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Bubble dynamics for broadband microrheology of
complex fluids
Brice Saint-Michel and Valeria Garbin

Abstract

Bubbles in complex fluids are often desirable, and sometimes

simply inevitable, in the processing of formulated products.

Bubbles can rise by buoyancy, grow or dissolve by mass

transfer, and readily respond to changes in pressure, thereby

applying a deformation to the surrounding complex fluid. The

deformation field around a stationary, spherical bubble under-

going a change in radius is simple and localized, thus making it

suitable for rheological measurements. This article reviews

emerging approaches to extract information on the rheology of

complex fluids by analysing bubble dynamics. The focus is on

three phenomena: changes in radius by mass transfer, har-

monic oscillations driven by an acoustic wave, and bubble

collapse. These phenomena cover a broad range of defor-

mation frequencies, from 10−4–106 Hz, thus paving the way to

broadband microrheology using bubbles as active probes. The

outstanding challenges that need to be overcome to achieve a

robust technique are also discussed.
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Introduction
Bubbles are ubiquitous in the processing and structuring
of complex fluids [1,2]. They may be undesirable and
lead to poor product performance, for instance
contamination of personal care products [3], or they may
be key to imparting unique properties to advanced
materials [4]. Bubbles are extraordinarily dynamic

objects [5]: they can grow or shrink by gas diffusion,
they can rise because of buoyancy, and they can undergo
break-up and coalescence. Owing to the compressibility
of their gas core, they respond to changes in pressure
and can gently oscillate in response to acoustic waves or
violently collapse in response to shock waves. Because
the control of their number and size distribution is
crucial in the processing and structuring of complex
fluids, bubble dynamics have been studied extensively
with a view to improve the stability and performance of
formulated products [6].

A useful feature of bubble dynamics is that, provided
that the bubble remains spherical, the deformation field
in the surrounding fluid is purely extensional [7]. This
feature presents a unique opportunity to gain insights
into the rheological properties of the complex fluid
surrounding a bubble, because the kinematics of the
deformation is completely prescribed, simple, and
localizeddsuch controlled conditions are necessary to
perform a rheological measurement. A measurement of
the applied stress, in combination with controlled ma-
terial deformation, is also required to perform a rheo-
logical measurement. Analysis of bubble dynamics
provides information to indirectly obtain the stress in
the surrounding medium, with some assumptions on the
constitutive behavior [8]. In addition, the deformation
time scales of bubble dynamics cover a very broad range
that is normally not accessible to a single rheological
technique: from the slow dynamics (w 104 s) driven by
gas diffusion [9] to the extremely fast dynamics (w
10�6 s) during bubble collapse [10].

The idea of using spherical bubble deformation to probe
the rheology of the surrounding material is in fact a
classical concept [7], but its full potential has remained
largely unmet because of technical limitations in con-
trolling bubble formation and subsequent deformation.
Advances in experimental techniques to generate, con-
trol, and deform single bubbles and image their evolu-
tion in real time [11], as well as advances in imaging of
the microstructure of complex fluids, are now bringing
this new class of methods to the forefront of soft matter
and rheology [12].

This article focuses on the recent emerging applications
of bubble dynamics to the rheology of complex fluids and
highlights the current gaps that still need to be
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addressed to make it an accessible technique for
broadband microrheology of complex fluids.

Controlled deformation by bubble dynamics
Dynamics of spherical bubble deformation

In this article, we focus on three dynamical phenomena
that can result in the spherically symmetric deformation
of a stationary, isolated bubble: changes in radius by
mass transfer, harmonic oscillations of the radius driven
by an acoustic wave, and bubble collapse. We do not
discuss the technique called ‘cavitation rheology’, based
on bubble formation by injection at the tip of a needle
embedded in a soft material, which is in a more
advanced state of development and has already been
widely adopted, as described in a recent review [12].
One advantage of the three phenomena reviewed here is
that the bubble is isolated (not attached to a needle)
and therefore its spherical deformation results in a
purely extensional deformation of the surrounding
medium, which will be described in Section 2.2. The
deformation is also localized to a region around the
probe, decaying quickly away from the surface of the
bubble, thus satisfying a necessary criterion for appli-
cations in microrheology [13].

The rate of deformation of the material surrounding the
bubble covers several orders of magnitude between the
three phenomena considered. First, changes in radius by
mass transfer, that is bubble growth or dissolution by
exchange of gas with the surrounding medium, can occur
at rates from 1 s�1 to 10�4 s�1 or even slower. The
analysis of the change in radius of a bubble that is
dissolving or growing by mass transfer, to extract infor-
mation on the rheological properties of the surrounding
medium, will be described in Section 3. Second, har-
monic oscillations of a bubble can be driven by an
acoustic field that is close to the resonance frequency of
the bubble. In the simplest case of a Newtonian fluid
and if surface tension effects are negligible, this is given
by the Minnaert frequency,

uM ¼ 1

R0

ffiffiffiffiffiffiffiffiffiffi

3kp0

r

s

; (1)

where R0 is the equilibrium bubble radius, r is the fluid
density, p0 the hydrostatic pressure, and k the polytropic
exponent (see Section 4.1). Bubbles with radius ranging
from 10�3 m down to 10�6 m therefore respond to acoustic
waves with frequencies from 103 Hz to 106 Hz. The
methods currently being developed to exploit this phe-
nomenon for rheological measurements are described in
Section 4. Finally, bubble collapse is a violent phenomenon
where the bubble radius can change by roughly 10 times its
equilibrium value on a time-scale of tens of microseconds.
The extremely large strain rates associated with bubble
collapse, up to 106 s�1, can be used to probe the high-strain
rate rheology of soft materials, as will be described in

Section 5. Diffusive transport followed by cavitation has
been shown to span 9 orders of magnitude of deformation
rate of the surrounding material in a single experiment
[14]. The range of frequencies accessible by these phe-
nomena therefore paves the way to a new class of tech-
niques for broadband, active microrheology of complex
fluids.

How a bubble deforms the surrounding fluid

A spherical bubble at a fixed position and with time-
dependent radius R(t) generates a purely radial veloc-
ity field. With reference to a spherical coordinate system
with origin at the center of the bubble, where r, q, and f
are the radial, azimuthal, and polar coordinates,
respectively, the deformation, or strain, at time t can be
derived based on the continuity of the velocity field at
the bubble boundary in the ideal, spherically symmetric
case:

vðrÞ ¼ vrðrÞ er ¼ vrðRÞ
R2

r2
er ¼ _R

R2

r2
er: (2)

where the dots denote derivatives with respect to time, v=
(vr, 0, 0) is the velocity field, and the unit vector in the
radial direction is er = (1, 0, 0). This equation assumes that
the surrounding medium is incompressible, which is true
for lowMach numbers _R=c, where c is the speed of sound in
the surrounding medium and that the composition of the
bubble is homogeneous.

The nonhomogeneous nature of the velocity field in the
surrounding medium implies that changes in the bubble
radius _R strain the surrounding medium at a rate _ε ¼
ðVv þ Vv

TÞ=2, where Vv is the (tensor) gradient of the
vector field v and (,)T represents the matrix trans-
position operator. The spherical symmetry of the prob-
lem considerably simplifies the expression of _ε:

_εðrÞ ¼

0

B

B

B

B

B

B
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r
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C

C

C

C
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¼ _R
R2

r3

0

@

�2 0 0

0 1 0

0 0 1

1

A (3)

The fact that the strain rate _ε is diagonal implies that
the bubble applies a pure extension or compression of
material elements in the surrounding medium. This is in
contrast with simple shear flow, which combines pure
extension and rotation. In the case of shear flow, the
strain rate _ε is called the shear rate, and it is used to
compute the shear stress in liquids; in particular, they
are proportional to each other in the case of Newtonian
media.

In soft solids and yield-stress fluids, the stress is also a
function of the total strain applied to the material
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elements of the surrounding medium. We can compute
such a strain for an element initially at a distance r0 from
the center of the bubble at rest, that is, for R= R0. This
quantity is also a tensor, and most continuum mechanics
textbooks recommend using the Finger tensor B to
quantify it [7]:

Brr ¼ B�2
qq ¼ B�2

ff ¼
 

1þ RðtÞ3 � R3
0

r30

!�4=3

(4)

In the absence of deformation, the Finger tensor is not
zero but rather reduces to the identity tensor I. In the
particular case of pure extension, we can relate the
components of the Finger tensor B to the linear stretch
of the fluid elements. We have in particular, for the
material elements of Figure 1(a), Brr ¼ ½lðtÞ=l0�2.

Figure 1(a) shows the properties of this strain field
respectively for a bubble at rest (left panel), during its
expansion (center) and during its contraction (right
panel). Both the particle displacement and the net
strain.

B �I are more sensitive to bubble expansion than
compression and decay quickly away from the surface of
the bubble.

Bubble dynamics: relating strain and stress fields

Both the local strain and the stress fields need to be
known for bubble dynamics studies to qualify as a
rheological measurement. While torque is easily
measured on a rotational rheometer and readily related
to the local stress in the sample, we do not directly
measure the stress field around bubbles. We instead rely
on the momentum balance of the whole fluid sur-
rounding the bubble in the er direction, which reads [8]:

r

�

R€Rþ 3

2
_R
2
�

¼
Z

N

R

ðV,sÞr dr: (5)

The tensor s is the Cauchy stress tensor. As it includes
pressure terms, its trace is nonzero. Far away from the
bubble, we assume the material is at rest, which implies
that the diagonal terms of s are all equal to� pN(t), the

Figure 1

Current Opinion in Colloid & Interface Science

Kinematics and dynamics of bubbles in fluids and soft solids. (a) Kinematics of a bubble (in white) surrounded by a fluid or a soft solid (light blue)

when the former is at rest (left), expands (center) and contracts (right). The bubble surface motion pushes and pulls tracers (small circles) in the radial

direction. The tracer displacement is larger close to the bubble surface (as seen on the thick grey streak lines). Material elements (boxes around the

tracers) are also strained and undergo biaxial (center) or uniaxial extension (right) when the bubble grows or shrinks. The color of the boxes codes the

stretch l(t)/l0 applied to the fluid particles in the radial direction. (b) Time evolution of the radius of a bubble with initial radius R0 due to mass transfer out of

the bubble for a gas-saturated medium (z = 1) and into the bubble for a supersaturated medium (z = 1.025). (c) Linear oscillations of the bubble radius,

R(t), around the equilibrium radius R0, under a small-amplitude acoustic excitation at angular frequency u. (d) A bubble with initial radius 3R0 undergoes

violent collapse and subsequent rebounds, before reaching its equilibrium radius R0. In (b–d), the surrounding fluid is assumed to be Newtonian when

G = 0 Pa and otherwise combines neo-Hookean elastic and Newtonian viscous elements.
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total (ambient and acoustic) pressure applied by the
operator far away from the bubble. The spherical sym-
metry of the problem and the absence of torque applied
to the bubble implies that sqq = sff.

Eqn. (5) relates an integral of the nonhomogeneous
stress field (right hand side) to the bubble dynamics
(left hand side), yet the local stress distribution s re-
mains unknown, preventing any direct measurement of
the material rheological properties. We therefore need
to choose a priori the relation between stress and strain
in the surrounding medium and try to accurately model
the experimental bubble dynamics R(t). For Newtonian
liquids and ideal (neo-Hookean) elastic solids, these
relations read:

s ¼ � pIþ h _ε ðNewtonian liquidÞ; (6)

s ¼ � pIþGðB� IÞ ðneo -Hookean solidÞ; (7)

where p is a pressure term that depends on r and matches
the classical definition of pressure for arbitrary strains in
Newtonian liquids and only for small strains in neo-
Hookean solids. The classical Newtonian viscosity h and
linear elastic modulus G are considered to be free param-
eters of the models that are fitted to the experimental data
R(t). For more complex surrounding materials, such as
viscoelastic liquids or solids, the stress and strain fields are
related using more complex constitutive equations relating
s, _ε and B and additional fitting parameters.

In the specific case of Newtonian liquids and purely
elastic solids, all the physical quantities in Eqn. (5) are
known or prescribed except for the pressure field p(r).
Knowing the whole pressure field is however not
needed, as the right hand side term of Eqn. (5) can be
rewritten in the following way:

Z

N

R

ðV,sÞr dr ¼ �pNðtÞ � srrðRÞ þ 2

Z

N

R

srr � sqq

r
dr:

(8)

In Eqn. (8), the pressure contribution cancels in
srr � sqq and is hence only present in the radial stress at
the bubble boundary srr(R). This quantity can be
independently solved by considering the stress balance
at the bubble interface, which reads:

srrðRÞ ¼ �pg þ
2g

R
; (9)

g being the surface tension between the gas inside the
bubble and the surrounding material, and pg being the
gas pressure in the bubble. The final step in solving Eqn.

(5) then consists in choosing an equation of state for the
gas pressure as a function of its volume 4pR(t)3/3, its
temperature and its composition. Bubbles injected
using a syringe and containing air or other noncon-
densable gases are usually treated as ideal gases with a
homogeneous composition and are fairly simple to
model. In contrast, bubbles formed through laser
vaporization of the medium are modeled as a mixture of
vapor that quickly condenses at the bubble surface and
an inert gas, which leads to composition gradients be-
tween the center and the bubble edge, which necessi-
tates additional modeling steps [15].

Bubble dissolution or growth by mass
transfer
The dissolution or growth of gas bubbles due to mass
transfer of gas from the surrounding medium
[Figure 1(b)] is a relatively slow process for which Eqn.
(5) reduces to the classical isostatic criterion, V ,s= 0.
The saturation concentration of the dissolved gas in the
liquid phase, cs, is proportional to its partial pressure in
the bubble following Henry’s law:

cs ¼ kHpg: (10)

Henry’s constant, kH, varies greatly between different
gas/liquid pairs and depends on the temperature T. If we
suppose that the liquid has been left long enough in
contact with the same gas before conducting the ex-
periments, we can suppose an initial saturation condi-
tion, that is cðr; t ¼ 0Þ ¼ c0s ¼ kHp0, where p0 is the
ambient pressure. For bubbles small enough to be
strongly affected by surface tension effects, the pressure
in the gas bubble pg is greater than p0, and the saturation
concentration cs exceeds c0s at the bubble interface,
driving bubble dissolution.

For a sufficiently slow dissolution rate, the additional
dissolved gas simply diffuses into the surrounding
medium with a diffusion coefficient D. We then need to
write the mass balance of the bubble and provide
boundary conditions at the bubble surface and at the
outer edge of the surrounding medium to derive the time
evolution of the bubble radius. We choose to work with an
interface that is saturated with the solute based on the
gas pressure in the bubble, that is, c (R, t) = kHpg. This
time, the infinite surrounding medium can be initially
undersaturated or supersaturated with the dissolved gas,
meaning that cðr/N; tÞ ¼ cðr; t ¼ 0Þ ¼ zc0s with z a
dimensionless constant being smaller (respectively
greater) than 1 for under- (super-) saturation conditions.
For a neo-Hookean elastic surrounding medium of linear
modulus G, the time evolution of the bubble radius then
satisfies [6] a:

a The sign of the elastic component on the numerator has been corrected from

Ref. [6].
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R2
0

DkHRT

d~R

dt
¼ z� 1� d

�

~Rþ dG
�

� 5
�

4þ 1
�

~Rþ 1
�

4~R
4�

1þ 2d
�

3~Rþ dG
�

5
�

4� 2
�

3~Rþ 1
�

12~R
4�

�
�

1

~R
þ R0

ffiffiffiffiffiffiffiffi

pDt
p

�

; (11)

in which ~R ¼ R=R0, d = g/R0p0, dG = G/p0, T is the
temperature, and R is the ideal gas constant. Eqn. (11)
is a nonlinear, ordinary differential equation that can be
solved numerically. Interestingly, bubble stability
against dissolution more simply depends on the sign of
the numerator in Eqn. (11). For an initially saturated
medium (z= 1), the steady-state condition d~R=dt ¼ 0
reads:

1

4 ~R4
þ
�

1� g

R0G

�

1

~R
� 5

4
¼ 0 (12)

For a finite shear modulus G, the left-hand side of Eqn.
(12) is negative for ~R ¼ 1 and tends to þ N for ~R/0
because of the very large positive contribution 1=4 ~R4 of
elastic stresses for small bubbles. Consequently, there
always exists a stable equilibrium radius 0 � R* � R0 in
neo-Hookean solids at which dissolution stops. For
R= R*, the gas pressure in the bubble pg becomes equal
to p0, leading to an equal solute concentration c0s at the
bubble interface and far away from it. Neo-Hookean
solids then always arrest dissolution, as seen in
Figure 1(b). In contrast, stresses in a fluid medium do
not diverge for ~R/0 as they rather depend on the strain
rate _ε in the surrounding material or, equivalently, in _R.
The gas pressure in the bubble may then always exceed
p0 provided that the bubble dissolution rate _R=R is slow
enough. Fluids are then incapable of halting bubble
dissolution even though very viscous fluids may slow it
down [6].

When the surrounding medium is initially supersatu-
rated with the dissolved gas, z � 1, bubbles can grow by
mass transfer from the surrounding medium. Elastic
effects slow down this growth, and the resulting growth
dynamics can be fitted to estimate both the supersatu-
ration coefficient z and the elastic modulus of the
medium, as shown in experiments by Ando and Shirota
[16]. Bubbles in a soft, viscoelastic solid were found to
grow more slowly for increasing G despite similar su-
persaturation coefficients z, as shown in Figure 2.

Recent experiments show that bubble dissolution can
also be halted in yield-stress materials such as oleogels
[17]. The situation is more complex in this case, as
yield-stress materials behave as elastic solids for low
applied stresses, yet flow above it. In the context of
spherical bubble dynamics, the criterion for the onset of

flow behavior reads ðsrr � sqqÞ2 � 3s2Y [18], sY being a
scalar quantity representing the yield strength of the
material. Assuming the material behaves as an elastic
solid below yielding [Eqn. (7)], all of it remains solid
provided that

½srrðRÞ � sqqðRÞ�2 ¼ G2

"

�

R0

R

�4

�
�

R

R0

�2
#2

< 3s2Y

(13)

Bubble dissolution is then arrested provided that both
Eqs (12) and (13) are satisfied. For stiff materials for
which g/R0G ≪ 1, Eqn (12) implies R* x R0, and the
no-yield criterion can be derived explicitly, leading to g=
R0 � sY=

ffiffiffi

3
p

. Materials that can withstand a typical
capillary stress

ffiffiffi

3
p

g=R0 without yielding can then halt
bubble dissolution. Injecting several bubbles of
different sizes and examining the smallest bubble that
does not dissolve could then be used to estimate in situ
the yield stress of (gas-saturated) yield-stress materials.
In practice, this picture is a bit more complicated, as
most yield-stress fluids exhibit creep behavior for applied
stresses close to sY, during which strain slowly accu-
mulates over time. Attractive yield-stress fluids also
often show thixotropic behavior, in which the structure
of the fluid reinforcesdand the material constants G
and sY growdover time at rest or under very slow flow
conditions. Creep and thixotropy will therefore have
antagonistic effects on the ability of yield-stress fluids to
stabilize bubbles, the former promoting dissolution by
allowing additional material deformation for a given
applied stress, and the latter impeding dissolution when

Figure 2

Effect of medium elasticity on bubble growth by mass transfer. A

laser-generated bubble grows in an elastic medium supersaturated with

air. The growth dynamics of the bubble radius R is used to estimate the

supersaturation coefficient z and the elastic modulus G of the surrounding

material. Reproduced with permission from Ref. [16].
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the flow is slow enough to result in an increase of sY.
Surface activity of the fluid, while insufficient to stabi-
lize bubbles by itself in Ref. [17], may also play a role in
slowing down or halting dissolution in conjunction with
its bulk rheological properties.

Linear bubble oscillations
Bubbles as harmonic oscillators

The case of linear oscillations of air bubbles
[Figure 1(d)] is fairly simple to model. First, on the short
time scales involved and the limited oscillation ampli-
tude, we can assume that air does not dissolve into the
surrounding medium. Authors then assume [19e22] a
constant pgR

3k in the gas phase, choosing a polytropic
exponent 1 � k � 1.4 corresponding to thermodynamic
transformations that are neither fully isothermal (k= 1)
nor adiabatic (k = 1.4 for diatomic gases). We choose to
use the standard Kelvin-Voigt model for linear visco-
elastic solids that includes both a viscous and an elastic
contribution. Defining x(t) = R(t)/R0 � 1, we may
derive the linear version of Eqn. (5) [21]:

€xþ 2b _xþ u
2
0x ¼ � 1

rR2
0

½pNðtÞ� p0� (14)

The damping term b includes a viscous term propor-
tional to the surrounding medium viscosity h, a thermal
loss term because of thermal gradients present in the
bubble, and a term accounting for acoustic damping [23].

The natural angular frequency u0 also depends on the
surrounding medium properties,

u
2
0 ¼ 3kp0 þ 2ð3k� 1Þg=R0 þ 4G

rR2
0

: (15)

This frequency then deviates from the classical Minnaert
resonance frequency (see Eqn. (1)) when bubbles are
sufficiently small: R0 w g/p0 w 1 mm in water at ambient
pressure and for elastic moduli G that are comparable with
p0, that is, for stiff gels.

Measuring material properties in the fourier domain

In the time domain, the damping parameter b and the
natural oscillation frequency u0 can be fitted from the
free bubble oscillations, that is, when pN(t) = p0 and for
initial conditions x (t = 0)s0 or _xðt ¼ 0Þs0. An
alternative approach is to study the steady-state oscil-
latory regime at an imposed angular frequency u. Eqn.
(14) can then be recast in the Fourier domain:

x ¼ 1

rR2
0

pN � p0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

u2 � u
2
0

�2 þ 4u2b2
q ; (16)

Eqn. (16) gives the resonance curve of an oscillating
bubble in the linear regime, where it can be described as

a linear harmonic oscillator [8]. It can be measured
experimentally by sweeping the forcing frequency
around the natural frequency u0 and recording the
(maximum) oscillation amplitude x for each value of the
frequency. This approach was first demonstrated by
Strybulevych et al. by measuring the acoustic response of
millimeter-sized bubbles in an agar gel as a function of
frequency; the approach was termed ‘acoustic micro-
rheology’ [24]. In a similar approach termed ‘micro-
bubble spectroscopy’, resonance curves can be recorded
by directly imaging with a high-speed camera the bubble
dynamics during acoustic forcing at different fre-
quencies [25]. Jamburidze et al. [22] also used direct
imaging in agarose gels and at moderate pressure am-
plitudes (pN � 6 kPa) to ensure that the deformation of
the material remained in the linear regime (see
Figure 3(a)). They extracted the viscoelastic properties
of the gels from the resonance curves (see Figure 3(b)).
Alternatively, Hamaguchi and Ando constructed a reso-
nance curve by keeping the ultrasound frequency con-
stant at 28 kHz, letting the bubble radius increase
slowly because of gas transfer into the bubble [21] so as
to perform a ‘radius sweep’. The radius sweep relies on
the inverse proportionality between equilibrium radius
R0 and natural frequency u0 when the magnitude of the
term 2 (3k� 1)g/R0 in Eq. (15) is sufficiently small, that
is, for sufficiently large bubbles. Resonance curves
measured from radius sweeps do not rely on a prior
calibration of the transducer response as a function of
the frequency, making them particularly attractive in
experiments where the pressure field cannot be
measured independently.

In some experiments [22], the viscous contribution to
damping b is dominant, and fitting the resonance curve
directly provides an estimate of the material parameters
of the constitutive model, in our case h and G. In the
general case [21,26], acoustic and thermal contributions
have to be included in the total damping b(u, R0),
which is not a constant in either frequency sweep or
radius sweep experiments. In practice, reliable esti-
mates of the viscous and thermal contributions have
been determined by Prosperetti [23]. Resonance curves
are then fitted using the total damping b(u, R0), pre-
scribing the viscous and thermal terms and letting the
medium viscosity h as the adjustable parameter of the
fit.

Bubble collapse
Bubble collapse combines the high-frequency descrip-
tion of bubble oscillations of Section 4 with the large
deformation framework derived in Section 3. Bubble
collapse can be achieved for instance by applying a step
change in the external pressure pN (Rayleigh collapse)
or by creating bubbles using a laser pulse to vaporize the
surrounding medium and letting them relax (Flynn
collapse). Regardless of the preparation protocol and the
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medium properties, the complex relaxation dynamics of
the bubble assumes the shape of an initial, extremely
steep decrease in radius followed by a single or multiple
rebounds and an eventual relaxation to an equilibrium
radius (see, for instance, Figs. 1d and 4). Conversely, the
initial collapse time and the duration, number and
amplitude of the rebounds depend on the type of
collapse and the surrounding medium rheology, opening
the way for high strain-rate characterization of soft ma-
terials [15,27]. Given the violent nature of the process,
elasticity effects are only perceptible for stiffer materials

(G � 103 Pa), whereas viscous effects are almost always
noticeable (h � 10�2 Pa s) [15].

Estrada et al. have studied the collapse dynamics of a
relatively stiff 10% polyacrylamide gel and compared it
with predictions from various rheological models
including or combining neo-Hookean, Newtonian fluid,
and Maxwell fluid elements. Figure 4 confirms that both
elastic and viscous components must be included in the
model e (resulting in a neo-Hookean Kelvin-Voigt ma-
terial) to accurately fit the bubble collapse dynamics.
Estrada et al. [15] have shown that increasing the
complexity of the rheological model does not signifi-
cantly improve the quality of the fit to the experimental
bubble collapse data. Nevertheless, Yang et al. [27] have
suggested that including additional strain-stiffening
terms in the material elasticity reconciles the classical
rheology measurements and the nonlinear fits of bubble
collapse, in agreement with the strain-stiffening
behavior generally observed in biopolymer gels [28].

Bubble collapse is a violent, complex process, and
modeling efforts have been particularly cautious to
evaluate all the deviations from the ideal case of adia-
batic oscillations in an incompressible model fluid.
Indeed, the Mach number _R=c during collapse is no
longer small, and first-order compressibility corrections
in Eqn. (5) have to be included [15,27]. Barajas et al. has
shown that heat transfer between the bubble and the
surrounding medium must be taken into account as it
noticeably affects the relaxation dynamics and the
equilibrium bubble size during collapse [29]. Finally,
Gaudron et al. have studied analytically and numerically
the onset of nonspherical bubble oscillations during
Rayleigh collapse [30]. Their numerical results high-
light that such effects should not occur for pN � 15G.

Figure 3

Linear high-frequency rheology by acoustic bubble dynamics. (a) Test to confirm the linearity of bubble oscillations and material deformation in

agarose gels. The amplitude of oscillations DR (normalized by the smallest oscillation amplitude DR1) is plotted as a function of the applied pressure

amplitude Dp (normalized by the lowest applied pressure Dp1). Symbols are experimental data, and lines are quadratic fits, with black (respectively red)

data series shifted upwards by 1 (respectively 2) for clarity. (b) Impact of the surrounding material properties on the resonance curves. Symbols are

experimental data and solid lines represent a fit from Eqn. (16). As the gel concentration is increased, the gel becomes stiffer and the resonance fre-

quency increases [see Eqn. (15)], and viscous damping also increases, broadening the resonance peak. Reproduced with permission from Ref. [22].

Figure 4

Collapse dynamics of a laser-generated bubble in a polyacrylamide

gel. The experimental data R(t) (orange squares) are compared with the

best fits assuming the gel behaves as a neo-Hookean elastic solid (green

dashed line), a Newtonian fluid (purple dashed line), and a neo-Hookean

Kelvin-Voigt—viscoelastic solid—model (blue solid line; also see top-right

schematic diagram). The fit to the viscoelastic model provides estimates

of the its linear elastic modulus G and viscosity h (see right inset).

Reproduced with permission from Ref. [15].
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They also show that working with a finite deformation
elastic frameworkdthe neo-Hookean modeldrather
than linear elasticityeHooke’s lawdstrongly promotes
spherical bubble oscillations, in particular for stiff ma-
terials and high applied pressures pNw 107 Pa.

Toward broadband microrheology of
complex fluids using bubble dynamics
Current limitations of rheological measurements

based on bubble dynamics

Here, we identify the main limitations that need to be
overcome to achieve a robust technique. The first
practical issue is the limited control offered by bubble
microrheology in terms of the applied strain or stress, at
variance with classical rheometers; the latter are indeed
particularly efficient at applying a precise strain or stress
history to the sample such as step strain, shear startup,
large amplitude oscillatory shear, or creep tests. During
bubble dissolution, neither the strain rate or the stress
at the bubble boundary are fixed, as the dynamics is
rather governed by the difference in chemical potential
between the bubble and the fluid far from it. Linear
bubble oscillations may be viewed as small amplitude
oscillatory strain experiments, yet without an explicit
control on the oscillation amplitude, which depends on
the inertial terms in Eqn. (5) and the material proper-
ties. Finally, bubble collapse experiments impose a fairly
complex strain history to the material which cannot be
controlled by the operator. This profile rather results
from a balance between the bubble thermodynamics,
fluid inertia, and material rheology.

The second challenge is related to bubble formation,
stability, and imaging. Injecting or embedding spherical
bubbles of a desired radius in soft materials can be
challenging, especially if the material exhibits predom-
inantly solid-like behavior or if it is a yield-stress fluid.
Bubbles may be injected while a gel is setting [22], but
this is not always possible. Generation of bubbles by a
focused laser pulse provides the necessary spatiotem-
poral control on bubble formation [21,15,16], although
this is not a widely available technique. Bubble disso-
lution will become an issue for linear oscillation exper-
iments at fw 1 MHz, corresponding to bubbles with R0

w 1 mm, as the dissolution time (w 10 ms in water) may
then fall below the time needed to perform the mea-
surements. Furthermore it is observed that shrinking
bubbles in hydrogels can leave behind a pocket of water
within a solid-like gel network that remains undeformed
[21]. Fine-tuning the saturation coefficient z by letting
samples equilibrate at a different temperature [21], or
under an excess static pressure, can be used to slow
down dissolution sufficiently to allow enough time for
experiments or to drive a slow bubble growth for which
solvent pockets are no longer an issue [16]. Imaging
oscillating or collapsing bubbles aroundw 1MHz finally
poses the challenge of resolving the radial dynamics,

which requires acquisition rates of w 107 images per
second. Commercial instruments now meet these re-
quirements [31] and will become more widely used as
their price becomes more affordable.

A complex issue of linear bubble oscillations is the
nature of the quantities G and h obtained from fitting
the resonance curve. Even though the two techniques
are conceptually equivalent, resonance curves obtained
from frequency sweeps obviously contain information at
multiple frequencies, whereas resonance curves ob-
tained from radius sweeps are single-frequency mea-
surements. It is therefore tempting to identify the
material properties G and h fitted from radius sweep
data with the storage modulus G0(u) and loss modulus
G00(u) measured from classical oscillatory rheology at the
acoustic angular frequency u. In this case, the effective
frequency of quantities fitted to frequency sweep
resonance curves becomes unclear. However, Eqn. (16)
is derived assuming a Kelvin-Voigt, linear rheology of the
surrounding medium. In classical rheology, this implies
that the storage modulus G0(u) = G and loss modulus
G00(u) = hu are prescribed at all frequencies. Fitting the
resonance curves then constrains G0 and G00 at every
frequency based on experimental data covering a limited
frequency rangedfrequency sweep resonance
curvesdor even covering a single frequencydradius
sweeps. This contrasts with classical oscillatory rheology,
for which measurements cover three decades in terms of
frequency, allowing easy discrimination between
different rheological models. Resonance curve data
should then ideally be complemented by measurements
from another technique to validate (or question) the
choice of the rheological model [22], keeping in mind
that the rheological models presented here (neo-
Hookean, Maxwell, Kelvin-Voigt) are rather crude ap-
proximations of the experimental behavior of real soft
materials.

The last limitation is related to the onset of shape os-
cillations, which breaks down the spherical symmetry
assumption used to derive most of the equations
derived previously. Shape oscillations have been
observed both under moderate amplitude bubble os-
cillations and during cavitation events in both Newto-
nian fluids and viscoelastic solids [32,21,26]. Stability
of spherical bubbles during cavitation events and os-
cillations of moderate amplitude have been studied
respectively by Gaudron et al. [30] and Murakami et al.
[33]. The latter article quantifies the shift in shape
mode number because of medium elasticity and the
impact of viscosity on the critical oscillation amplitude
above which shape oscillations occur. Agreement with
the available, very limited experimental data [21] was
found to be good. More experimental data would be
valuable to validate the model and eventually use shape
oscillation data to obtain rheological information from
soft materials.
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Opportunities for high-frequency rheology

As complex fluids are structured from intermediate (w
mm) to molecular (wÅ) sizes, they also show a broad
distribution of relaxation time scales which can be
probed through linear oscillatory rheology. In polymer
solutions and wormlike micelles, these time scales are
directly related to spatial physical quantities of the
polymers such as the chain persistence length and the
entanglement or crosslink density. In particulate sus-
pensions, gels, and emulsions, the linear oscillatory
spectra contain valuable information on the onset of the
glass transition or rigidity percolation [34]. Commercial
rotational rheometers cannot provide high-frequency
measurements (�50 Hz) because of inertial effects of
the rheometer head. Timeetemperature superposition
has then been widely used in polymer solutions and
melts to fill this particular gap in experimental data
[34]; yet, the technique cannot be applied for out-of-
equilibrium (arrested or glassy) systems or those un-
dergoing phase transitions. Dedicated piezoelectric and
microelectromechanical systems offer direct high-
frequency rheological measurements, as recently
reviewed by Schroyen et al. [35]. Traditional micro-
rheology techniques, relying on the motion of passive or
active tracers embedded in the fluid [36], have also
been developed to complement relaxation spectra both
at very small and large frequencies. Bubble dynamics
offer an opportunity to extend the range of available
techniques for active microrheology.

Many industrial flows, such as jetting, injection
moulding, or lubrication, and natural flows, such as
sneezing [37], apply strains to complex fluids at high
frequency and beyond their linear deformation, that is,
at high-strain rates. Such transformations break and
reorient their microstructure, usually leading to shear-
thinning behavior. The associated, very high-strain
rates _ε � 104 s�1 once again exceed the capabilities of
rotational rheometers because of sample expulsion,
particle migration, and edge fracture. Pressure-driven
flows, such as capillary rheometers, are a viable alter-
native to rotational geometries as they do not present
any free surface in the fluid region of interest, yet they
require careful pressure corrections because of end ef-
fects and potential wall slip [7]. Bubble microrheology,
in particular based on bubble collapse, is unaffected by
wall slip, because the strain is applied by a movement
normal to the bubbleefluid interface and meets both
the high-frequency and high-strain criteria to provide
insights on high-strain rate rheology of many complex
fluids.

Finally, bubble dynamics, collapse, and cavitation can
generate shear waves in viscoelastic materials when the
bubbles are located close to a boundary [38e40],
because the strain profile around the bubble is no longer
symmetric. These waves have been observed using
echography [38], particle tracking [39], or birefringence

[40] techniques. The propagation speed and attenua-
tion of shear waves can provide a direct measurement of
the high-frequency material properties G and h of the
material [41], which have been compared with low-
frequency measurements obtained using a rheometer
in Ref. [39].

Opportunities for extensional deformation of complex

fluids

Extensional deformation is the main mode of deforma-
tion during spinning, rolling, convergent, or divergent
die injection and spraying in industrial processes [7] but
also in biological flows, for example, during sneezing
[37]. Extensional deformation, in contrast with simple
shear, strongly imposes the orientation of the fluid ele-
ments, leading for instance to the well-known coil-
stretch transition and extensional thickening of polymer
solutions and the high extensional viscosity of rigid fiber
suspensions [7]. In yield-stress fluids, the yield stress in
extensional flow is known to differ from the one ob-
tained in simple shear [42,43] because of the nonlinear
normal stress differences arising in the material even
below yielding [44,45]. As solid boundaries in a geom-
etry impose shear flows, true extensional flows work
with stress-free boundary conditions, for instance by
examining the thinning and breakup dynamics of fluid
filaments, following either the separation of two end
plates [46] or the Rayleigh-Plateau instability in jet
flows [47]. As the strain in the filament leads to an
exponential decrease of their cross-section, these tech-
niques are limited in terms of maximum applied strain.
Bubble microrheology is then particularly interesting to
locally apply very strong extensional strains, given by
ε ¼ BqqðR0Þ � 1 ¼ ðR=R0Þ2 � 1 at the bubble edge.
Such strains easily exceed 10 for both collapsing [15]
and dissolving bubbles, above the values (typically 6e7)
achieved with capillary breakup rheometry.

Mixed, nonuniform flows containing a strong exten-
sional component have been thoroughly investigated in
microfluidic cross-slot [48,45] and hyperbolic [49] ge-
ometries. In such geometries, the ratio between simple
shear and extension is not known a priori and depends
on the fluid rheology and the magnitude of wall slip. As a
consequence, these geometries are usually comple-
mented with local flow birefringence [48] or micropar-
ticle image velocimetry [45] to precisely monitor the
time-dependent, nonuniform strain applied to the
fluid elements. Direct imaging of the deformation field
and evolution of the microstructure is also possible in
combination with bubble dynamics experiments. For
instance, the reorganization of a microfiber network
around an expanding bubble has been directly visualized
for different deformation rates, as shown in Figure 5(a-
d), evidencing a strong reorganization of the fiber
network close to very slowly, quasi-statically expanding
bubbles, which progressively disappears as the
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expansion rate increases. The change in the micro-
structure of a bicontinuous interfacially jammed emul-
sion gel (bijel) because of bubble motion during
centrifugation has been imaged by confocal microscopy
(Figure 5(e-f)). These examples support the notion of
simultaneous imaging of the evolution of the micro-
structure of a complex fluid, in combination with rheo-
logical measurements based on the bubble dynamics
phenomena described in this article.

Conclusion
Spherical bubbles are versatile active probes to charac-
terize the local rheology of soft materials thanks to the
purely extensional, localized nature of the deformation

field they apply to the material. In this article, we
discussed three emerging microrheological measure-
ments based on recording the time evolution of the
radius of a bubble, during three distinct processes that
provide complementary information on the surrounding
material. The first process is the slow, quasi-static
bubble dissolution dynamics and its potential arrest,
which can be used to evaluate the linear elastic modulus
G of a material for neo-Hookean or Kelvin-Voigt mate-
rials or to obtain an estimate the critical stress sY of
yield-stress fluids. A second technique exploits linear
bubble oscillations driven by an acoustic wave. Exam-
ining the bubble response in the time or in the fre-
quency domain provides an estimate from high-
frequency data of both G and the solvent viscosity h,
for an equivalent Kelvin-Voigt material. Finally, the vio-
lent bubble collapse process offers additional, deeper
insights on the finite-strain rheology of soft materials at
extremely high strain rates (typically 106 s�1). Infor-
mation is obtained by fitting experimental collapse time
series to fairly complex, nonlinear, finite strain models of
bubble dynamics. These modeling steps are needed to
estimate the stress field s in the material, which is
otherwise unavailable, in contrast with classical rheology
measurements. Dissolution and collapse processes
impose high extensional strains close to the bubble
boundary and may be a powerful technique to examine
extreme phenomena such as the extensional thickening
of polymer solutions because of individual chain
uncoiling; in particular because the direct bubble im-
aging can easily be combined with particle image
velocimetry techniques or flow birefringence. We also
discussed outstanding challenges of bubble-based
microrheology, for instance controlling the stress his-
tory and the process of bubble injection. More work is
also needed to combine more realistic models to
describe soft materials with the governing equations of
bubble dynamics, especially under high-frequency, high-
strain rate deformation. Under such conditions, the use
of simple models, for instance neo-Hookean Kelvin-
Voigt solids, should at least be better justified given the
numerous deviations from such a behavior observed in
classical rheology [28].
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Figure 5

Visualization of bubble-induce deformation of complex fluids (a–d) Quasi-

static expansion of a bubble in a sparse microcellulose yield-stress fluid.

Reproduced with permission from Ref. [50]. In (a–b), very slow expansion

rates allow a relative motion between the solvent and the fiber network

and changes in the microstructure are visible close to the expanded

bubble. In (c–d), for higher expansion rates, no relative motion is possible

and the microstructure around the bubble remains similar before and after

inflation (e–f) Deformation and destruction of a bijel because of bubble

displacement during centrifugation. Reproduced with permission from

Ref. [51].
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