappa, and delta receptors with 

little difference between ligands.  Only the somewhat lower affinity of the meta methyl-substituted 

analogue, BU09054, at delta fell outside of an otherwise narrow range.  At NOP receptors the ligands 

displayed far higher affinity than buprenorphine, to the extent that a number of compounds had affinity 

for this receptor almost equivalent to that at the mu, kappa, and delta receptors.  In general a chloro 

substituent appeared to be better tolerated than a methyl substituent for binding to NOP receptors.  

 

Each compound was tested for functional activity using the [
35

S]GTPS binding assay.  As seen 

in Table 2, generally, the compounds have moderate to low partial agonist activity at each receptor.  

Low partial agonist activity, at the mu receptor, in this assay has been reported for buprenorphine many A
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times, and the even lower agonist activity at NOP receptors is consistent with what we have reported 

previously (Khroyan et al., 2009; Spagnolo et al., 2008).  However, in some publications the potency 

of buprenorphine is somewhat higher at mu receptors (Huang et al., 2001) and efficacy considerably 

higher at NOP receptors (Bloms-Funke et al., 2000; Huang et al., 2001). In this assay five of the new 

compounds had efficacy at NOP receptors equivalent to or greater than buprenorphine.  The three 

compounds with the highest efficacies (the unsubstituted and the ortho-substituted analogues) also 

proved to be more potent than buprenorphine at this receptor, but not to the extent predicted by their 

binding affinities.  At the NOP receptor an ortho-substituent on the phenyl ring was associated with 

higher efficacy than a meta substituent with para-substitution leading to the lowest efficacy.  A very 

similar SAR was seen at the mu receptor with para-substitution again giving the lowest efficacy 

compound; at delta and kappa receptors, the effect was at its most pronounced.  Of the 7 new 

compounds, only the 2 para-substituted analogues BU08073 and BU08074 had very low, or no efficacy 

at the kappa receptor; each of the other compounds was a partial agonist with substantial (50 – 60%) 

efficacy.  Because BU08073 had low partial agonist activity at NOP receptors it was tested for 

antagonist activity.  As seen in Figure 2, BU08073 blocked N/OFQ-induced [
35

S]GTPS binding in a 

concentration dependent way, with an IC50 of 697 ± 20 nM (Kb = 14.4 nM).   

 

To examine functional activity in an intact cell assay, we measured real time stimulation of 

membrane potential using the FlexStation.  As seen in Figure 3, DAMGO hyperpolarizes CHO cells 

transfected with mu receptors (EC50 1.96 ± 0.56 nM), and this is blocked by low concentrations of 

naloxone.  In contrast to the [
35

S]GTPS  binding assay, both buprenorphine and BU08073 are full 

agonists in this intact cell assay, with EC50 values of 45.5 ± 19 nM and 323 ± 140 nM respectively, 

indicating significant amplification of the signal with this assay.   A
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Behavioral Activity:  

The effects of BU08073 alone on nociception. Because of its moderate efficacy at mu receptors 

in the [
35

S]GTPS  binding assay and full agonist activity in the whole cell assay, we tested BU08073 to 

determine potential antinociceptive activity.  The effect of BU08073 on thermal antinociception is 

shown in Figure 4. The overall ANOVA indicated a significant interaction effect (F10,84=4.8, P<0.05). 

Morphine produced a significant increase in %MPE relative to vehicle controls at each time points 

(P<0.05). However, BU08073 produced a very small but significant increase in %MPE relative to 

controls that was evident only at the 1-hr test point and following administration of the highest dose 

tested (10 mg/kg; P<0.05). 

 

The effects of BU08073 on morphine or U50,488-induced antinociception. Because BU08073 

did not produce a high level of antinociception we tested it as an antagonist to morphine antinociception 

(Figure 5A). The overall ANOVA indicated a significant effect (F7,66=17.8, P<0.05). As expected, 10 

mg/kg morphine produced an increase in %MPE 30-min post-injection, relative to vehicle controls 

(P<0.05). When 3 mg/kg of BU08073 was administered 30-min prior to morphine and animals were 

tested 30-min later, morphine antinociception was still evident. However, when BU08073 was given as 

a 6-hr, 1-Day, and 3-Day pretreatment prior to morphine administration, morphine antinociception was 

blocked and these groups of animals produced a similar level of %MPE as vehicle controls. BU08073 

still attenuated morphine antinociception 6 days after a single administration of BU08073, (P<0.05), 

although this group also showed a significant increase in %MPE relative to vehicle controls (P<0.05), 

indicating mu receptor inhibition was finally subsiding.  By day 10, pretreatment with BU08073 did not 

alter morphine induced antinociception and these animals produced a significant increase in %MPE 

relative to vehicle controls (P<0.05).  A
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BU08073 is devoid of agonist activity at kappa receptors in the [
35

S]GTPS binding assay.  

Experiments were conducted to determine if this compound had long-lasting antagonist activity at kappa 

receptors as well, by determining the time course for inhibition of U50,488-mediated antinociceptive 

activity.  As seen in Figure 5B, the ability of BU08073 to antagonize U50,488 was quite similar to its 

ability to antagonize morphine antinociception.  The overall ANOVA indicated a significant effect 

(F7,60=21.6, P<0.05). U50,488 (30 mg/kg) alone produced an increase in %MPE 30-min post-injection 

relative to vehicle controls (P<0.05).  When BU08073 was given 30-min prior to U50,488 and animals 

were tested 1hr following administration of 3 mg/kg BU08073, U50,488 antinociception was still 

evident.  However, when BU08073 was given as a 6-hr, 1-Day, and 3-Day pretreatment prior to 

U50,488 administration, U50,488-induced antinociception was no longer evident and these groups of 

animals were significantly different compared to U50,488 alone (P<0.05) and produced a similar level 

of %MPE as vehicle controls. By Day 6 and 10 after a single treatment with BU08073 the animals 

produced a significant increase in %MPE relative to vehicle controls (P<0.05) that were comparable 

with animals that received U50,488 alone.  

The effects of BU08073 alone on anxiety.  The effect of BU08073 on anxiety-related behaviors 

as captured by zero-maze activity is shown in Figure 6. The overall ANOVA indicated a significant 

effect looking at all the parameters tested (F3,38=6.0, P<0.05, amount of time spent in the open 

quadrants; F3,38=3.1, P<0.05, latency to enter the open quadrant; F3,38=3.0, P<0.05, frequency of head 

dips). Animals that were tested 6-hr and 1-day following BU08073 spent less time in the open 

quadrants, had a greater latency to enter the open quadrants, and had a lower incidence of head dips 

compared to vehicle controls. Animals that received BU08073 and were tested 6-day post injection were 

no different than vehicle controls.  
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In silico pharmacokinetic characterization. BU08073 was examined in silico (ADMET 

Predictor 6.5, Simulations Plus Inc.), along with buprenorphine as a control, to predict its ADMET 

properties. BU08073 was predicted to be a better substrate than buprenorphine for CYP-2C8, a P450 

enzyme thought to be responsible for some of the N-dealkylation of buprenorphine to norbuprenorphine. 

(Picard et al., 2005).  However, for buprenorphine, N-dealkylation results in an increase in efficacy as 

well as limiting access to the brain and this would not explain the lack of efficacy and delayed 

antagonism displayed by BU08073. No other substantial differences in metabolism were predicted 

between the two ligands.  BU08073 has a higher clogP than buprenorphine, lower water solubility and is 

predicted to be more highly bound to plasma proteins (Table 3).  Since both BU08073 and 

buprenorphine are predicted to have good blood-brain barrier (BBB) penetration, it is likely that the 

apparent slow kinetics of BU08073 relate to its high protein binding, resulting in a depot-like effect and 

slow release of the unbound form. 

 

Discussion 

 

As predicted by our earlier studies in the orvinols (Cami-Kobeci et al., 2011), having a lipophilic 

group separated from C20 by a short chain results in increased NOP activity compared to buprenorphine 

which has the lipophilic t-butyl group attached directly to C20. This also results in higher efficacy at the 

other opioid receptors, again as would be predicted from earlier work. (Greedy et al., 2013; Lewis et al., 

2004).  The high affinity of the new ligands at NOPr relative to buprenorphine is in agreement with the 

finding of Yu et al. that TH-030418 (a thienylethyl orvinol analogue) had as high affinity at NOP 

receptors as at the other opioid receptors (Yu et al., 2011).  No indication of the efficacy of this 

compound at NOP receptors was given. Also recently reported was the dimethylphenethyl analogue that 

has similar affinity for NOP receptors as for the other opioid receptors (Cami-Kobeci et al., 2011).  In A
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[
35

S]GTPS assays, this analogue is a lower efficacy partial agonist at the mu receptor than BU08073 

(17% vs 32%) but is also a partial agonist at each of the other receptors; this is different than BU08073, 

which is largely devoid of agonist activity at opioid receptors other than mu.  

 

Buprenorphine, which has only approximately 28% maximal activity in the [
35

S]GTPS  binding 

assay, as well as other partial mu opioid agonists, have potent antinociceptive activity in rodents and 

humans. However, efficacy of partial agonists is completely dependent upon the test being administered.  

This can be demonstrated both in vitro and in vivo.  In the present study we have shown that both 

buprenorphine and BU0873 are partial agonists at mu receptors in the [
35

S]GTPS binding assay while 

in a whole cell  in vitro assay in which we measured membrane potential changes, both buprenorphine 

and BU08073 demonstrate full agonist activity. Buprenorphine also has full agonist activity in an intact 

cell reporter gene assay at NOP receptors (Wnendt et al., 1999) although it is very weak in the 

[
35

S]GTPS  binding assay (Khroyan et al., 2009; Spagnolo et al., 2008).  Presumably these 

differences are due to signal amplification and a high receptor reserve for the intact cells assays.  In fact 

it is very common that compounds with partial agonist, or even antagonist activity in in vitro assays can 

have agonist activity when tested in vivo.  Buprenorphine provides an example for this phenomenon.  

Buprenorphine has very low efficacy in the [
35

S]GTPS binding assay at NOP receptors (Spagnolo et 

al., 2008), but has clear agonist activity at NOP receptors when measuring antinociception (Khroyan et 

al., 2009; Lutfy et al., 2003).  As another example, the peptide [Phe1psi(CH2-NH)Gly2]-NC(1-13)-NH2 

was described as the first NOP receptor antagonist when tested in the mouse vas deferens assay 

(Guerrini et al., 1998), while further studies demonstrated that this compound has full agonist 

activity in transfected cells and is a potent as N/OFQ in blocking opiate analgesia in mice (Calo et 

al., 1998; Okawa et al., 1999).  Due to agonist activity comparable to buprenorphine at mu receptors in A
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vitro, we expected BU08073 to have antinociceptive activity in vivo.  Furthermore, high affinity at NOP 

receptors, with no apparent efficacy should act to potentiate the antinociceptive activity of this 

compound.  However, BU08073 displays only very limited antinociception at a single dose and single 

time point, in the tail flick.  Even more surprising was the observation that although BU08073 

antagonized both mu- and kappa-mediated antinociception, antagonist activity of this compound was not 

evident at 1 h, a time point that is normally associated with maximal activity for many opiates, including 

its close analog buprenorphine.  BU08073 also has high affinity and antagonist activity at the other 

receptors in the opiate receptor family. But it seems very unlikely that antagonism of these other 

receptors would block the expected mu-mediated antinociception.   

 

When the antagonist activity of BU08073 was observed over longer periods of time it was 

determined that this compound has antagonist activity at both mu and kappa receptors that can last for 6 

or more days after a single injection.  Long lasting antagonists are not unknown.  -FNA is an opiate 

that has high affinity for mu, delta, and kappa receptors and acutely activates kappa but inhibits mu and 

delta receptors (Portoghese et al., 1980).  However, -FNA has a reactive electrophilic functional group 

(a Michael acceptor) and once bound to the receptor, it forms a covalent bond with the mu receptor and 

thereby acts as an irreversible (and long lasting) antagonist, at this receptor only (Manglik et al., 2012; 

Takemori et al., 1981).  It is often use as a mu receptor antagonist for in vivo studies since 24 h after 

administration it can block mu receptors without inhibiting delta or kappa to any significant extent (Liu-

Chen et al., 1991).   

 

Several compounds can also antagonize kappa receptors for extended periods of time both in 

vitro and in vivo.  Both nor-BNI and JDTic are very high affinity and selective kappa antagonists that A
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can block U50,488-mediated antinociception for up to 6 weeks after a single injection (Carroll et al., 

2004; Horan et al., 1992; Jones et al., 1992; Metcalf et al., 2005).  The mechanism of this extremely 

long duration of action is not completely clear.  These compounds do not bind covalently, so it is not 

due to functionally removing the receptors.  One hypothesis is that these two compounds, and a few 

other analogs, activate the c-Jun-N-terminal kinase (JNK) family of mitogen-activated protein kinases 

(MAPK), leading to prolonged inactivation of kappa receptor signaling persisting for weeks after a 

single exposure (Bruchas et al., 2007; Melief et al., 2010; Melief et al., 2011).  Another observation that 

is not incompatible with the JNK hypothesis is that nor-BNI can be found in the brain of mice, at 

quantities sufficient to antagonize kappa receptors for at least 3 weeks after a single i.p. administration, 

suggesting that the long-lasting effect of nor-BNI could be simply due to its pharmacokinetic parameters 

(Patkar et al., 2013).  

 

Similar to nor-BNI and JDTic, BU08073 does not have a reactive functional group and almost 

certainly does not form a covalent bond with opioid receptors.  Unlike both the mu antagonist -FNA 

and the kappa antagonists nor-BNI and JDTic, the long-lasting antagonist activity of BU08073 has a 

similar time course for both mu and kappa receptors, with antagonist activity most potent at 24 h and 

decreasing gradually over the next 6-10 days. Most likely, this is a pharmacokinetic phenomenon due to 

slow entry into the CNS.   

 

 Metabolism to an active, but antagonist metabolite, could potentially explain the behavioural 

results.  The metabolism of buprenorphine, which is structurally very closely related, has been well 

characterised; thus N-dealkylation to give the equivalent nor-compound and glucuronidation at the C3 

oxygen of both the parent and the nor compound (Husbands, 2013). Norbuprenorphine may play a role 

in the pharmacology of buprenorphine, but its profile is as a high affinity, highly efficacious compound A
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but with very limited access to the brain.  Thus metabolism seems an unlikely explanation for the 

unusual profile of BU08073, although it cannot be ruled out completely. 

 

 Slow kinetics could account for the lack of effect of the compound 1 h after administration.  

What is unclear is how kinetics can affect the efficacy of the compound in vivo.  In vitro, BU08073 has 

clear partial agonist activity in [
35

S]GTPS binding and greater agonist activity in an intact cell assay.  

Perhaps the slow increase in receptor occupation leads to desensitization prior to generation of a 

significant antinociceptive signal.   Another possibility that may contribute to the actions of this drug is 

its binding sensitivity to pH.  If dissociation is much more rapid at low pH, perhaps the receptor and 

ligand are internalized but not recycled appropriately.  This would reduce receptor availability and 

thereby functionally antagonize agonist activity at the receptors. Alternately, it could be a function of 

some ligand directed signaling.  It has been hypothesized that biased agonists at the mu receptor could 

have antinociceptive activity without some of the unwanted side effects (Law et al., 2013).  This could 

work the other direction as well.  Perhaps the BU08073/mu receptor interaction does not activate an 

underlying pathway required for the expression of antinociception.   

 

BU08073 also has long-lasting anxiogenic activity.  This is different than the reported anxiolytic 

activity of systemically or locally administered morphine (Anseloni et al., 1999; Zhang et al., 2008) but 

consistent with the reported anxiogenic activity of buprenorphine (Lelong-Boulouard et al., 2006).  The 

reason why buprenorphine and BU08073 would have different effects on anxiety behavior than 

morphine is not clear.  Morphine is quite selective for the mu receptor, so anxiogenic activity of 

buprenorphine and BU08073 might have to do with agonist or antagonist activity at one of the other 

opioid receptors or NOP.  Since the kappa agonist U50488 has anxiogenic activity and these compounds 

are antagonists at kappa receptors, it seems unlikely that the anxiogenic activity of BU08073 is due to A
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kappa receptor inhibition.  However, several delta receptor agonists have been demonstrated to have 

anxiolytic activity, so it is possible that delta receptor antagonism could lead to the observed anxiogenic 

activity (Perrine et al., 2006; Saitoh et al., 2004; Vergura et al., 2008).   

 

In conclusion, BU08073 is a buprenorphine analog with high affinity at each of the receptors in 

the opioid receptor family.  Although it has moderate efficacy at mu receptors, this compound displays 

very weak antinociceptive activity, and instead exhibits a rather delayed and  long lasting antagonism to 

both mu- and kappa receptor-mediated antinociceptive activity.  This unusual property is probably due 

to very delayed pharmacokinetics.  Studies are continuing to determine how pharmacokinetics can 

modulate opioid receptor mediated actions in vivo.  
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Figure Captions 

Figure 1.  Structures of buprenorphine and novel compounds tested. Full synthetic details and 

analysis, including microanalysis are provided in Supporting Information. 

Figure 2.  BU08073 inhibits N/OFQ-stimulated [
35

S]GTPS binding in CHO cells transfected with NOP 

receptors.  Experiments were conducted as described in Materials and Methods. Data in the figure are 

represented as mean ± SEM for a single representative experiment conducted in triplicate. The EC50 

value for stimulation of [
35

S]GTPS binding by N/OFQ was 12.7 ± 0.56 nM (mean ± SEM from 3 

individual experiments).  To test as an antagonist the BU08073 dose response was conducted in the 

presence of 100 nM N/OFQ and the IC50 for BU08073 was 697 ± 20 nM (mean ± SEM from 3 

individual experiments).  

 

Figure 3. The effect of DAMGO, Buprenorphine, and BU08073 in a whole cell assay measuring 

membrane potential changes in CHO cells transfected with mu opioid receptors.  Experiments were 

conducted using the FlexStation as described in Materials and Methods. Data shown in the figure are 

represented as mean ± SEM from a single representative experiment conducted in quadruplicates (A)  

DAMGO-induced membrane potential fluorescence change tracked for 50 seconds. (B) BU08073-

induced membrane potential fluorescence change tracked for 50 seconds. (C) Agonist dose response 

curve for each compound. EC50 values were 1.96 ± 0.56, 45.5 ± 19 and 323 ± 140 (mean ± SEM from 4 

individual experiments) for DAMGO, Buprenorphine and BU08073 respectively. (D)  Antagonist effect 

of naloxone demonstrating that all compounds are acting through the opioid receptor. IC50 values of 

naloxone were 63 ± 11, 34 ± 20, and 101 ± 43 140 (mean ± SEM from 4 individual experiments) when 

inhibiting 100 nM DAMGO, 500 nM buprenorphine, and 2 M BU08073 respectively. 
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Figure 4. The effects of a range of doses of BU08073 on tail flick latency compared to morphine (10 

mg/kg) and vehicle controls at various post-injection time points (s.c., N=6-9/group). Data are mean 

%MPE ± SEM.  *, P<0.05, significant difference from vehicle controls using repeated ANOVA. 

 

Figure 5. The effects of 3 mg/kg BU08073 on morphine- (A) and U50,488-induced antinociception (B).  

All drugs were given via s.c. route of administration. Values on the x-axis indicate time elapsed from 

the BU 08073 injection.  Vehicle, morphine and U 50,488 were given 30min prior to testing.  

Different groups of animals were used for each BU08073 pretreatment time point (N=8/group). 

Data are mean %MPE ± SEM.  *, P<0.05, significant difference from vehicle controls. †, significant 

difference from morphine or U50,488 alone. 

 

 

Figure 6.  The effects of 3 mg/kg BU08073 (s.c.) on anxiety as measured using the elevated zero-maze 

examining time in the open quadrants (A), latency to enter an open quadrant (B), and number of dips 

over the side (C).  Different groups of animals were used to assess the effects of BU08073 (N=10/time 

point) following different post-injection time points.  Data are mean ± SEM. *, P<0.05, significant 

difference from vehicle controls. 
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Table 1.  Binding affinities Ki of buprenorphine analogs compared with buprenorphine and other prototypical 

agonists at NOP and other opioid receptors. Data shown are mean ± SEM for at least two experiments conducted in 

triplicate.  *Some of the data for the standard compounds are from (Khroyan et al., 2009) 

 

 Receptor Binding Ki (nM)  

Compound Mu ± SEM Delta ± SEM Kappa ± SEM NOP ± SEM 

Buprenorphine 1.5 ± 0.8 6.1 ± 0.4 2.5 ± 1.21 77.4 ± 16.1 

DAMGO 1.59  ± 0.17 300 ± 58.6 305 ± 46 >10,000 

DPDPE 503 ± 10  1.24 ± 0.09 >10,000 >10,000 

U69,593 >10,000 >10,000 1.6 ± 0.26 >10,000 

N/OFQ 133 ± 30 >10,000 247 ± 3.4 0.08 ± 0.03 

BU08069 2.31 ± 0.27 0.87 ± 0.11 1.53 ± 0.23 3.47 ± 0.54 

BU08071 6.60 ± 2.72 2.05 ± 0.64 4.73 ± 0.78 19.8 ± 0.1 

BU08072 3.91 ± 0.69 1.22 ± 0.46 4.63 ± 0.80 8.54 ± 0.42 

BU08073 2.26 ± 0.33 3.20 ± 0.44 2.65 ± 0.87 7.60 ± 0.78 

BU08074 3.90 ± 1.22 2.48 ± 0.06 2.88 ± 0.86 14.2 ± 0.62 

BU09037 3.99 ± 0.36 6.01 ± 2.71 0.90 ± 0.35 5.38 ± 0.24 

BU09054 5.70 ± 2.35 44.77 ± 14.8 6.48 ± 2.96 24.7 ± 2.19 
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Table 2. Stimulation of [
35S]GTPγS binding by buprenorphine analogs, compared with buprenorphine and other 

prototypical agonists at NOP and other opioid receptors. Data shown are mean ± SEM for at least two experiments 

conducted in triplicate. 

 

*Stimulation was too low to accurately determine EC50 value. 

 
 

 Mu Delta Kappa NOP 

Compound EC50 % Stim EC50 % Stim EC50 % Stim EC50 % Stim 

Buprenorphine 10.2 ± 2.2 28.7 ± 1.0 >10,000  >10,000  251 ± 94 15.5 ± 5.8 

DAMGO 35.3 ± 0.53 100 ----- ----- ----- ----- ---- ----- 

DPDPE ----- ----- 6.86 ± 0.41 100 ---- ----- ----- ----- 

U69,593 ----- ----- ----- ----- 78.4 ± 8.8 100 ----- ----- 

N/OFQ ----- ----- ----- ----- ----- ----- 8.1 ± 1.38 100 

BU08069 0.60 ± 0.34 37.0 ± 0.1 3.16 ± 1.68 24.8 ± 5.4 0.53 ± 0.19 52.6 ± 13 20.8 ± 4.2 24.6 ± 1.9 

BU08071 4.90 ± 0.01 56.3 ± 8.3 7.35 ± 0.79 37.7 ± 4.9 1.35 ± 0.6 58.9 ± 2.6 66.3 ± 22 20.5 ± 2.7 

BU08072 1.60 ± 0.17 58.7 ± 0.4 1.78 ± .76 72.9 ± 13 0.77 ± 0.3 49.6 ± 16 20.8 ± 8.2 33.5 ± 3.5 

BU08073 2.90 ± 0.98 31.9 ± 1.0 * 9.70 ± 4.8 * -------- * 8.2 ± 1.8 

BU08074 * 10.9 ± 7.4 * 4.70 ± 0.2 * 9.20 ± 2.7 * 6.10 ± 0.75 

BU09037 9.80 ± 4.54 65.2 ± 6.1 15.34 ± 0.6 58.2 ± 1.2 4.13 ± 2.77 55.2 ± 7.3 * 17.1 ± 1.5 

BU09054 7.10 ± 0.90 38.5 ± 6.6 10.29 ± 3.9 27.7 ± 4.5 146 ± 53 50.9 ± 10 * 14.9 ± 1.4 
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Table 3. ADMET predictions for BU08073 compared to parent compound buprenorphine 

 
 
 logP 

(simulation 

Plus model) 

Intrinsic 

water 

solubility 

(mg/mL) 

Likelihood of 

BBB 

penetration 

Log of Blood-

brain 

partition 

coefficient 

%unbound to 

plasma 

proteins 

BU08073 6 7.92E-03 High 0.58 12.47 

Buprenorphine 4.72 5.64E-02 High 0.26 29.03 

 
* Stimulation was too low to accurately determine EC50 value. 
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