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Bubble extinction in Hele–Shaw flow with surface

tension and kinetic undercooling regularisation

Michael C Dallaston and Scott W McCue

School of Mathematical Sciences, Queensland University of Technology, Brisbane,

QLD 4000, Australia

E-mail: scott.mccue@qut.edu.au

Abstract. We perform an analytic and numerical study of an inviscid contracting

bubble in a two-dimensional Hele–Shaw cell, where the effects of both surface tension

and kinetic undercooling on the moving bubble boundary are not neglected. In contrast

to expanding bubbles, in which both boundary effects regularise the ill-posedness

arising from the viscous (Saffman–Taylor) instability, we show that in contracting

bubbles the two boundary effects are in competition, with surface tension stabilising

the boundary, and kinetic undercooling destabilising it. This competition leads to

interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it

approaches extinction. In this limit, the boundary may tend to become either circular,

or approach a line or “slit” of zero thickness, depending on the initial condition and

the value of a nondimensional surface tension parameter. We show that over a critical

range of surface tension values, both these asymptotic shapes are stable. In this regime

there exists a third, unstable branch of limiting self-similar bubble shapes, with an

asymptotic aspect ratio (dependent on the surface tension) between zero and one. We

support our asymptotic analysis with a numerical scheme that utilises the applicability

of complex variable theory to Hele–Shaw flow.

AMS classification scheme numbers: 76D27, 35B40, 35R35

1. Introduction

The Hele–Shaw cell, named after nineteenth century engineer Henry Selby Hele–Shaw,

is an experimental device consisting of two parallel, closely separated plates, between

which one or more fluids may be injected, flow and interact. The initial purpose of

the Hele–Shaw cell was to visualise streamlines of fluid flow around objects, as the

mathematical equations that govern flow in a Hele–Shaw cell (Hele–Shaw flow) are

identical to those for potential (inviscid) flow [1].

Since the mid-twentieth century, there has been a wealth of study on Hele–Shaw flow

problems involving free boundaries. These problems feature interfaces between different

fluids in the Hele–Shaw cell whose motion is governed by the fluid flow and effects that

apply to the boundary. Free boundary Hele–Shaw flow serves as a simple experimental

and theoretical approximation of more complicated problems in physics and engineering
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that involve moving boundaries: for instance, groundwater flow, oil recovery, melting

or freezing crystals (Stefan problems), “streamers” of charged particles, and many more

(see the extensive online bibliography [2], or the book [3]).

The most famous phenomenon in free boundary Hele–Shaw flow arises when one

considers the interaction of fluids of differing viscosities. If the fluid of lesser viscosity

displaces that with greater viscosity, the interface between them is unstable, with long

fingers of the less viscous fluid developing. This is known as the Saffman–Taylor

instability [4]. In particular, we imagine injecting an effectively inviscid fluid into

a viscous fluid-filled Hele–Shaw cell at a point, with the inviscid fluid spreading out

radially from the injection point in a highly unstable manner (see Figure 1). This is

reminiscent of the formation of long thin dendrites from an initial seed in supercooled

Stefan problems [5]. If the inviscid fluid is instead being removed, so that the bubble is

contracting, the difference in viscosities acts to stabilise the boundary.

A valuable consequence of the simplicity of the Hele–Shaw flow equations is

that many nontrivial solutions may be constructed exactly and explicitly, assuming

a Bernoulli constant pressure condition holds on the interface [6, 7, 8]. This is achieved

using complex variable methods (such as conformal mapping) to handle the evolving

fluid region. For unstable problems, however, the Saffman–Taylor instability may

manifest itself disastrously, with the solution “blowing up” via the interface forming

infinitely sharp and fast cusps at a finite time [5, 9]. For this reason, free boundary Hele–

Shaw flow with the constant pressure condition is regarded as ill-posed. To regularise

the problem, additional physical effects must be included on the free boundary, which

prevent the blow-up of solutions, while retaining the unstable nature of the interface.

The physical effects depend on the situation being modelled. For fluid flow problems,

the most natural effect to include is surface tension, which penalises high curvatures of

the boundary. Many numerical and theoretical studies of the effect of surface tension

in Hele–Shaw flow have been made [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] (see also the

references contained within the review articles [20, 21]).

After surface tension, the best known regularisation is kinetic undercooling, which

penalises high interfacial velocities [6]. The name comes from the use of Hele–Shaw flow

as a simple model of a supercooled Stefan problem. On the moving interface between

the solid and liquid phases of a freezing crystal, the temperature on the boundary is not

exactly equal to the bulk melting temperature, but instead depends weakly on other

surface energies which exist on the boundary. The kinetic undercooling condition comes

from a relationship (often presumed linear) between the freezing temperature and the

normal velocity of the interface [22]. The same condition arises in the problem of solvent

penetrating into a glassy polymer [23, 24, 25]. A surface tension equivalent condition

also exists in Stefan problems, due to the Gibbs–Thomson equation [26]. We also note

that a kinetic undercooling equivalent condition has been used in a fluid flow context,

where it can be thought of as taking into account changes in curvature of the interface

in the normally ignored transverse direction [27]. It also has application to streamer

discharges which precede the formation of lightning [28, 29, 30, 31].
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Studies of Hele–Shaw flow or Stefan problems involving both surface tension and

kinetic undercooling regularisations are chiefly numerical (for example using level set

methods [32, 33, 34]). These studies focus on the case of expanding bubbles or growing

crystals; this is generally considered the more interesting problem mathematically, as it

is unstable. Less attention has been paid to the case of contracting bubbles surrounded

by a more viscous fluid, which do not exhibit the Saffman–Taylor instability. Explicit

solutions for contracting bubbles exist in the absence of regularisations, and there

are analytical studies into bubble breakup [35, 36, 37], the asymptotic bubble shapes

(generally elliptical) [38, 39, 40, 41], and the point or points of extinction [38, 35, 39].

Additionally, there are studies on the effect of non-Newtonian fluid flow [37, 42].

To our knowledge there has been no study on the effects of surface tension and

kinetic undercooling on the surface of a contracting bubble. This is remarkable, as

kinetic undercooling turns out to destabilise the boundary in this normally stable

direction, while surface tension remains a stabilising force. In this paper we perform

an analytic and numerical study of the effect of these two boundary conditions on the

shape of a single contracting bubble in Hele–Shaw flow. In particular, we determine the

possible asymptotic shapes the bubble may take, and if they are stable or not. This is

simpler than first appears, since for a shrinking bubble with a constant rate decrease

in area, both the curvature and velocity of the interface become large as the bubble

approaches a single point. This implies that it is the balance of these two forces on

the boundary that determines the bubble shape, rather than the fluid flow. We show

that there are two possible “trivial” asymptotic bubble shapes: the perfect circle, which

is stable when surface tension dominates, and a slit of zero thickness, which is stable

for dominant kinetic undercooling. The asymptotic bubble shapes are characterised by

the limit of the aspect ratio of the bubble, with a circle having an aspect ratio of one,

and the slit having an aspect ratio of zero. There exists a critical parameter range

where both these bubble shapes are stable, with a third, nontrivial, unstable branch of

asymptotic bubble shapes which varies over the parameters in the critical range. The

limiting aspect ratio of these self-similar bubble shapes also depends on the parameters,

but is always between zero and one. In this parameter range, there will be exceptional

solution trajectories that tend to the unstable asymptotic bubble shape, so that any

bubble with an initial condition that lies precisely on one of these trajectories will have

this nontrivial extinction behaviour; generally, however, a bubble ends up as either

circular or slit-like, depending on its initial condition. We show that this behaviour is

also observed numerically.

1.1. Formulation

The equations describing the two-dimensional Hele–Shaw problem with surface tension

and kinetic undercooling are well-known [6, 43, 44, 45]. Consider a single inviscid bubble

contracting at a constant rate. Let Ω̂(t̂) ⊂ R
2 be the region occupied by the bubble,

∂Ω̂(t̂) be the bubble boundary, and φ̂ be the velocity potential of the viscous fluid
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outside the bubble (here we use hats to denote dimensional variables). The potential φ̂

is negatively proportional to the pressure inside the viscous fluid; it satisfies the problem

∇̂2φ̂ = 0, (x̂, ŷ) ∈ R
2\Ω̂(t̂) (1)

v̂n =
∂φ̂

∂n
, (x̂, ŷ) ∈ ∂Ω̂(t) (2)

φ̂ = ĉv̂n + σ̂κ̂, (x̂, ŷ) ∈ ∂̂Ω̂(t̂) (3)

φ̂ ∼ −Q̂ log
√

x̂2 + ŷ2, (x̂, ŷ) → ∞, (4)

where ĉ is the kinetic undercooling parameter, σ̂ is the surface tension parameter, v̂n is

the normal velocity and κ̂ is the signed curvature of the interface (taken to be positive

for a convex bubble). The farfield condition (4) means the bubble Ω̂ has a constant rate

of change of area of −2πQ̂; if Q̂ > 0, the bubble is contracting, while Q̂ < 0 corresponds

to an expanding bubble (see Figure 1).

We reduce the number of model parameters to one by scaling lengths by ĉ and time

by Q̂/ĉ2. The resulting system is

∇2φ = 0, (x, y) ∈ R
2\Ω(t) (5)

vn =
∂φ

∂n
, (x, y) ∈ ∂Ω(t) (6)

φ = vn + σκ, (x, y) ∈ ∂Ω(t) (7)

φ ∼ − log
√

x2 + y2, (x, y) → ∞, (8)

where σ = σ̂/ĉQ̂ is the nondimensional surface tension coefficient. Note that contracting

bubbles now correspond to σ > 0 and t increasing, while expanding bubbles have σ < 0

and t decreasing. The nondimensional area of the bubble Ω, which we shall label A,

now has a constant rate of change given by

dA
dt

= −2π, (9)

which is useful in the following analysis.

The rest of the paper is set out as follows. In Section 2 we discuss the stability of

a circular interface in the nondimensionalised Hele–Shaw problem (5)–(8) with surface

tension and kinetic undercooling, and show that the two effects are in competition, with

the appearance of a bifurcation point σ = 1
3
in the parameter space at which the stability

of the circle changes.

In Section 3 we derive the small bubble approximation of the full Hele–Shaw

problem (5)–(8), which we use to explore the behaviour of bubbles very close to

extinction. In Section 4 we examine the stability of the two “trivial” steady state

branches of the small bubble equation: the circle, and the slit. Bubbles tending toward

the slit are asymptotically rectangular, though with rounded ends (we discuss the idea

of the asymptotic bubble shape more rigorously in Section 4.4). We see that there is a

critical range of the surface tension 1
3
< σ < 1

2
for which both branches are stable. In

Section 5 we show that there is a nontrivial branch of steady states which separates the
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Q̂ > 0

Contracting

Q̂ < 0

Expanding

φ̂ = ĉv̂n + σ̂κ̂

v̂n =
∂φ̂

∂n

φ̂ ∼ −Q̂ log
√

x̂2 + ŷ2

∇̂2φ̂ = 0

Figure 1. A schematic of the Hele–Shaw bubble problem (5)–(8). When the far-

field source strength Q̂ is positive, the bubble is contracting and, in the absence of

destabilising boundary effects, is stable. When Q̂ is negative, the bubble expands and

the interface is unstable, forming long thin fingers (the Saffman–Taylor instability). We

primarily consider the contraction problem, where we see that the inclusion of kinetic

undercooling on the boundary (the ĉv̂n term) may destabilise a shrinking bubble,

depending on the parameter values.

two trivial ones in this critical range. We observe numerically that the solutions on this

branch are unstable.

In Section 6 we derive a numerical method for solving the full Hele–Shaw problem

(5)–(8), which corroborates the asymptotic predictions of the previous sections. We

conclude with Section 7, which includes a discussion on possible further directions of

inquiry.

2. Near-circular stability analysis

Linear stability analysis of a contracting or (more commonly) expanding circle is used

in Hele–Shaw literature to examine the onset of instability under various assumptions,

for instance when considering the interaction of two fluids of finite viscosity [46, 47], a

Hele–Shaw cell with a finite circular outer boundary [48, 49], or a curvature-dependent

surface tension parameter on the free boundary [50]. Weakly nonlinear analyses have

also been performed by considering the interaction between modes of perturbation at

higher orders [50, 51]. Stability analysis is also useful if one is interested in controlling

or minimising the interfacial instability [52, 53]. The stability of a circle is tractable

because a perfectly circular interface with time-dependent radius is an exact solution to

the free-boundary Hele–Shaw problem in these circumstances, as it is for our problem.

The interesting behaviour of the system (5)–(8) for contracting bubbles stems from

the fact that the two nonlinear boundary effects are in competition. We show this by

carrying out the stability analysis of a contracting circle. In polar (r, θ) coordinates, the
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x

y

r = s0(t)

r

θ

r = s0(t) + ǫγn(t) cosnθ

Figure 2. A schematic of the nth mode of perturbation to an expanding or shrinking

circular interface of radius s0(t). By taking the O(ǫ) terms in the full Hele–Shaw

problem in polar coordinates (10)–(13), we obtain a linear approximation (18) for the

evolution of the nth mode γn(t) as s0 decreases.

system (5)–(8) is

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
= 0, s(θ, t) < r <∞ (10)

s(φr − st)−
sθ
s
φθ = 0, r = s(θ, t) (11)

φ =
sst

√

s2 + s2θ
+ σ

s2 + 2s2θ − ssθθ
(s2 + s2θ)

3/2
, r = s(θ, t) (12)

φ ∼ − log r, r → ∞ (13)

where φ(r, θ, t) is the velocity potential and r = s(θ, t) is the bubble interface ∂Ω. We

assume a slightly perturbed circular solution of the form

φ ∼ φ0(r, t) + ǫφ1(r, θ, t) +O(ǫ2),

s(θ, t) ∼ s0(t) + ǫs1(θ, t) +O(ǫ2),

where ǫ ≪ 1 (see Figure 2). To leading order in ǫ the bubble is a shrinking circle of

radius s0 and the potential φ is radially symmetric:

φ0 = − log

(

r

s0

)

+
σ − 1

s0
, s0 =

√
2(tf − t)1/2,

where tf is the extinction time. The O(ǫ) problem is

∂2φ1

∂r2
+

1

r

∂φ1

∂r
+

1

r2
∂2φ1

∂θ2
= 0, r > s0(t) (14)

φ1 → 0, r → ∞ (15)

s1t = φ1r + s1φ0rr, r = s0(t) (16)

φ1 + s1φ0r = s1t − σ
s1 + s1θθ

s20
, r = s0(t). (17)
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We assume Fourier expansions for the unknown correction terms‡

φ̂1 =
∞
∑

n=2

αnr
−n cos(nθ), s1 =

∞
∑

n=2

γn cos(nθ).

Here γn is the nth mode of perturbation to the circle. We are interested in the magnitude

of γn compared to the leading order radius s0 as s0 evolves. Eliminating αn between

(16) and (17) we obtain

γ′n
γn

=
n− 1

s0 + n
+ σ

n(n2 − 1)

s0(s0 + n)
. (18)

where γ′n is the derivative with respect to s0. If

γ′n
γn

>
s′0
s0

=
1

s0
,

then γn/s0 is increasing, thus the mode is unstable for increasing s0, and stable for

decreasing s0. The opposite holds if γ′n/γn < 1/s0.

While (18) indicates whether γn is increasing or decreasing compared to s0 for

s0 > 0, it does not indicate whether it vanishes at s0 = 0, which it must for the bubble

to approach a circle in the extinction limit. However, we may integrate (18) explicitly:

γn
s0

= γn(0)s
σ(n2−1)−1
0 (s0 + n)σ(1−n2)+(n−1). (19)

From (19), the nth mode either vanishes or increases without bound as s0 → 0+,

depending on the value of σ (see Section 2.3).

2.1. Surface tension regularisation

Before considering the effect of kinetic undercooling, we revise the effect of surface

tension on the contracting bubble, where kinetic undercooling is absent (σ̂ ≥ 0, ĉ = 0).

In this case, the dynamic condition (12) becomes

φ = σ
s2 + 2s2θ − ssθθ
(s2 + s2θ)

3/2
. (20)

This changes the equation for stability of the nth mode (18) so that

γ′n
γn

=
n− 1

s0
+ σ

n(n2 − 1)

s20
, (21)

in which case (19) becomes

γn
s0

= γn(0)s
n−2
0 e−σn(n2−1)/s0 . (22)

For the unregularised system (σ = 0) where the bubble is contracting (s0 decreasing),

the second mode γ2 is neutrally stable (γ2/s0 is constant), and all higher modes are

stable. This is consistent with known elliptical extinction behaviour, for which exact

solutions exist [6, 37, 38, 39]. For contraction with nonzero surface tension (σ > 0), even

‡ We disregard the first Fourier mode (n = 1), as it corresponds to a translation in space (effectively

moving the origin) and therefore does not increase or decay over time.
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the second mode decays (due to the exponential term in (22)) and vanishes at s0 → 0+,

leading to a circle in the extinction limit. For expanding problems, the source strength

at infinity Q̂ < 0, and therefore σ ≤ 0, and s0 is increasing. In this case the interface

is, in general, unstable. However, for σ < 0, we have

γ′n
γn

<
1

s0
when − σ >

n− 2

n(n2 − 1)
s0 ∼

s0
n2

(n→ ∞).

Thus surface tension has the effect of stabilising the high order modes when the bubble

is expanding. Indeed, since

max
n≥2

n− 2

n(n2 − 1)
=

1

24
(the n = 3 case),

all modes (and therefore the interface) are stable when s0 is less than the critical radius

s0 = 24(−σ). This summary is similar to the stability analysis in Paterson [46].

2.2. Kinetic undercooling

The stability properties of the problem with purely kinetic undercooling (σ̂ = 0, ĉ > 0)

are very different. In this case, (18) becomes

γ′n
γn

=
n− 1

s0 + n

while (19) reduces to

γn
s0

= γn(0)
(s0 + n)n−1

s0
.

This equation holds regardless of the sign of Q̂, due to the invariance of the kinetic

undercooling problem under change of clock (which also implies the problem is time-

reversible [6, 45]). Any mode that is stable for the contracting bubble is necessarily

unstable for the expanding bubble, and vice-versa. In particular, we have

γ′n
γn

>
1

s0
when s0 >

n

n− 2
. (23)

This implies that for contracting bubbles (s0 decreasing), the second mode γ2 is always

unstable, and each higher mode becomes successively unstable as s0 decreases below

n/(n − 2), until s0 = 1 at which time all modes become unstable. Conversely, for

expanding bubbles, all modes are stable for s0 < 1, then become unstable, starting

with the high modes. Unlike surface tension, kinetic undercooling does not stabilise

the high modes, although it does moderate their instability. A similar property is also

observed in the stability analysis of a planar front in a channel geometry [6, 45]. We

do not consider the case of pure kinetic undercooling further in the bulk of this paper

(however, see the discussion in Section 7).
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2.3. Surface tension and kinetic undercooling

Considering (18) for both nonzero surface tension and kinetic undercooling, for the nth

mode to be stable as the bubble contracts we require

s0 >
n

n− 2
− σ

n(n2 − 1)

n− 2
. (24)

Thus surface tension decreases the critical radius at which the nth mode becomes

unstable due to kinetic undercooling. Indeed, if σ > 1/(n2 − 1), n = 2, 3, . . ., then

the nth mode is stable for all time, and (19) implies that γn/s0 vanishes as s0 → 0+, so

the bubble tends to a circle in the extinction limit. At the special value of surface tension

σ = 1
3
all modes are stable except the second, which is neutrally stable. This value of

σ is a bifurcation point, where the linear stability of bubbles changes. We explore the

issue of stability further in the following sections, by analysing the behaviour of bubbles

very close to extinction.

2.4. Higher mode instabilities

The above result (24) implies that the second mode γ2 is the most unstable. For this

reason we focus our attention on oval-shaped bubbles that are symmetric in both x- and

y-axes. We do not consider in depth the case in which the second mode is exactly zero,

for instance if the bubble initially has an n-fold symmetry (where n > 2). In this case

the value of the surface tension at which the stability of the circle changes is given by

σcn =
1

n2
min − 1

, (25)

(where nmin is the smallest n with nonzero mode γn). The possible non-circular

extinction shapes will also be different; see the discussion in Section 7.

3. The small bubble asymptotic limit tf − t≪ 1

Once a bubble evolving according to the system (5)–(8) has contracted to a small size,

the leading order problem becomes significantly simpler, as we see below. Here we

assume the bubble does not break into multiple disconnected bubbles, but approaches

a single extinction point (see the discussion in Section 7). Solutions to this “small

bubble” problem allow us to analyse the behaviour of the full system near extinction.

The simplification arises from the fact that the curvature and velocity terms in the

dynamic condition (7) become large as the bubble area goes to zero, so it is the balance

of terms in this equation that determine the bubble shape, rather than the potential

flow in the fluid region.

For simplicity we assume a bubble symmetric in the x- and y-axes. The

nondimensional dynamic condition (7) in Cartesian (x, y) coordinates is

φ =
ft

√

1 + f 2
x

− σ
fxx

(1 + f 2
x)

3/2
, y = f(x, t), (26)
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where y = f(x, t) represents the bubble boundary ∂Ω, which we may consider in the

first quadrant (x, y ≥ 0). Let x = λ(t) be the x-intercept of the bubble (f(λ(t), t) = 0),

and define scaled space variables x = λX and y = λY . The free surface is represented

by the function Y = F (X, T ) = f(x, t)/λ, where

T = − log λ

is the new time-like variable§. Since λ → 0+ as the bubble approaches its extinction

point, this substitution stretches time such that T → ∞ as t→ t−f (the extinction time).

It is clear that the curvature term in (26) is O(λ−1). Additionally, we have

ft = λ̇(F −XFX − FT ),

and, using the constant change of area (9),

dA
dt

=
d

dt

(

4λ2
∫ 1

0

F (X, T ) dX

)

= −2π,

which implies

λ̇ = − π

2λ

(
∫ 1

0

2F − FT dX

)−1

,

so the velocity term in (26) is also O(λ−1). Now considering the pressure term in (26),

if we write

φ ∼ 1

λ
Φ0 +O(1), y = f(x, t),

the leading order term Φ0 must be spatially uniform, as all other effects are O(1).

Consequently, the O(1/λ) approximation of (26) is

P (T ) =
F −XFX − FT
√

1 + F 2
X

+ S(T )
FXX

(1 + F 2
X)

3/2
, (27)

with boundary conditions F (1, T ) = 0, FX(0, T ) = 0, where

S(T ) =
2σ

π

∫ 1

0

2F − FT dX. (28)

The scaled pressure term P (T ) = Φ0/(λλ̇) is fixed by the constant change of area

(9). In our rescaled formulation, it is determined by multiplying (27) by
√

1 + F 2
X and

integrating. This is equivalent to integrating (7) over ∂Ω with respect to arclength. The

result is

P (T ) = (1− σ)

∫ 1

0
2F − FT dX

∫ 1

0

√

1 + F 2
X dX

. (29)

Any numerical and asymptotic analysis of (27) is hampered by the fact that we

require F to have a square root singularity at X = 1, so that the bubble does not

§ This choice of scaling is the only one for which we see time dependence at leading order in small λ.
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have a corner on the x-axis. The singularity is removed by making the substitution

ξ =
√
1−X2, which results in the problem

P (T ) =
ξF + (1− ξ2)Fξ − ξFT
√

ξ2 + (1− ξ2)F 2
ξ

+ S(T )
ξ(1− ξ2)Fξξ − Fξ

(ξ2 + (1− ξ2)F 2
ξ )

3/2
, (30)

where F = F (ξ, T ), with the single remaining boundary condition F (0, T ) = 0. We will

dedicate the majority of this paper to the analysis of this equation to inform us of the

extinction behaviour of bubbles in the original Hele–Shaw problem (5)–(8). Note that

F now has the correct square root behaviour as X → 1 (or ξ → 0) as long as Fξ(0) > 0.

While it seems that (30) is underdetermined, in fact the equation is singular at both

end points (since the coefficient of the highest derivative vanishes at ξ = 0 and ξ = 1),

while the one boundary condition provides an alternative to (29) for determining the

value of P . Indeed, setting ξ = 0 in (30) results in

P (T ) = 1− S(T )

Fξ(0, T )2
. (31)

3.1. Relation to curve-shortening flow

The small bubble approximation (27) implies that, in the small bubble limit, the

evolution of the bubble shape with surface tension and kinetic undercooling boundary

conditions is determined by the balance between the normal velocity and curvature of

the interface. It should come as no surprise then that this problem is related to curve-

shortening flow, in which the normal velocity and curvature are equal: vn = −κ, for
our convention on the sign of the curvature (see [54, 55, 56], for instance). Indeed, any

solution to (27) that tends to a circle is also tending to a solution to curve-shortening

flow, as vn and −κ both tend to −1. As with (9), the bubble area under curve-shortening

flow decreases at constant rate −2π.

Additionally, our small bubble problem (30) is equivalent to curve-shortening flow

for a special value of the surface tension, σ = 1. Under the same assumptions of

symmetry and rescaling we used to obtain (27), the equation for curve shortening flow

is

0 =
F −XFX − FT
√

1 + F 2
X

+ S(T )
FXX

(1 + F 2
X)

3/2
, (32)

where

S(T ) =
2

π

∫ 1

0

2F − FT dX. (33)

It is clear that (32) and (33) are equivalent to (27) and (28) for σ = 1 (note that (29)

implies P = 0 in this case). Thus, for this particular value of σ, the abundance of

theory that exists for curve-shortening flow holds for our problem as well. Grayson’s

theorem states that bubbles of any initial shape contract under curve-shortening flow to

a bubble which is asymptotically circular in the extinction limit [54]. This is consistent

with the circle being stable according to our analysis in Section 4 for the relevant value



Hele–Shaw flow with surface tension and kinetic undercooling 12

σ = 1. Additionally, in curve-shortening flow there is the exact “paperclip” solution

(or “Angenent oval”) that demonstrates the evolution of an initially oval bubble to

a circle [55, 56]. Thus the paperclip also represents an exact solution to (27) when

σ = 1. It is an open question as to whether there are any nontrivial explicit solutions

to (27)-(28) for σ 6= 1.

3.2. Numerical solution

To verify the asymptotic results in the following sections, it is useful to solve the small

bubble problem (30) numerically. To achieve this goal, we discretise F at evenly spaced

node points ξj by F (ξj, T ) = Fj(T ), and use central finite difference approximations

for the derivatives in (30), replacing the left hand side with (31). We compute the

integral (28) using the trapezoid rule. Satisfying (30) at each node point (including the

end points, at which we find the derivatives by extrapolation) provides a system of fully

implicit ordinary differential equations for the unknowns Fj , which are advanced in time

using the fully implicit method ode15i implemented in Matlab. In testing this code, we

found well-behaved solutions for relatively few (50-100) nodes, which runs in the order

of seconds on a modern desktop computer.

4. Stability of the circle and the slit steady states

4.1. Steady states of the small bubble problem

The possible asymptotic shapes of contracting bubbles in the full system (5)–(8) in the

limit t→ t−f correspond to the steady states of the small bubble approximation (30) as

T → ∞. In general, the existence and stability of steady states depends on the surface

tension parameter σ. By inspection, F = ξ is a steady state for any σ; it represents the

perfect circle (recall ξ =
√
1−X2). The contracting circle is also an exact solution of

the full problem (5)–(8); in Section 2 we showed that it is stable for σ > 1
3
and unstable

for σ < 1
3
. In the current section we show this is also true of the small bubble problem

(30).

Additionally, we may consider F = 0 a steady state of (30) for all σ, although this

solution violates the boundary condition at the ends of the bubble (Fξ(0) > 0). This

steady state is a line or slit on the x-axis with infinitely sharp ends. The aspect ratio

of a bubble that tends to this steady state goes to zero, rather than remaining O(1), in

the extinction limit. We discuss the concept of the asymptotic shape of such a bubble

in Section 4.4.

Because the slit steady state F = 0 violates the boundary condition at ξ = 0, the

standard eigenvalue analysis for stability is not applicable. Instead, we consider the

slit to be stable or unstable depending on whether the aspect ratio of a thin near-slit

bubble (with small aspect ratio but rounded ends) increases or decreases in T . The

determination of this stability involves solving a boundary layer problem near the ends

of the bubble. In the current section we show this steady state bifurcates at a different
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value of σ than the circle; the slit is stable for σ < 1
2
and unstable for σ > 1

2
. The

overlapping interval 1
3
< σ < 1

2
, in which both “trivial” steady states are stable, suggests

that there is a third, unstable branch of steady states in this interval. We consider this

nontrivial branch in Section 5.

4.2. The circular bubble

To test the linear stability of the circular bubble, represented by F0(ξ) = ξ, we perturb

the circle by writing

F (ξ, T ) = ξ + ǫF1(ξ, T ), ǫ≪ 1,

and expand (30) in small ǫ, keeping terms to order ǫ. The result is a linear equation for

F1:

2σF1ξ(0) = ξF1 − ξF1T + σξ(1− ξ2)F1ξξ + σ(2− 3ξ2)F1ξ.

Recall that no boundary conditions are required, as the problem is singular at both end

points. Performing separation of variables F = T (T )G(ξ), we find that T = exp(µT )

and G satisfies the ordinary differential equation:

2σG′(0) = ξ(1− µ)G+ σξ(1− ξ2)G′′ + σ(2− 3ξ2)G′, (34)

where µ is an eigenvalue. From the equation for T , the bubble will be linearly stable if

all ℜ{µ} are less than zero, and unstable if at least one is greater than zero.

We remove dependence of (34) on the surface tension σ by writing the eigenvalues

as Λ = (1−µ)/σ, and remove the nonlocal term on the left hand side by defining a new

dependent variable H(ξ) by

G =
1

ξ

(

H +
2G′(0)

Λ + 1

)

.

The equation (34) now reduces to a more familiar singular Sturm–Liouville form:

(1− ξ2)H ′′ − ξH ′ + (Λ + 1)H = 0, H ′(0) = 0.

Indeed, this is a Chebyshev differential equation whose eigenfunctions are the Chebyshev

polynomials

Hk(ξ) = cos(
√

1 + Λk sin
−1 ξ),

and for Hk to be real and differentiable at ξ = 1 we require
√
1 + Λk = 2k for positive

integers k (we may exclude k = 0 as it corresponds to constant H , which is equivalent

to the trivial solution G = 0). Putting the eigenvalue back in terms of µ we have

µk = 1− σ(4k2 − 1),

thus the largest eigenvalue is µ1 = 1−3σ, which is positive for σ < 1/3 and negative for

σ > 1/3. Thus the stability of the circle in the small bubble problem (30) is identical to

that seen in the full problem (5)–(8). This result is to be expected; indeed, we obtain

Chebyshev eigenfunctions in Cartesian coordinates as they are the equivalent to the

Fourier modes in polar coordinates used in Section 2 for the full problem.
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4.3. The slit

To examine the stability of the slit steady state F = 0, we assume F = O(ǫ), where

ǫ≪ 1. This represents an O(ǫ) perturbation around the slit. Expanding the unknowns

in small ǫ,

F ∼ ǫF1, P ∼ ǫP1, S ∼ ǫS1, ǫ → 0.

To O(ǫ), the problem (30) reduces to the first order equation

P1 = F1 − F1T +
1− ξ2

ξ
F1ξ, F1(0, T ) = 0.

Note that the reduction in order from a second order to a first order equation suggests

that the asymptotic limit is singular; in particular, the boundary condition at ξ = 0

cannot be satisfied, so we expect there to be a boundary layer near ξ = 0 where the

balance of terms in (30) is different.

First we consider the outer problem (ξ = O(1)). If we define α1(T ) = F1(1, T ), so

that α = ǫα1 is the time-dependent aspect ratio, then setting ξ = 1 implies P1 = α1−α′
1.

Letting G = F1 − α1, so that G(1, T ) = 0, we obtain a truly local first order partial

differential equation for G:

GT − 1− ξ2

ξ
Gξ = G, G(1, T ) = 0, (35)

whose solution is obtained by the method of characteristics. For some initial condition

G(ξ, 0) = G0(ξ) on ξ ∈ [0, 1], the solution is

G(ξ, T ) = G0

(

√

1 + (ξ2 − 1)e−2T
)

eT . (36)

As T → ∞, the characteristics carry the zero boundary condition in (35) across the

entire interval; thus G→ 0, and F tends to α1. In particular,

F1(0, T ) = α1(T ) +G0(
√

1− e−2T )eT → α1(T ), T → ∞.

The slit will be stable or unstable depending on whether α1 is decreasing or increasing.

To determine the stability we must analyse the inner problem. For simplicity, we may

assume that enough time has passed such that F1(0, T ) may be taken to be α1, in which

case α1 becomes the far field condition for the inner problem inside the boundary layer

near ξ = 0.

We now consider the inner problem. The balance of terms in (30) changes when

ξ = O(
√
ǫ), giving the characteristic width of the boundary layer. Let

ξ =
√
ǫη, F ∼ ǫF1(η), ǫ→ 0,

so that (30) becomes, to leading order,

0 = F
(I)
1η (η

2 + F
(I)2
1η ) + S1(ηF

(I)
1ηη − F

(I)
1η ), (37)

with F
(I)
1 (0) = 0 and F

(I)
1 (η, T ) → F1(0, T ) as η → ∞ (here we use F

(I)
1 to distinguish the

inner solution from the outer solution)‖. The far field condition provides the matching

‖ Note that the time derivative disappears when we take the leading order inner problem. Thus for a

given initial condition, there is also a time boundary layer problem in which the solution in the inner

ξ region rapidly evolves to (38). However, we do not examine this complication in any greater detail.
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between the inner and outer solutions. This is a first order Bernoulli equation in F
(I)
1η

that is linearised by the substitution G = (F
(I)
1η )

−2. The resulting solution is

F
(I)
1 = S1 cos

−1

[

k1 exp

(

− η2

2S1

)]

+ k2, (38)

where k1 and k2 are arbitrary constants. The boundary conditions imply

k2 = −S1 cos
−1(k1) = F1(0, T )− S1

π

2
.

However, since

F
(I)
1η =

η
√

k21 exp
(

η2

S1

)

− 1

,

and we need F
(I)
1η 6= 0 for the bubble to behave properly (with a square root singularity)

near X = 1, we require k1 = 1, thus

k2 = 0, S1 =
2

π
F1(0, T ) ∼

2α1(T )

π
, T → ∞.

The definition of S (28) implies

S1 =
2σ

π
(2F1(1)− FT (1)) =

2σ

π
(2α1 − α′

1),

thus we obtain an equation for α1

α′
1(T ) ∼

(

2− 1

σ

)

α1(T ), T → ∞. (39)

Therefore the slit is stable for σ < 1
2
and unstable for σ > 1

2
. Furthermore, for σ < 1

2
,

the asymptotic shape of the bubbles is given by (38). Substituting the known values for

S1, k1 and k2, and putting in terms of F and X , (38) becomes

F (X, T ) ∼ 2α(T )

π
cos−1

[

exp

(

−π(1−X2)

4α(T )

)]

, T → ∞. (40)

The aspect ratio α = ǫα1 decays exponentially, according to (39):

α(T ) ∼ Ae(2−1/σ)T , T → ∞, (41)

where A is a constant depending on the initial bubble shape. To verify out asymptotic

predictions, in Figure 3 we show a representative numerical solution of (30) for an

initially thin elliptical bubble with surface tension σ = 0.4. At this value we expect

the slit to be stable, and the numerical solution confirms this result. As predicted by

our asymptotic analysis, the bubble interface quickly develops an inner boundary layer,

which looks like (38). As time progresses, the outer solution tends to a time-dependent

constant, as predicted by (36). The asymptotic bubble shape is then given by (40),

which evolves according to (41).
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Figure 3. The numerical solution of the bubble evolution equation (30) in (a) X and

(b) ξ, for σ = 0.4. The bubble is initially a thin ellipse of aspect ratio α(0) = 0.05

(denoted by the thick solid line). The numerical solution quickly develops a boundary

layer with inner solution (near X = 1, or ξ = 0) predicted in (38), while the outer

solution tends to a time dependent constant which decays as predicted by (39).

4.4. The asymptotic shape of a near-slit bubble

Previously we refer to the thin, near-slit bubble described by (40) as asymptotically a

rectangle with rounded ends. Here we define the idea of an asymptotic bubble shape

more rigorously. As the bubble boundary approaches a point in (x, y) coordinates

as λ → 0, to define an asymptotic bubble shape we must perform a dynamic (time-

dependent) rescaling of space such that the bubble approaches a shape in the limit. For

bubbles whose aspect ratio tends to a nonzero constant, this is achieved simply through

the scaling with respect to λ that we perform in Section 3.

For the bubble described asymptotically by (40), where the aspect ratio α(T ) → 0 as

T → ∞, a limiting shape is not achieved by scaling x and y by the same time-dependent

parameter. Instead, we could consider scaling such that the x and y intercepts always

map to unity; that is, take X = x/λ as before, and define Ỹ = Y/α = y/(λα). Under

such a scaling, the solution (40) approaches the unit square in the (X, Ỹ ) as T → ∞
(see Figure 4). In this sense, we say the thin bubbles are asymptotically rectangular.

However, this scaling does not capture the shape of the bubble near the tip, since

this behaviour occurs only in the boundary layer near X = 1, which shrinks as α → 0

(by symmetry, the same situation occurs near X = −1). To observe the asymptotic tip

shape, we must scale both spatial coordinates by the same amount. To this end, we

rescale by X̃ = (X−1)/α, with Ỹ = Y/α as before. To leading order in α, (40) becomes

Ỹ ∼ 2

π
cos−1

[

exp

(

πX̃

2

)]

. (42)

This equation describes the “rounding off” of the rectangular bubble, and is also depicted

in Figure 4. The equation for the bubble shape (42) can be rearranged to be

X̃

2
=

1− l

π
log

[

1

2

(

1 + cos
π(Ỹ /2)

l

)]

, l =
1

2
. (43)
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The curve represented by (43) is equivalent to the shape of the famous Saffman–Taylor

finger for width l = 1
2
(see Equation 17 of [4]), and is also known as the “grim reaper”:

an exact solution in curvature-driven flow [55, 56] and the shape of a viscous filament

in a Hele–Shaw channel [57]. Indeed, if we examine (27) near the tip of a thin bubble,

using the expansions

F ∼ ǫF1, P ∼ ǫP1, S ∼ ǫS1, X = ǫX̃ − 1,

for ǫ≪ 1, then we obtain the leading order problem (equivalent to (37))

− 1

S1

F1X̃
√

1 + F 2
1X̃

=
F1X̃X̃

(1 + F 2
1X̃

)3/2
,

which is a scaled travelling-wave version of the equation (vn = −κ) for curve-shortening
flow, with a wave speed of −1/S1. As the grim reaper is the travelling wave solution

of the curvature driven flow problem [55, 56], it occurs in the slit-limit of our problem

also. The overall bubble shape is reminiscent of a scaled and time-reversed version of

the “paperclip” solution to curve-shortening flow [55, 56] for time t → −∞, although

the two shapes are likely only the same in the limits t→ −∞ and T → ∞.

5. The nontrivial branch of steady states

In this section we show that there is a third branch of steady states of (30) which exists

only when the surface tension lies in the critical range 1
3
< σ < 1

2
. For each σ in this

range there is a nontrivial steady state with aspect ratio α. This branch of steady states

approaches the circle steady state as σ → 1
3

+
(with α → 1−) and approaches the slit

steady state as σ → 1
2

−
(α→ 0+). We numerically compute the bubble shapes and the

relation between α and σ. Additionally we obtain the asymptotic form of the bubble

shape as α → 0+. Since this steady state separates the circle and the slit, which are

stable for 1
3
< σ < 1

2
, we expect it to be unstable. We provide numerical evidence to

support this prediction.

5.1. Numerical computation

To determine this nontrivial branch of steady states, we take the steady state version

of (30):

P =
ξF + (1− ξ2)F ′

√

ξ2 + (1− ξ2)F ′2
+ S

ξ(1− ξ2)F ′′ − F ′

(ξ2 + (1− ξ2)F ′2)3/2
, (44)

with F (0) = 0, P an undetermined constant, and where ′ represents differentiation with

respect to ξ. Instead of using σ as an input, we will instead fix the aspect ratio α = F (1)

between 0 and 1 and let S be an unknown which must be found as part of the solution.

The value of σ is then deduced from S. As before, (44) is a singular boundary value

problem, for which we expect well-determined solutions as the two boundary conditions

may be used to find the two unknowns P and S.
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Figure 4. A schematic of the description of the asymptotic shape of the thin, near-

slit bubble, represented by the solution (40), under different scalings. If we scale

by X = x/λ and Ỹ = y/(λα), such that the intercepts are at unity, the bubble is

asymptotically square. This does not capture the behaviour at the tips of the bubble,

however. By zooming in near the tip using the new horizontal scaling X̃ = y/(λα), we

observe the rounded-off asymptotic limiting shape of the end of the bubble (42). This

tip shape is equivalent to the Saffman–Taylor finger and the travelling wave solution

in curvature-driven flow, known as the grim reaper (see Section 4.4).

We solve (44) numerically by discretising with central finite difference

approximations for the derivatives. The unknowns are P , S, and the values of F at

interior points, while the system of equations comes from the discretisation of (44) at

the interior and both end points. The numerical value of σ is then computed from S

using the steady state version of (28):

S =
4σ

π

∫ 1

0

ξF
√

1− ξ2
dξ. (45)

This process is carried out for a range of values α between 0 and 1. The resulting curve

of α against σ is shown in Figure 5, along with some representative bubble shapes for

various α. Note in particular that as α → 1−, σ tends to 1
3

+
and the bubble shape

approaches a circle. That is, this nontrivial branch of solutions intersects the branch of

circular steady states at the bifurcation point (the point where the stability of the circle

steady state changes). Conversely, as α → 0+, σ tends to 1
2

−
, which is the bifurcation

point of the slit steady state.
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Figure 5. (a) The aspect ratio of the numerical solution of (44) against the

corresponding value of surface tension σ. This represents the nontrivial, unstable

branch of steady states which separates the circle and slit steady states, which are

both stable in the critical range 1/3 < σ < 1/2. (b) Some representative solutions on

this nontrivial branch.

5.2. The thin bubble limit on the nontrivial branch

In addition to the numerical solution we look at the thin bubble limit of steady states on

the nontrivial branch by considering (44) with aspect ratio α≪ 1. This is very similar

to the boundary layer problem we solved for the stability of near-slit bubbles in Section

4. Expanding the unknowns,

F ∼ αF1, P ∼ αP1, S ∼ αS1,

the leading order problem is

P1 = F1 +
1− ξ2

ξ
F ′
1, F1(0) = 0, F1(1) = 1,

which has solution F1 = P1 + k1
√

1− ξ2 where k1 is arbitrary. To avoid a singularity

at ξ = 1, we must have k1 = 0 and so F1 = P1 = 1.

This solution cannot be made to satisfy the condition at ξ = 0, so we expect there to

be a boundary layer at this end. The balance of terms in (44) changes when ξ = O(
√
α).

Let

ξ =
√
αη, F ∼ αF1(η),

so that (44) becomes, to leading order,

0 = F ′
1(η

2 + F ′2
1 ) + S1(ηF

′′
1 − F ′

1), F1(0) = 0, lim
η→∞

F1 = 1, (46)

(where ′ is now differentiation with respect to η). This is identical to the inner problem

(37) for the stability of a near-slit bubble. An exact solution to (46) is easily found and

the requirement F ′(0) > 0 again determines the value of S1:

F1 =
2

π
cos−1

[

exp

(

−πη
2

4

)]

, S1 =
2

π
.



Hele–Shaw flow with surface tension and kinetic undercooling 20

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

X

Y
(a)

numerical
asymptotic

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

ξ

Y
(b)

numerical
asymptotic

Figure 6. A comparison between the thin bubble asymptotic approximation (47) and

the numerical solution to (44) for a bubble on the nontrivial solution branch, (a) in

physical coordinate X and (b) in transformed coordinate ξ. The aspect ratio is set to

α = 0.05, small enough that the asymptotic approximation is very good.

Thus the asymptotic bubble shape in terms of X is

F ∼ α
2

π
cos−1

[

exp

(

−π(1−X2)

4α

)]

, α → 0. (47)

A comparison between (47) and the numerical solution to (44) for small α is shown in

Figure 6. Since the integral in (45) ∼ α, we can also determine the value σ from S1:

σ =
1

2
.

This is the result predicted by the numerical scheme, and is the bifurcation point for

the stability of the slit steady state. The bubbles shapes on the nontrivial branch are

asymptotically described by (47) as the aspect ratio α→ 0+. In this limit, the bubbles

look like long thin rectangles with rounded ends (as described in Section 4.4), similar

to the stable near-slit evolving bubbles (40) which do not lie on the nontrivial branch.

5.3. Stability

The linear stability problem for the nontrivial branch of steady states is more difficult

than that for the two trivial steady states, and we do not attempt an analysis here (see

the discussion in Section 7, however). We demonstrate the instability numerically by

solving (30) using the method discussed in Section 3.2, with an initial condition equal

to the numerically computed nontrivial steady state for the given value of σ, multiplied

by a constant slightly greater than, equal to, or less than unity. The result is shown in

Figure 7, with the two solutions that are not exactly at the steady state initially heading

away towards either of the stable trivial steady states.

5.4. Bifurcation diagram

We are now at a point where we may summarise the steady state behaviour of the small

bubble problem (30), and therefore the asymptotic near-extinction behaviour of the full
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Figure 7. A numerical demonstration of the instability of the nontrivial steady state

solution of (30) for surface tension σ = 0.3757, corresponding to steady state aspect

ratio of 0.3. In (a), a solution which is initially at the steady state (the thick solid

curve) remains there. Additionally, two solutions are shown that are initially slightly

above and below the steady state. These solutions head away toward the trivial (stable)

circle and slit steady states, respectively. In (b) we plot the aspect ratios of the three

solutions over time.

Hele–Shaw problem (5)–(8). This is most easily done with a bifurcation diagram, which

is shown in Figure 8. The steady states of (30) are readily identified by their aspect

ratios α, which we plot against the surface tension parameter σ. The diagram also

indicates the bifurcations in the stability of the two trivial steady states (the circle and

slit), and in the critical region 1
3
< σ < 1

2
, where both trivial steady states are stable,

we include the numerically computed nontrivial branch.

6. Numerical solution to the full Hele–Shaw problem

To show that the steady state behaviour of the small bubble problem (30) does indeed

represent the asymptotic behaviour of the full Hele–Shaw problem (5)–(8), a numerical

solution to this full problem is required.

Our numerical scheme is based on applying a spectral collocation-type scheme to

a complex variable formulation of the problem. Complex variable methods are used

extensively in constructing exact solutions in unregularised Hele–Shaw problems [6] and

have also been used to devise numerical methods similar to the one we present here [44].

Our numerical scheme has two variants; an unscaled version which is purely based on

the full problem (5)–(8), and an adaptation that takes advantage of the scaling we used

in finding the small bubble problem in Section 3.

6.1. Unscaled method

Let z = g(ζ, t) be an analytic, time-dependent mapping function under which the fluid

region z ∈ Ω(t) is the image of the unit disc (g will be analytic in the unit disc except

at ζ = 0, where it has a simple pole corresponding to infinity in the z-plane). The
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Figure 8. A bifurcation diagram for the small bubble problem (30) which summarises

the main results of Sections 4 and 5. The aspect ratios α of possible steady states

are plotted against the parameter σ. For σ > 1

2
and σ < 1

3
, only the two trivial

steady states exist, with the circle (α = 1) and the slit (α = 0) stable in the respective

ranges. For the critical range 1

3
< σ < 1

2
, both trivial steady states are stable, with a

third, unstable steady state (computed from (44)) separating them. Also included are

schematics of typical trajectories which could represent solutions to either the small

bubble problem (30) or the full Hele–Shaw problem (5)–(8).

kinematic condition may be written as a boundary condition for g on the unit circle:

ℜ{gtζgζ} = ℜ(ζΦζ) = 1−ℜ{ζVζ} − σℜ{ζKζ}, |ζ | = 1, (48)

where Φ = φ+ iψ is the complex velocity potential, and V and K are complex analytic

functions in the unit disc whose real boundary data is the normal velocity and curvature

respectively, that is

ℜ{V } = vn =
ℜ{gtζgζ}
|ζgζ|

, ℜ{K} = κ =
ℜ{ζ(ζgζ)ζζgζ}

|ζgζ|3
,

on |ζ | = 1. For simplicity we assume a bubble symmetric in the x and y-axes. The

mapping function g (and its derivatives) may therefore be written as a power series

with time-dependent coefficients:

g(ζ, t) =

∞
∑

n=0

an(t)ζ
2n−1, ζgζ =

∞
∑

n=0

(2n− 1)an(t)ζ
2n−1,

ζ(ζgζ)ζ =

∞
∑

n=0

(2n− 1)2an(t)ζ
2n−1.

The time derivative of g is of course given by the time derivatives of the coefficients:

gt(ζ, t) =
∞
∑

n=0

ȧn(t)ζ
2n−1.
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To solve for the evolution of the coefficients an(t) we truncate the series at N terms. The

N fully implicit equations that we require will come from satisfying (48) at N equally

spaced points

ζj = eiπj/4N , j = 0, . . . , N − 1,

which lie in the first quadrant on the unit circle.

To compute these implicit equations we first evaluate g, its derivatives, and

subsequently vn and κ, at each of the ζj. This is carried out very efficiently by using

the inverse fast Fourier transform. Computing the complex analytic functions V and K

from vn and κ is simple in the space of their power series coefficients, for example

vn =
∞
∑

n=−∞

bnζ
n ⇒ V = b0 +

∞
∑

n=1

2bnζ
n,

(note that bn = bn by symmetry), so that the values of ζVζ in (48) are found by applying

the fast Fourier transform to the values of vn, manipulating the coefficients, and inverting

the transform once more (a similar process holds for ζKζ). Now enforcing (48) at the ζj
nodes furnishes us with N implicit equations for the time derivatives of the coefficients

ȧ(t). These are solved using a fully implicit time-stepping scheme (ode15i in Matlab)

from a prescribed initial condition.

6.2. Scaled method

Since we are interested in the behaviour of bubbles near extinction, the above method

can be improved by scaling space and time so that we more accurately compute the

behaviour very close to the extinction time. To that end, we again let λ(t) be the x-

intercept of the bubble at time t, and define a new mapping function G and time-like

variable T :

g(ζ, t) = λG(ζ, T ), T = − log λ.

This is equivalent to the scaling we used in the derivation of the small bubble problem

(30). The image of the unit circle under G is now the bubble shape scaled so that its

x-intercepts are ±1, and as λ→ 0+, T → ∞. We again write G as a power series

G(ζ, T ) =

∞
∑

n=0

An(T )ζ
2n−1.

The area of the bubble is given by

A =
1

2i

∮

∂Ω

z dz = −λ
2

2i

∮

|ζ|=1

G(1/ζ, T )Gζ(ζ, T ) dζ

= −πλ2
∞
∑

n=0

nA2
n.

From the constant rate of change of area (9) we therefore obtain

λ̇λ = B(T )−1, B(T ) =
∞
∑

n=0

nAn(An − A′
n) (49)
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(here ′ represents differentiation with respect to T ). Armed with this relation we rewrite

(48)

e−T (ℜ{(G−Gt)ζGζ}+B) = Bℜ{ζV̂ζ}+ σℜ{ζK̂ζ}, |ζ | = 1, (50)

where V̂ and K̂ are the functions analytic in the unit disc such that

ℜ{V̂ } =
ℜ{(G−GT )ζGζ}

|ζGζ|
, ℜ{K̂} =

ℜ{ζ(ζGζ)ζζGζ}
|ζGζ|3

,

on |ζ | = 1. This scheme is implemented numerically in a similar fashion to the last

section, with one alteration. As we have not yet specified the scaling λ, and (49) is

implied by (50) for any such scaling, we must replace one of the equations (say, at ζN−1)

by a condition that fixes the scaling:

G(1, T ) = 1.

Both the scaled and unscaled versions are very efficient due to their use of the fast

Fourier transform. To produce the numerical results presented below we used N = 128

power series terms, which ran in the order of seconds on a modern desktop computer.

6.3. Numerical results

The numerical solution to the full problem (5)–(8) is used to verify the asymptotic

predictions made from the small bubble problem; in particular we focus on the presence

of an unstable steady state for values of σ in the critical range 1
3
< σ < 1

2
, and the

stability of the two trivial steady states, the circle and the slit.

In Figure 9 we plot the numerical solutions for two initially elliptical bubbles with

nearly identical aspect ratios, for a surface tension value σ = 0.3757 within the critical

range. We compare both the unscaled and scaled versions of our numerical scheme. The

unscaled method shows the bubbles shrinking to a point, but before the small bubble

limit is approached the two solutions look very similar, and we cannot examine the

behaviour very close to the point of extinction. In the scaled version, we see that the

bubble quickly tends toward the nontrivial (unstable) bubble shape in the stretched

time variable T , but then eventually heads toward either the circle or slit, the outcome

due purely to the slight difference in initial condition. While it is technically possible

that an initial condition may be just such that the bubble tends to the bubble shape

represented by the nontrivial steady state exactly, in general bubbles will contract as

either circular or slit-type bubble shapes.

7. Discussion

We have performed an analytic and numerical investigation of the effects of surface

tension and kinetic undercooling on the shape of a contracting bubble in a Hele–Shaw

cell. As the bubble shrinks to a point in the limit t→ t−f , it asymptotically approaches a

shape corresponding to a steady state of the leading order small bubble approximation

(30). This approximation has two “trivial” steady states whose stability depends on the
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Figure 9. The evolution of the shape of two initially elliptical bubbles (depicted by

the thick solid line) of aspect ratios of ratios α0 = 0.295 and α0 = 0.289, computed

using the two numerical methods discussed in Section 6. The unscaled method (left)

shows the evolution of the bubbles while their sizes are O(1); the two solutions do

not appear to differ greatly at this scale. The scaled method (right), where lengths

have been scaled by the interface’s x-intercept λ, and T = − logλ is the stretched

time variable, is useful for calculating how the bubbles behave very close to extinction.

We see both bubbles initially tend toward the (unstable) steady state as described in

Section 5 for the given value of σ (shown as a broken line), but ultimately tend toward

either (b) a circle, or (d) a slit, both of which are stable according to the results in

Section 4.
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value of the nondimensional surface tension parameter σ = σ̂/(ĉQ̂): the circle, which

is stable for σ > 1
3
, and the slit, which is stable for σ < 1

2
. For surface tension values

in the critical range 1
3
< σ < 1

2
, where both trivial steady states are stable, we found

a third, unstable branch of steady states, on which the bubble shape has an aspect

ratio lying between zero and one. Our numerical solution of the full Hele–Shaw problem

shows that, while bubbles may initially evolve toward this unstable bubble shape, very

close to the point of extinction they change their trajectory and evolve to either a circle

or slit, in agreement with the stability analysis. There are, however, many unresolved

problems and areas for further study, some of which we outline below.

7.1. Bubble break-up

The focus of our study is on the asymptotic shape of a single bubble very close to

extinction. For simplicity we have only considered symmetric bubbles that remain

connected up to the time of extinction; this avoids the question of the breakup of a single

bubble into multiple disconnected ones, which may happen for concave initial conditions

(for instance, initially “dumbell” shaped bubbles). In this case, more sophisticated

numerical techniques are required than those described in this paper, since our scheme

is based on a conformal mapping from the unit disc, and therefore requires the fluid

region to be simply connected.

Additionally, the rescaled problem (27) in Section 3 is no longer valid when there are

multiple bubbles. While it is reasonable to expect each bubble to behave qualitatively

like the solution to (27) when it nears extinction, there is no simple formula for the

exact rate of decrease in the area of each bubble. The rate of decrease of area over all

bubbles is −2π, while each individual bubble will be shrinking at a lesser rate, meaning

surface tension will be more dominant, and circular extinction behaviour more likely.

If, however, a point in time is reached where all bubbles except one has become extinct,

the limiting behaviour of the remaining bubble will again be described by (27).

7.2. Pure kinetic undercooling (σ = 0)

We have not examined in depth the problem of pure kinetic undercooling (that is, when

σ = 0). In this case, experiments with our full numerical scheme suggest the formation

of corners in finite time, for both contracting (t decreasing) and expanding (t increasing)

bubbles. Interfaces with corners are allowable (weak) solutions in the absence of surface

tension, as kinetic undercooling acts on the velocity, rather than the curvature, of the

interface [45, 9]. Setting σ = 0 in the small bubble problem (30) reduces it to a local,

though nonlinear and singular first order partial differential equation
√

ξ2 + (1− ξ2)F 2
ξ = ξF + (1− ξ)2Fξ − ξFT , F (0, T ) = 0,

(note that P (T ) = 1). An example numerical solution is included in Figure 10, showing

the possible development of a corner on the x-axis. An exact solution may be able to be

constructed that could shed light into the formation of such finite-time corners. Trivially,
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Figure 10. A numerical solution to the small bubble approximation (30) in the

phyiscal coordinate X , for pure kinetic undercooling (σ = 0). An initially elliptical

bubble (represented by the thick solid line) appears to evolve to a curve with a corner

on the x-axis (represented by the thick broken line). The numerical scheme does not

continue past the point at which the corner develops.

we note that a (weak) solution is the rectangular bubble represented by F (ξ, T ) = α(T ),

where α satisfies

1 = α− dα

dT
⇒ α = 1− keT ,

(where k is a constant). Recalling that T = − log λ, where λ is the x-intercept of the

bubble boundary, the fact that α goes to zero for a finite value of T implies that the

bubble does not become arbitrarily small in the x-direction, but rather tends to a line

of finite length on the x-axis. This behaviour may be generic for solutions to the full

problem that form corners on the x-axis.

7.3. Higher mode instabilities and other steady states

Additionally, our analysis has focused on the instability of bubbles with an initially

nonzero second mode perturbation (ellipses, for example). This focus is motivated by

the stability analysis in Section 4, where we observe that the second mode is the most

unstable. However, if the second mode is initially zero (which will be true, for instance,

for a bubble of n-fold symmetry, where n > 2), it will be identically zero for all time.

In theses special cases, the shrinking circular bubble will have a bifurcation point

(less than 1
3
), depending on n, given by (25). For surface tension values less than this

bifurcation point, the circle is unstable, but the bubble cannot shrink to a slit due to

its symmetry; instead, the bubble will tend towards an analogous n-fold symmetric

self-similar solution, which likely approaches a regular polygon of the same symmetry

(similar solutions are discussed in [37, 42] for shear-thickening fluid in the absence of

nonlinear boundary effects, and in the focusing problem for the porous medium equation;

see [42], p. 10, 14).

To take an example, for a bubble with four-fold symmetry the bifurcation point

for the circle according to (25) is σ = 1/15 = 0.066 . . .. In Figure 11 we show
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Figure 11. An example of a shrinking four-fold symmetric bubble, using the numerical

methods from Section 6, with initial condition indicated by the thick solid line.

According to (25), the critical value of the surface tension for the fourth mode is

σ = 1/15 = 0.066 . . . . For σ = 0.07 (top) the bubble tends to a (stable) circle, while

for σ = 0.04 (bottom) the bubble appears to tend toward a (unstable) square diamond.

numerical solutions computed by the methods outlined in Section 6 for an initially

four-fold symmetric bubble. The solution behaviour demonstrates the bifurcation in

the stability of the circle, with the bubble heading toward a circle for σ = 0.07 and

toward another steady state, possibly a sharp-cornered square diamond, for σ = 0.04.

In our small bubble approximation (30), the diamond could be considered the (weak)

steady state solution F = 1 − X = 1 −
√

1− ξ2. We note that special care must be

taken in the numerical scheme to ensure the second mode does not become nonzero due

to numerical error. Otherwise, the instability quickly takes over and the bubble ceases

to by symmetric, tending eventually to slit-type extinction.

7.4. Stability of the nontrivial branch

The instability of the nontrivial steady state was shown numerically (see Figure 7).

A proper stability analysis would require the determination of the eigenvalues µ of the

linearisation of (30) about the nontrivial steady state. If we write F = F0(ξ)+ǫF1(ξ, T ),

where F0 is the steady state solution and F1 is the linear correction term, the eigenvalue
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problem is of the form

M0(ξ)(1− µ)G+M1(ξ)G
′ +M2(ξ)G

′′

=M4(ξ)(2− µ)

∫ 1

0

G(ξ′)
ξ′

√

1− ξ′2
dξ′ + CG′(0),

where F1 = eµTG(ξ). The coefficients Mk and C depend on the nontrivial steady state,

which can only be computed numerically for a given value of σ. Furthermore, the

integral on the right hand side makes the problem nonlocal. Similar nonlocal eigenvalue

problems have been studied in the context of reaction-diffusion equations [58, 59]. It is

possible that similar methods may be used in the present example. From our numerical

results, we expect that there will be at least one positive eigenvalue, with some bubbles

initially heading toward the nontrivial steady state, but eventually heading toward either

a circle or slit. We leave these issues for further research.
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