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Bubble-Tree Convergence and Local

Diffeomorphism Finiteness for Gradient Ricci

Shrinkers

Reto Buzano and Louis Yudowitz

Abstract

We prove bubble-tree convergence of sequences of gradient Ricci shrinkers with uniformly
bounded entropy and uniform local energy bounds, refining the compactness theory of Haslhofer–
Müller [22, 23]. In particular, we show that no energy concentrates in neck regions, a result
which implies a local energy identity for the sequence. Direct consequences of these results are
an identity for the Euler characteristic and a local diffeomorphism finiteness theorem.

1 Introduction and Main Results

In this paper, we refine the compactness theory for gradient Ricci shrinkers in general dimensions.
A smooth, connected, complete, n-dimensional Riemannian manifold (Mn, g) is called a gradient
Ricci shrinker if there exists a function f ∶M → R, called the potential of the shrinker, such that

Ricg +∇2
gf = 1

2
g. (1.1)

This notion, introduced by Hamilton in [21], naturally generalises the concept of positive Einstein
manifolds (satisfying (1.1) with f ≡ const.). Gradient shrinkers have been very heavily studied,
particularly in the last two decades. It is not hard to see that (1.1) is equivalent to g(t) ∶= (1−t)φ∗t g
satisfying Hamilton’s Ricci flow equation

∂tg(t) = −2Ricg(t),
where φt is the family of diffeomorphisms generated by (1 − t)−1∇f with φ0 = idM . That is,
a gradient shrinker evolves under Ricci flow only by diffeomorphisms and scaling and becomes
singular at time t = 1. Hence, gradient shrinkers yield some of the most basic examples of singular
Ricci flows.

Their importance however stems from the fact that gradient shrinkers model finite time singularities
of the Ricci flow. As shown by Enders, Topping, and the first author [18], for a so-called Type I
Ricci flow (M,g(t))t∈[0,T ), a sequence of parabolic rescalings (M,gj(t) ∶= λ−2j g(T + λ2j(t − 1)), p)
with scaling factors λj → 0 will subconverge smoothly in the pointed Cheeger–Gromov sense to a
gradient shrinker which is non-trivial (i.e. non-flat) if and only if p is a singular point. We also refer
the interested reader to an earlier result of Naber [26] (without the non-triviality statement) and
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the work of Mantegazza and the first author [24] for an alternative proof which yields additional
information about the entropy of the limiting gradient shrinker. Recently, in his spectacular trilogy
[4–6], Bamler generalised this blow-up result to the case of general Ricci flows without the Type I
assumption. Instead, one must work with a new concept of weak convergence and limiting gradient
shrinkers that may have a co-dimension 4 singular set. In the special case of dimension n = 4,
Bamler has shown that one obtains orbifold Cheeger–Gromov convergence to an orbifold Ricci
shrinker with isolated singularities modelled on R

n/Γ for some finite Γ ⊂ O (n). This yields a
parabolic version of the (4-dimensional) shrinker compactness result by Haslhofer and the first
author [22,23] which we will recall now.

It is now well known (see [22]) that every gradient shrinker comes with a natural basepoint, namely
a point p ∶= argminM f where the potential attains its minimum. Such a point always exists and
the distance between two such points is bounded by a constant depending only on the dimension.
From p, the potential grows like one-quarter distance squared and the volume growth of geodesic
balls around p is at most Euclidean, see Section 2 for more details. It is therefore always possible
to normalise f by adding a constant so that

∫
M
(4π)−n

2 e−fdVg = 1. (1.2)

In this article, we always assume that the potential has been normalised this way. The gradient
shrinker then has a well defined entropy,

µ (g) =W (g, f) = ∫
M
(∣∇f ∣2g +Rg + f − n) (4π)−n

2 e−fdVg > −∞.
The entropy, introduced by Perelman in [28], is non-decreasing along a general Ricci flow (in the
compact case or under some technical assumptions) and assuming a lower bound for the entropy
of singularity models is therefore quite natural. An additional local scalar curvature bound, which
is always available for gradient shrinkers, implies no local-collapsing.

The main compactness theorem for n-dimensional Ricci shrinkers from [22] (and its improvement
from [23] that shows the condition (1.3) always holds in dimension n = 4) then states the following.

Theorem 1.1 (Theorem 1.1 in [22] and Theorem 1.1 in [23]). Let n ≥ 4 and let (Mi, gi, fi) be a
sequence of n-dimensional gradient Ricci shrinkers with entropy uniformly bounded below µ(gi) ≥
µ > −∞. If n > 4, then assume in addition that we have uniform local energy bounds,

∫
Bgi
(pi,r)

∣Rmgi ∣n/2gi
dVgi ≤ E (r) <∞, ∀i, r. (1.3)

Then (Mi, gi, fi, pi) subconverges to an orbifold Ricci shrinker (M∞, g∞, f∞, p∞) in the pointed
orbifold Cheeger–Gromov sense where pi ∶= argminMi

fi.

In particular, this means that a subsequence converges in the pointed Gromov–Hausdorff sense and
in the smooth Cheeger–Gromov sense away from the isolated point singularities, see Section 2 for
precise definitions of the different notions of convergence as well as for the definition of an orbifold
Ricci shrinker. We denote the set of isolated singularities by Q.
This compactness result generalised earlier shrinker compactness theorems for compact shrinkers
by Cao-Sesum [15], Weber [34], and Zhang [36] that furthermore rely on additional conditions such
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as pointwise curvature bounds or positivity assumptions for the curvature. This type of orbifold
compactness theorem goes back to the fundamental work on sequences of Einstein manifolds by
Anderson, Bando–Kasue–Nakajima, and Tian [2, 9, 27, 32]. See also Uhlenbeck [33] and Cheeger–
Naber [17].

Our aim is to further extend Theorem 1.1 by investigating precisely what happens at the points
where orbifold singularities form. In addition to the work cited above, our main results are in
particular inspired by bubbling theorems for Einstein manifolds by Anderson–Cheeger [3] and
Bando [7, 8]. Our first main result is the following.

Theorem 1.2 (Bubble Tree Convergence). Let n ≥ 4, (Mi, gi, fi, pi) be a sequence of n-dimensional
oriented gradient Ricci shrinkers as in Theorem 1.1, and Q be the set of orbifold points of the
limiting orbifold Ricci shrinker (M∞, g∞, f∞). Then, given q ∈Q, there exist point-scale sequences

{(qki , rki )}Nq

k=1
where Mi ∋ qki → q, rki → 0, and ALE bubbles {(V k, hk, qk∞)}Nq

k=1
(see Definition 1.4),

such that, up to passing to a subsequence, the following is true.

1. For all k ≠ ℓ, we have
rki
rℓi
+ r

ℓ
i

rki
+ dgi(q

k
i , q

ℓ
i)

rki + rℓi
→∞

as i→∞.

2. For every fixed 1 ≤ k ≤ Nq, the pointed rescaled manifolds (Mi, (rki )−2gi, qki ) converge in the
pointed orbifold Cheeger-Gromov sense to (V k, hk, qk∞) as i→∞.

3. Given any other sequences Mi ∋ qi → q and ̺i → 0 such that

min
k=1,...Nq

( ̺i
rki
+ r

k
i

̺i
+ dgi(qi, q

k
i )

̺i + rki
)→∞

then the pointed rescaled manifolds (Mi, (̺i)−2gi, qi) converge to a flat limit.

4. The number of ALE bubbles forming is locally finite, in particular for every r ≥ 2 there exists
N = N(µ,E(2r)) such that ∑q∈Qr

Nq ≤ N , where Qr ∶= Q∩Bg∞(p∞, r).
5. Finally, the following energy identity holds:

lim
i→∞∫Bgi

(pi,r)
∣Rmgi ∣n/2gi

dVgi = ∫
Bg∞(p∞,r)

∣Rmg∞ ∣n/2g∞
dVg∞ + ∑

q∈Qr

Nq

∑
k=1
∫
V k
∣Rmhk ∣n/2

hk dVhk ,

whenever r ≥ 2 is such that Q∩ ∂Bg∞(p∞, r) = ∅.

Bubble tree constructions as in Theorem 1.2 are an important tool in the study of geometric PDEs
and have been employed in a variety of situations. In addition to the work on Einstein manifolds
cited above, we would like to mention the classical works of Sacks–Uhlenbeck [29] for harmonic
maps, as well as the articles by Brezis–Coron [12] and Struwe [30] for certain elliptic systems, all
of which have inspired us.

From a technical point of view, our proof of Theorem 1.2 differs from the ones by Anderson–
Cheeger [3] and Bando [7, 8] in that we start the process from the deepest bubble (or leaf bubble
which corresponds to the smallest scale) and then work our way outwards, while their argument
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goes the other direction. This follows the first author’s bubbling analysis for minimal surfaces
obtained jointly with Sharp in [13], as well as the beautiful work of Chang–Qing–Yang in [16].

Furthermore, working with non-compact manifolds, Theorem 1.2 only states that the number of
orbifold points in Qr = Q ∩ Bg∞(p∞, r) is bounded by N = N(µ,E(2r)). This means that if one
wishes to apply the result for large r, or even the entire shrinker, the number of orbifold points can
become arbitrarily large and as a consequence, the bubble tree construction in Section 5 may not
terminate.

A final important difference to the work of Anderson–Cheeger is Point 5 of Theorem 1.2, which is
not present in [3]. While proving an energy inequality is relatively easy, proving the claimed energy
identity requires a more delicate argument to show that no energy is lost in the intermediate regions
between the different bubble scales. A significant part of the present paper is therefore focusing on
these so-called neck regions, see in particular Sections 3 and 4. Once the energy identity is proved,
it can easily be translated into an identity for the Euler characteristic:

Corollary 1.3. Under the assumptions of Theorem 1.2 and using the same notation, we have the
identity

lim
i→∞

χ(Bgi(pi, r)) = χ(Bg∞(p∞, r) ∖Qr) + ∑
q∈Qr

Nq

∑
k=1

χ(V k ∖Qk) (1.4)

where Qk is the (possibly empty) set of orbifold points of the ALE bubble (V k, hk).

The concept of an ALE bubble is defined as follows.

Definition 1.4 (ALE Bubble). A manifold (or an orbifold with finitely many singularities) (Mn, g)
with one end is asymptotically locally Euclidean (ALE) of order τ > 0 if there is a compact set
K ⊂Mn, a constant R > 0, a finite group Γ ⊂ O (n) acting freely on R

n ∖B(0,R), as well as a C∞
diffeomorphism ψ ∶Mn ∖K → (Rn ∖B(0,R)) /Γ such that the following estimates hold:

(ϕ∗g)ij(x) = δij +O(∣x∣−τ )
∂k(ϕ∗g)ij(x) = O(∣x∣−τ−k), ∀k ≥ 1

for all x, y ∈ Rn ∖B(0,R). Here ϕ ∶= ψ−1 ○π where π ∶ Rn → R
n/Γ is the natural projection. We say

that an n-dimensional manifold (or orbifold with finitely many singularities) is an ALE bubble, if
it is complete and non-compact with one end, Ricci-flat, non-flat with bounded Ln/2 Riemannian
curvature, and ALE of order n − 1 in general. If n = 4 or the manifold/orbifold is Kähler then we
require it to be ALE of order n. (In Definition 5.1, we will further distinguish between leaf and
intermediate bubbles.)

A further consequence of Theorem 1.2 is a (local) diffeomorphism finiteness result for Ricci shrinkers.

Corollary 1.5 (Local Diffeomorphism Finiteness). Let M denote the collection of n-dimensional
gradient Ricci shrinkers (M,g, f) with entropy uniformly bounded below µ(g) ≥ µ > −∞ and uniform
local energy bounds as in (1.3) whenever n > 4. Moreover, for any r > 0, setMr to be the collection
of M r ∶=M ∩Bg(p, r), where M ∈M and p ∶= argminM f . ThenMr contains only a finite number
of diffeomorphism types.
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The corollary shows in particular that the collection of closed Ricci shrinkers with a uniform upper
bound on the diameter as well as uniform lower entropy bounds and uniform energy bounds contains
only a finite number of diffeomorphism types. Recently, Munteanu–Wang [25] have shown such
diameter bounds follows from the other assumptions. Proving a global diffeomorphism finiteness
result is a more delicate issue; even in the case where one knows that all orbifold singularities form
in a compact region (which is for example the case under a scalar curvature bound), one still needs
to control the number of ends of the shrinkers, a problem which we will study elsewhere.

The paper is organised as follows: In Section 2, we recall some basic concepts and collect some facts
about gradient Ricci shrinkers before proving a blow-up version of Theorem 1.1 (see Theorem 2.6).
In Section 3, we first show a connectedness result for small annuli in Ricci shrinkers (Lemma 3.1)
which implies that bubbles have precisely one end (Corollary 3.3), and then we proceed to prove
a neck theorem (Theorem 3.4) controlling the geometry of intermediate regions in our bubbling
result. Section 4 is dedicated to proving an energy estimate in these neck regions (Theorem 4.5)
via an improved Kato inequality for Ricci shrinkers. Theorem 1.2 is then proved in Section 5. In
Section 6, we prove the two corollaries from above.

Acknowledgements. RB has been partially supported by the EPSRC grant EP/S012907/1 and
LY has been supported by a studentship from the QMUL Faculty of Science and Engineering
Research Support Fund. We also thank an anonymous referee for some valuable comments.

2 A Blow-up Version of the Compactness Theorem

Let us start this section with the precise notions of pointed Gromov–Hausdorff convergence and
pointed orbifold Cheeger–Gromov convergence and a quick overview of the main results from [22,23].

Definition 2.1 (Pointed Gromov–Hausdorff Convergence). A pointed map f ∶ (X,p) → (Y, q)
between two metric spaces (X,dX , p), (Y,dY , q) is an ε-pointed Gromov–Hausdorff approximation
(ε-PGHA) if it is almost an isometry and almost onto in the following sense

i) ∣dX(x1, x2) − dY (f(x1), f(x2))∣ ≤ ε, for all x1, x2 ∈ BdX(p,1/ε),
ii) for all y ∈ BdY (q,1/ε) there exists x ∈ BdX(p,1/ε) with dY (y, f(x)) ≤ ε.

We say (Xi, pi)→ (Y, q) as i→∞ in the pointed Gromov–Hausdorff sense if

dpGH((Xi, pi), (Y, q)) ∶= inf{ε > 0 ∶ ∃ ε-pGHA f1 ∶ (Xi, pi)→ (Y, q) and f2 ∶ (Y, q) → (Xi, pi)}
→ 0 (i→∞).

As explained in [22], Lemma 2.1 and Lemma 2.2, under the normalisation (1.2), one obtains the
following growth condition for the potential f from the basepoint p,

1

4
(d(x, p) − 5n)2+ ≤ f(x) − µ(g) ≤ 1

4
(d(x, p) +√2n)2.

This in turn implies the volume growth estimate

Volg(Bg(p, r)) ≤ V0rn, ∀r > 0 (2.1)
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with V0 being a constant depending only on the dimension of the shrinker. Finally, similar to
Perelman’s non-collapsing result, under the entropy bound µ(g) ≥ µ > −∞ one obtains for every r
the existence of v0 = v0(r,n,µ) such that

Volg(Bg(q, δ)) ≥ v0δn, (2.2)

for every ball Bg(q, δ) ⊂ Bg(p, r), 0 < δ ≤ 1, see Lemma 2.3 in [22]. Pointed Gromov–Hausdorff
convergence of a sequence of Ricci shrinkers (Mi, gi, fi, pi) with entropy µ(gi) ≥ µ > −∞ to a com-
plete metric space (M∞, d∞, p∞) then follows directly from (2.1)–(2.2) and Gromov’s compactness
theorem, see Theorem 2.4 in [22] for details.

The main work of [22, 23] then goes into improving the regularity of the convergence and of the
limit metric space M∞.

Definition 2.2 (Orbifold Ricci Shrinker). A complete metric space M∞ is called an orbifold Ricci
shrinker if it is a smooth Ricci shrinker away from a locally finite set Q of singular points and
at every q ∈ Q, M∞ is modelled on R

n/Γ for a finite group Γ ⊂ O(n). Moreover, there exists an

associated covering R
n ⊃ B(0, ̺) ∖ {0} π→ U ∖ {q} of some neighbourhood U ⊂ M∞ of q such that

(π∗g∞, π∗f∞) can be extended smoothly to a gradient shrinker over the origin.

Definition 2.3 (Pointed Orbifold Cheeger–Gromov Convergence). A sequence of gradient shrinkers
(Mn

i , gi, fi, pi) converges to an orbifold gradient shrinker (Mn
∞, g∞, f∞, p∞) in the pointed orbifold

Cheeger–Gromov sense if the following properties hold:

1. There exist a locally finite set Q ⊂M∞, an exhaustion ofM∞∖Q by open sets Ui, and smooth
embeddings ϕi ∶ Ui → Mi such that (ϕ∗i gi, ϕ∗i fi) converges to (g∞, f∞) in the C∞loc-sense on
M∞ ∖Q.

2. Each of the above maps ϕi can be extended to an ε-pGHA which yield a convergent sequence
(Mi, di, pi)→ (M∞, d∞, p∞) in the pointed Gromov–Hausdorff sense.

Pointed orbifold Cheeger–Gromov convergence to a Ricci-flat orbifold is defined analogously.

The main result of [22] improves the Gromov–Hausdorff convergence to orbifold Cheeger–Gromov
convergence under the energy bound (1.3) and the main result of [23] shows that the energy bound
assumption is in fact always satisfied in dimension n = 4, see Theorem 1.1 from the introduction. It
turns out that the set Q is the same in the two above definitions, meaning that the convergence is
bad (or non-smooth) around a point q ∈M∞ if and only ifM∞ is non-smooth at q. We can therefore
use the expressions that q is a singular point or a point of bad convergence interchangeably. A key
ingredient in the proof of this improved convergence result is an ε-regularity theorem that follows
from local Sobolev constant bounds via a Moser iteration argument. We recall these two results
here as we will need them later.

Lemma 2.4 (Local Sobolev constant bounds, Lemma 3.2 in [22]). There exist CS(r) < ∞ and
δ0(r) > 0 depending on r, n and µ, such that for every gradient shrinker with normalised weighted
volume and µ(g) ≥ µ > −∞, and for every ball Bg(x, δ) ⊂ Bg(p, r) with 0 < δ ≤ δ0(r) and p ∶=
argminM f , we have

∣∣ϕ∣∣L2∗ < CS(r) ∣∣∇ϕ∣∣L2 ,

for all functions ϕ ∈ C1
c (Bg(x, δ)), where 2∗ = 2n

n−2 .
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Lemma 2.5 (ε-Regularity, Lemma 3.3 in [22]). There exist εreg(r), δ0(r) > 0, and Kℓ(r) <∞, all
depending on r, n and µ, such that for every gradient shrinker with normalised weighted volume
and µ(g) ≥ µ > −∞, and for every ball Bg(x, δ) ⊂ Bg(p, r) with 0 < δ ≤ δ0(r) and p ∶= argminM f ,
we have the implication

∣∣Rmg ∣∣Ln/2(Bg(x,δ)) < εreg(r)Ô⇒ sup
Bg(x,δ/4)

∣∇ℓRmg∣g ≤
Kℓ(r)
δ2+ℓ

∣∣Rmg ∣∣Ln/2(Bg(x,δ)) .

Under the energy bound (1.3), for a large r and a small δ > 0, there can only be finitely many
disjoint δ-balls in Bg(p, r) that contain energy more than εreg(r). In light of Lemma 2.5, away
from these balls we get C∞ estimates for the curvatures and hence smooth convergence. Hence the
singular points q ∈ Q are exactly characterised by the condition

∃qi ∈Mi with qi → q,∃δi → 0 such that ∣∣Rmgi ∣∣Ln/2(Bgi
(qi,δi)) ≥ εreg(r). (2.3)

Our first new result is a blow-up version of Theorem 1.1 stating that if we rescale the metrics of
our sequence of Ricci shrinkers with λ−2i (where λi → 0) we still obtain orbifold Cheeger–Gromov
convergence. In order to allow us to apply this result flexibly in different situations below, we prove
a rather general theorem which does not yet make a statement about whether or not the limit is
flat and whether or not it has singular points – properties that will in particular depend on the
precise choice of q and the scaling factors λi.

Theorem 2.6 (Blow-up Version of Theorem 1.1). Let (Mi, gi, fi, pi) be a sequence of n-dimensional
gradient Ricci shrinkers with uniformly bounded entropy µ (gi) ≥ µ > −∞ and, if n > 4, locally
bounded energy as in Theorem 1.1. Let q ∈ M∞ and let Mi ∋ qi → q and λi → 0. Then the
rescaled sequence (Mi, g̃i = λ−2i gi, qi) subconverges in the pointed (orbifold) Cheeger–Gromov sense
to a complete, non-compact, Ricci-flat manifold or orbifold with isolated singularities (V,h, q∞)
which has bounded Ln/2 Riemannian curvature and is ALE of order n − 1 in general and ALE of
order n if either n = 4 or (V,h) is Kähler. Finally, the singular points of V are characterised by
(2.3) for the rescaled metrics g̃i.

Proof. The proof consists of checking that after rescaling we can essentially still follow the same
arguments as in the original proof of Theorem 1.1 to obtain orbifold Cheeger–Gromov convergence
and in checking the claimed properties of the limiting manifold or orbifold.

First, choose some r ≥ 2 such that q ∈ Bg∞(p∞, r). By picking i sufficiently large, we may assume
that qi ∈ Bgi(pi, r + 1) and thus Bgi(qi,1) ⊂ Bgi(pi, r + 2) ⊂ Bgi(pi,2r), which by (2.1) implies that
Volgi Bgi(qi,1) ≤ Cn(2r)n independently of i. Clearly, these unit balls Bgi(qi,1) with respect to the
original metrics correspond to the larger and larger balls Bg̃i(qi, λ−1i ) with respect to the rescaled
metrics. Using also (2.2), we therefore see that there are constants v1, V1 depending only on r, n
and µ, such that

v1s
n ≤ Volg̃i Bg̃i(qi, s) ≤ V1sn (2.4)

whenever i is sufficiently large so that s < λ−1i . In particular, this controls the number of small
balls that can be placed disjointly in a large ball and thus implies pointed Gromov–Hausdorff
convergence to a complete length space by Gromov’s compactness theorem. Clearly this limit
space is non-compact.
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Next, we note that Lemma 2.5 still holds for the rescaled metrics g̃i and for balls Bg̃i(x, δ) such
that 0 < λiδ ≤ δ0(r). This is obtained by scaling g̃i, applying the ε-regularity lemma for shrinkers,
and then scaling back. More precisely, we have

∣∣Rmg̃i ∣∣Ln/2(Bg̃i
(x,δ)) < εreg(r)⇐⇒ ∣∣Rmgi ∣∣Ln/2(Bgi

(x,λiδ)) < εreg(r)
Ô⇒ sup

Bgi
(x,λiδ/4)

∣∇ℓRmgi ∣gi ≤
Kℓ(r)
(λiδ)2+ℓ ∣∣Rmgi ∣∣Ln/2(Bgi

(x,λiδ))

⇐⇒ sup
Bg̃i
(x,δ/4)

∣∇ℓRmg̃i ∣g̃i ≤
Kℓ(r)
δ2+ℓ

∣∣Rmg̃i ∣∣Ln/2(Bg̃i
(x,δ)) .

(2.5)

So for the rescaled metrics we have the exact same implication as in Lemma 2.5, the advantage
being that we can potentially work with much larger balls, a fact that we will use in the neck
theorem below to conclude flatness of the limit.

Endowed with such an ε-regularity result, we can conclude exactly as in [22] to improve the regu-
larity of the limit to an orbifold (V,h) with isolated singularities and the convergence to pointed
orbifold Cheeger–Gromov convergence. We refer the reader to Section 3 of [22] and the associated
references for more details. In the exact same way as described above, the orbifold points of V are
exactly the points where the convergence is bad and these points are characterised by an energy
concentration as in (2.3) for the rescaled metrics g̃i. As the bounded L

n/2 Riemannian curvature of
the limit (V,h) is an obvious consequence of the local energy bound (1.3), it only remains to show
that the limit is Ricci-flat and satisfies the ALE condition.

To prove the former property, note that the rescaling changes (1.1) to

Ricg̃i +∇2
g̃i
fi = λ

2
i

2
g̃i.

Hence, away from the points of bad convergence, (V,h) satisfies the steady soliton equation

Rich +∇2f = 0
for some function f ∶ V → R. Since any Ricci shrinker (Mi, gi, fi, pi) satisfies

0 ≤ Rgi(x) ≤ fi(x) − µ(gi) ≤ 1

4
(dgi(x, pi) +

√
2n)2,

see for example (2.11) in [22], and the rescaled metrics satisfy Rg̃i = λ2iRgi , we also conclude that
(V,h) is scalar-flat. If (V,h) is a smooth manifold (and thus a smooth steady soliton), then it
satisfies

Rh =∆Rh + 2 ∣Rich∣2
and we can directly conclude Ricci-flatness from scalar-flatness. This argument does not directly
go through if there are orbifold singularities, but we can work instead with the evolution equation
for the scalar curvature on the shrinkers (Mi, gi, fi), namely

Rgi + ⟨∇fi,∇Rgi⟩ =∆Rgi + 2 ∣Ricgi ∣2gi
and pass to a limit after rescaling to conclude that the limit is Ricci-flat.

In the final step, we want to apply the following theorem which will yield the desired ALE condition.
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Theorem 2.7 (Theorem 1.5 in [9]). Let (V n, h) with n ≥ 4 be a Ricci-flat manifold or a Ricci-flat
orbifold with isolated singularities such that for some x ∈M and v > 0, we have

Volh(Bh(x, s)) ≥ vsn, ∀s > 0
as well as

∫
V
∣Rmh∣n/2h

dVh ≤ C <∞.
Then (V n, h) is ALE of order n − 1. If n = 4 or (V n, h) is Kähler then it is ALE of order n.

In order to apply this theorem, we pick x ∈ V to be the limit q∞ of the points qi (whether this is a
point of good or bad convergence does not matter). Then note that the volume growth assumption
follows by passing to a limit in (2.4) while the integral condition follows by

∫
V
∣Rmh∣n/2h

dVh = lim
s→∞∫Bh(q∞,s)

∣Rmh∣n/2h
dVh ≤ lim

s→∞
lim inf
i→∞ ∫Bg̃i(qi,s)

∣Rmg̃i ∣n/2g̃i
dVg̃i

= lim
s→∞

lim inf
i→∞ ∫Bgi(qi,λis)

∣Rmgi ∣n/2gi
dVgi ≤ ∫

Bgi(qi,1)

∣Rmgi ∣n/2gi
dVgi

≤ ∫
Bgi(pi,2r)

∣Rmgi ∣n/2gi
dVgi ≤ E(2r) <∞.

On the second line, we used that for any s we may take i large enough so that s < λ−1i and on the
last line we used the uniform local energy bound (1.3) which we assumed for n > 4 and which, as
mentioned previously, is always automatically satisfied for n = 4 by the work in [23]. This completes
the proof of Theorem 2.6.

We also recall the following sufficient condition for flatness of the limit.

Proposition 2.8 (Bando’s gap result, [7,8]). There exists εgap(n) > 0 such that the following holds.
Let (V n, h) be a limit orbifold arising in Theorem 2.6 with

∫
V
∣Rmh∣n/2h

dVh < εgap. (2.6)

Then (V,h) is flat, i.e. Rmh ≡ 0 in the regular part of V .

3 Small Annuli in Ricci Shrinkers and a Neck Theorem

Let Ās1,s2(q) denote the closed geodesic annulus centered at some point q ∈M . That is,

Ās1,s2(q) ∶= Bg(q, s2) ∖Bg(q, s1).
Furthermore, let As1,s2(q) denote a connected component of Ās1,s2(q) such that

As1,s2(q) ∩ ∂Bg(q, s2) ≠ ∅. (3.1)

The first lemma of this section, which is important for the neck theorem below, shows that for
sufficiently small annuli Ās1,s2(q) there exists only one such component As1,s2(q). We will also
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prove a diameter bound for this component. These results are Ricci shrinker versions of results
from [1, 3] for manifolds with pointwise Ricci bounds. We only consider annuli lying fully inside
Bg(p,2r) for some fixed r ≥ 2 and, in order to guarantee that we can later apply our results to our
sequence of shrinkers, we make sure that all constants only depend on this r as well as possibly on
n and µ.

The key tool to prove these results is the Bakry–Émery volume comparison theorem (Theorem 1.2
in [35]) which implies that for a gradient Ricci shrinker there exists a = a(r,n) such that

Volf(Bg(q, σ2))
Volf(Bg(q, σ1)) ≤ a(r,n)

σn2
σn1
. (3.2)

whenever 0 < σ1 ≤ σ2 ≤ 1 and q ∈ Bg(p, r+1). Here, p ∶= argminM f is the basepoint of the shrinker,
r ≥ 2, and Volf(Ω) ∶= ∫Ω e−fdV . The constant a can in fact simply be chosen to be a = eb where
b is a bound on ∣∇f ∣ on the ball Bg(p,2r). Such a bound follows from the auxiliary equation for
Ricci shrinkers

Rg + ∣∇f ∣2g − f = −µ(g).
which, together with Rg ≥ 0 yields

0 ≤ ∣∇f ∣2g ≤ Rg + ∣∇f ∣2g = f − µ(g) ≤ 1

4
(d(x, p) +√2n)2. (3.3)

So we can for example pick a(r,n) = exp(r+√n). There is also a corresponding version of (3.2) for
annuli, obtained in the proof of Theorem 1.2 in [35]. The version we will use below can be written
as

Volf(Āσ0,σ2
(q))

Volf(Āσ0,σ1
(q)) ≤ a(r,n)

σn2 − σn0
σn1 − σn0

, (3.4)

whenever 0 < σ0 < σ1 ≤ σ2 ≤ 1 and q ∈ Bg(p, r + 1).
Lemma 3.1 (Small Annuli in Ricci Shrinkers). Given n ≥ 4, r ≥ 2 and µ > −∞, then there exist

constants 0 < ζ0 < 1
3
, and C0 < ∞, such that the following holds: Let (M,g, f) be a complete,

connected n-dimensional gradient Ricci shrinker with entropy bounded below by µ(g) ≥ µ. Let
p ∶= argminM f and q ∈ Bg(p, r + 1). If

s2 ≤ 1
4

and s1 = ζs2 where ζ ≤ ζ0
then the annulus Ās1,s2(q) contains at most one connected component that meets ∂Bg(q, s2) in the
sense of (3.1) and, if such a component exists, any two points in As1,s2(q) ∩ ∂Bg(q, s2) can be
connected by a curve lying in As1,2s2(q) of length C0s2.

Remark 3.2. Obviously any two points in As1,s2(q) ∩ ∂Bg(q, s2) can be connected in M by a
curve of length 2s2 (by passing via q), but the lemma excludes curves getting near q. By a more
careful argument, one can prove an actual intrinsic diameter bound for Ās1,s2(q), but the claimed
property has a simple proof and is sufficient for us.

Proof. Assume for a contradiction that there are at least two such components {Di}. We may
assume that D1 is such that for any i ≠ 1 we have Volf(D1) ≤ Volf(Di) which implies

Volf(Ās1,s2(q)) ≤ 2Volf (⋃
i≠1

Di).
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Now choose x ∈ D1 ∩ ∂Bg(q, s2). Note that any minimising geodesic γ(t) in M from x to some
component Di (with i ≠ 1) has length at most 2s2 and intersects Bg(q, s1) for some t0 ∈ [s2−s1, s2+
s1]. Let A0

u,v(x) be the set of all points on such a geodesic with t ∈ [u, v]. Note the inclusion
relation

⋃
i≠1

Di ⊆ A0
s2−s1,2s2(x). (3.5)

Also, the triangle inequality together with γ(t0) ⊂ Bg(q, s1) yields
A0

s2−s1,s2+s1(x) ⊆ Bg(q,3s1). (3.6)

Combining (3.4)–(3.6), we obtain

Volf(Ās1,s2(q))
Volf(Bg(q,3s1)) ≤

2Volf (⋃i≠1Di)
Volf(Bg(q,3s1))
≤ 2Volf(A0

s2−s1,2s2(x))
Volf(A0

s2−s1,s2+s1(x))
≤ 2a(n, r) (2ζ−1)n − (ζ−1 − 1)n(ζ−1 + 1)n − (ζ−1 − 1)n
≤ C0ζ

−1 +C1

for constants C0 and C1 depending only on n and a(r,n). On the other hand, we also have

Volf(Ās1,s2(q))
Volf(Bg(q,3s1)) ≥

Volf(Bg(q, s2))
Volf(Bg(q,3s1)) − 1 ≥

v0s
n
2

3nV0sn1
− 1 = v0

3nV0
ζ−n − 1,

where V0 and v0 are the constants from (2.1)–(2.2). Clearly this yields a contradiction when ζ0 is
sufficiently small (and hence ζ−1 ≥ ζ−10 sufficiently large), showing that there can be at most one
connected component As1,s2(q) that meets ∂Bg(q, s2).
It remains to prove the claimed diameter bound. In order to do so, pick a maximal family of
points xj ∈ As1,s2(q) ∩ ∂Bg(q, s2) such that Bj ∶= Bg(xj , ξs2) are disjoint for ξ ∶= 1

2
(1 − ζ) and

set B̂j ∶= Bg(xj ,2ξs2). Clearly if B̂j ∩ B̂k ≠ ∅, then xj and xk can be joined by a curve in
Ās1,2s2(q) of length at most 4ξs2. This uses in particular that all B̂j are disjoint from Bg(q, s1)
by definition of ξ. By maximality, {B̂j} cover As1,s2(q) ∩ ∂Bg(q, s2) and therefore any two points
in As1,s2(q) ∩ ∂Bg(q, s2) can be joined by a curve in Ās1,2s2(q) of length as most 4ξs2 ⋅#{xj}. It
remains to estimate the number of points in the family {xj}.
Note the inclusion

Bj = Bg(xj , ξs2) ⊆ Bg(q, (1 + ξ)s2) ⊆ Bg(xj , (2 + ξ)s2).
which by (3.2) yields

Volf(Bg(q, (1 + ξ)s2))
Volf Bj

≤ Volf(Bg(xj , (2 + ξ)s2))
Volf Bj

≤ a(n, r)(2 + ξ
ξ
)n

for each j. In particular, the number of disjoint Bj lying in Bg(q, (1 + ξ)s2) is bounded by

a(n, r)(2+ξ
ξ
)n.
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Combining with the above, we see that any two points in As1,s2(q) ∩ ∂Bg(q, s2) can be joined by

a curve in Ās1,2s2(q) of length as most 4ξa(n, r)(2+ξ
ξ
)n ⋅ s2. An explicit constant C0 can easily be

obtained from 0 < ζ < 1
3
which yields 1

3
< ξ < 1

2
.

Corollary 3.3 (One End). Any limit manifold or orbifold (V,h) obtained in the blow-up version
of the compactness theorem, Theorem 2.6, has one end.

Proof. For sufficiently small λi, the annuli Āλi,
√
λi
(qi) satisfy the assumptions of Lemma 3.1 and

therefore have only one connected component meeting the outer boundary. This immediately
implies that (V,h) has only one end.

In the remainder of this section, we prove a so-called neck theorem. Generally, in bubbling results
one usually encounters three different types of regions: regions where energy concentrates (and
bubbles form), regions where there is no such concentration (and the convergence is smooth), and
finally the intermediate or neck regions. The following result about these intermediate regions is a
Ricci shrinker version of Theorem 1.8 in [3] for manifolds with pointwise Ricci bounds.

Theorem 3.4 (Neck Theorem for Ricci Shrinkers). Let n ≥ 4, r ≥ 2, µ > −∞, k ∈ N and ε > 0 be
given constants. Then there exist εneck > 0, σ1 > 0 and γ <∞ such that the following holds.

Let (M,g, f) be a complete n-dimensional gradient Ricci shrinker such that µ(g) ≥ µ and the
local energy bounds (1.3) are satisfied if n > 4. Take q ∈ Bg(p, r + 1) where p ∶= argminM f . Let
As1,s2(q) ⊂M be the unique connected component of the geodesic annulus Ās1,s2(q) which satisfies
the condition As1,s2(q) ∩ ∂Bg(q, s2) ≠ ∅ (according to Lemma 3.1) and with

s2 ≤ σ1, s1 ≤ εnecks2. (3.7)

Finally, assume that

∫
As1,s2

(q)
∣Rmg ∣n/2g

dVg ≤ εneck. (3.8)

Then there is some Γ ⊂ O(n) acting freely on Sn−1 with ∣Γ∣ ≤ γ and an ε-quasi-isometry1 ψ with

A(ε−1/2
neck
+ε)s1,(ε1/2neck

−ε)s2
(q) ⊂ ψ(C

ε
−1/2
neck

s1,ε
1/2
neck

s2
(Sn−1/Γ)) ⊂ A(ε−1/2

neck
−ε)s1,(ε1/2neck

+ε)s2
(q) (3.9)

such that for all C 1

2
s,s(Sn−1/Γ) ⊂ C

ε
−1/2
neck

s1,ε
1/2
neck

s2
(Sn−1/Γ) in local coordinates one has

∣(ψ∗(s−2g))ij − δij ∣Ck ≤ ε. (3.10)

Proof. The proof is in two steps. We first prove the following claim:

Claim 3.5. There exist εneck, σ1, γ such that for each s as in the statement of the theorem, (3.9)–
(3.10) hold for some ψs ∶ C 1

2
s,s(Sn−1/Γs) → A

ε
−1/2
neck

s1,ε
1/2
neck

s2
(q) where ψs,Γs may a-priori depend on

s.

1We call a map ψ ∶X → Y between metric spaces an ε-quasi-isometry if ∣dX(x1, x2) − dY (ψ(x1),ψ(x2))∣ ≤ ε, for all

x1, x2 ∈X.
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Proof. Assume towards a contradiction that the claim is not true. Then for given n ≥ 4, r ≥ 2,
µ > −∞, k ∈ N and ε > 0 there exist sequences εi → 0, σi → 0 and a family of complete n-dimensional
Ricci shrinkers (Mi, gi, fi) containing annuli Asi

1
,si

2

(qi) satisfying the assumptions of the theorem but

containing some sub-annuli A 1

2
si,si
(qi) (with si ∈ [2ε−1/2i si1, ε

1/2
i si2]) that, after rescaling the metric

by g̃i ∶= s−2i gi, are not ε-close in the Ck topology to an annular portion of any cone C(Sn−1/Γ).
By Theorem 2.6, we can take a pointed orbifold Cheeger–Gromov limit of (Mi, g̃i, fi, qi) converging
to an orbifold (V,h, q∞). By the condition si ∈ [2ε−1/2i si1, ε

1/2
i si2], we obtain for every ℓ ∈ N that for

sufficiently large i we have A 1

2ℓ
si,ℓsi
(qi) ⊂ Asi

1
,si

2

(qi) and therefore

∫
A 1

2ℓ
si,ℓsi

(qi)
∣Rmgi ∣n/2gi

dVgi ≤ εi → 0.

In particular, after rescaling g̃i ∶= s−2i gi, there are no points of bad convergence on the annulus

A
g̃i
(2ℓ)−1, ℓ(qi). Repeating this for larger and larger ℓ, we see that the convergence is smooth away

from q∞, i.e. (V,h) has at most one orbifold point. Moreover, using the argument from (2.5)
applied to larger and larger balls, we obtain that the limit is flat.

Following the proof of Theorem 1.8 in [3], respectively Section 5 of [9] (which we can certainly
do because the Ricci-flatness of the limit gives pointwise Ricci bounds on the annuli Ag̃i

(2ℓ)−1, ℓ(qi)),
we see that therefore the limit (V,h) must be an Euclidean cone, i.e. there exists some Γ ⊂ O(n)
acting freely on Sn−1 such that (V,h) = C(Sn−1/Γ). As the convergence is smooth away from the
origin, we obtain the desired contradiction and hence the claim holds true.

Having obtained ψs and groups Γs, all that remains is to rule out the possible s dependence. This
is the second step of the proof.

Claim 3.6. The subgroup Γs is independent of s and, after slight modifications, some (or all) of
the maps ψs can be combined to yield the map ψ in the statement of the theorem.

Proof. We know there are constants εneck, σ1, γ such that for any s with 2ε
−1/2
neck

s1 ≤ s ≤ ε1/2neck
s2, the

annulus A 1

2
s,s(q) is ε-quasi-isometric and εs−k-close in the Ck sense to an annular region in a cone,

C 1

2
s,s(Sn−1/Γs). Now take ε sufficiently small and, for some fixed s, take s′ very close to s. On its

maximal domain of definition ψ−1s′ ○ψs is a 2ε-quasi-isometry. Therefore Γs is locally constant and
thus independent of s.

Once we know that the cone C(Sn−1/Γ) is fixed, we can let ti ∶= (23)i−1ε1/2neck
s2 and set ψi = ψti .

These maps ψi almost agree after radial scaling and hence, after a further slight modification, can
then be piece-wisely connected to yield the map ψ, precisely following the argument from [3], page
241.

Combining the two claims, the theorem is proved.
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4 Improved Kato Inequality and Energy Estimate in Necks

The main estimate of this section, Theorem 4.5, which is to some extent inspired by work of Bando
and Bando–Kasue–Nakajima on Einstein manifolds [7, 9], will allow us to show that energy does
not concentrate in a neck region during the bubble tree construction.

The following proposition, on which the energy estimate from Theorem 4.5 is based, can be seen
as a purely analytical result, which requires only the uniform local Sobolev constant bounds from
Lemma 2.4.

Proposition 4.1 (Annulus Estimate). Let n ≥ 4, r ≥ 2, µ > −∞ and α > 1 be given constants.
Then there exist εann > 0, σ2 > 0 and C2 <∞ such that the following holds.

Let (M,g, f) be an n-dimensional gradient Ricci shrinker with µ(g) ≥ µ. Take q ∈ Bg(p, r+1) where
p ∶= argminM f and let As1,s2(q) ⊂M be the unique connected component of the geodesic annulus
Ās1,s2(q) which satisfies the condition As1,s2(q)∩∂Bg(q, s2) ≠ ∅ (according to Lemma 3.1) and with

s2 ≤ σ2, s1 ≤ 1
4
s2.

Finally, let u, v be non-negative functions such that ∆fu = ∆u − ⟨∇f,∇u⟩ ≥ −uv and suppose that

v ∈ Ln
2 with

∫
As1,s2

(q)
v

n
2 dVg ≤ εann (4.1)

and u ∈ Lα. Then for γ = n
n−2 , we have

∫
As1,s2

(q)
uαγdVg ≤ C2∫

As1,2s1
(q)∪A 1

2
s2,s2

(q)
uαγdVg.

Proof. The first part of the proof (up to (4.4) below) is related to the first step in a standard Moser
iteration or epsilon regularity argument with some extra work to take care of the ∇f terms coming
from the drift Laplacian.

We will work with a cutoff function 0 ≤ ϕ ≤ 1 with compact support in As1,s2(q) ⊂ Bg(p,2r) which
we will determine more precisely further below. We have

−∫
M
ϕ2uα−1∆udVg = ∫

M
ϕ2∇uα−1∇udVg + ∫

M
∇ϕ2 ⋅ uα−1∇udVg

= 4(α−1)
α2 ∫

M
ϕ2 ∣∇uα/2∣2 dVg + 4

α ∫
M
ϕ∇ϕ ⋅ uα/2∇uα/2dVg

Rearranging this and applying the differential inequality ∆fu =∆u − ⟨∇f,∇u⟩ ≥ −uv, we get

4(α−1)
α2 ∫

M
ϕ2 ∣∇uα/2∣2 dVg ≤ ∫

M
ϕ2uαv dVg − ∫

M
ϕ2uα−1 ⟨∇f,∇u⟩dVg − 4

α ∫
M
ϕ∇ϕ ⋅ uα/2∇uα/2dVg.

Using Young’s inequality, the last term on the right hand side can be estimated by

− 4
α ∫

M
ϕ∇ϕ ⋅ uα/2∇uα/2dVg ≤ 2

α
[α−1

α ∫
M
ϕ2 ∣∇uα/2∣2 dVg + α

α−1 ∫
M
∣∇ϕ∣2 uαdVg].
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Hence, after absorption, we find

2(α−1)
α2 ∫

M
ϕ2 ∣∇uα/2∣2 dVg ≤ ∫

M
ϕ2uαv dVg + 2

α−1 ∫
M
∣∇ϕ∣2 uαdVg − ∫

M
ϕ2uα−1 ⟨∇f,∇u⟩dVg. (4.2)

Let us now estimate the term involving ∇f . Integrating by parts yields

−∫
M
ϕ2uα−1 ⟨∇f,∇u⟩dVg = ∫

M
uα ⟨∇ϕ2,∇f⟩ dVg + ∫

M
ϕ2u ⟨∇uα−1,∇f⟩dVg + ∫

M
ϕ2uα∆f dVg

= ∫
M
uα ⟨∇ϕ2,∇f⟩ dVg + (α − 1)∫

M
ϕ2uα−1 ⟨∇f,∇u⟩dVg + ∫

M
ϕ2uα∆f dVg

and thus after subtracting the second term on the right hand side

−α∫
M
ϕ2uα−1 ⟨∇f,∇u⟩dVg = ∫

M
uα ⟨∇ϕ2,∇f⟩dVg +∫

M
ϕ2uα∆f dVg.

We can therefore estimate, using Young’s inequality,

−∫
M
ϕ2uα−1 ⟨∇f,∇u⟩dVg = 1

α ∫
M
uα( ⟨∇ϕ2,∇f⟩ +ϕ2∆f)dVg

= 1
α ∫

M
uα(2ϕ ⟨∇ϕ,∇f⟩ +ϕ2∆f)dVg

≤ 1
α ∫

M
∣∇ϕ∣2 uαdVg + 1

α ∫
M
ϕ2uα( ∣∇f ∣2 +∆f)dVg

≤ 1
α ∫

M
∣∇ϕ∣2 uαdVg + C(r)

α ∫
M
ϕ2uαdVg,

where C(r) is a bound on ∣∇f ∣2 +∆f inside Bg(p,2r). (Such a bound clearly exists: for ∣∇f ∣2 we
have derived it in (3.3) and, using the trace of the shrinker equation (1.1) and the fact that Rg ≥ 0,
we also have ∆f ≤ n

2
everywhere.) Plugging this last estimate into (4.2), we obtain

∫
M
ϕ2 ∣∇uα/2∣2 dVg ≤ α2

2(α−1)[∫
M
ϕ2uαv dVg + ( 2

α−1 + 1
α
)∫

M
∣∇ϕ∣2 uαdVg + C(r)

α ∫
M
ϕ2uαdVg]

≤ C ∫
M
ϕ2uαv + ∣∇ϕ∣2 uα +ϕ2uαdVg,

where
C = C(n, r,µ,α) = α2

2(α−1) max{1, 2
α−1 + 1

α
,
C(r)
α
}. (4.3)

Next, combining this estimate with the uniform Sobolev inequality from Lemma 2.4 (which we can
apply if σ2 ≤ δ0(2r)) and the smallness assumption (4.1), and noting that 2∗ = 2γ, we conclude

(∫
M
(ϕuα/2)2γdVg)

1

γ ≤ CS ∫
M
∣∇(ϕuα/2)∣2 dVg

≤ CS ∫
M
∣∇ϕ∣2 uα + ϕ2 ∣∇uα/2∣2 dVg

≤ CS(C + 1)∫
M
ϕ2uαv + ∣∇ϕ∣2 uα + ϕ2uαdVg

≤ CS(C + 1)[ (∫
M
v

n
2 dVg)

2

n (∫
M
ϕ2γuαγdVg)

1

γ +∫
M
ϕ2uα + ∣∇ϕ∣2 uαdVg]

≤ CS(C + 1)[ε2/nann (∫
M
(ϕuα/2)2γdVg)

1

γ + ∫
M
ϕ2uα + ∣∇ϕ∣2 uαdVg].
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We can absorb the first term on the last line by taking εann small enough. For example, letting

ε
2/n
ann ≤ 1

2CS(C+1) , we obtain

(∫
M
(ϕuα/2)2γdVg)

1

γ ≤ 2CS(C + 1)∫
M
ϕ2uα + ∣∇ϕ∣2 uαdVg. (4.4)

Now, choose 0 ≤ ϕ ≤ 1 so that ϕ = 1 on A2s1,
1

2
s2
(q), ϕ = 0 on M ∖As1,s2 (q), and

∣∇ϕ∣ ≤ ⎧⎪⎪⎨⎪⎪⎩
C′

s1
on As1,2s1(q)

C′

s2
on A 1

2
s2,s2
(q) (4.5)

for some universal constant C ′ <∞. Using (4.4), we get

(∫
As1,s2

(q)
uαγdVg)

1

γ ≤ (∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

+ (∫
A

2s1,
1
2
s2
(q)
(uα/2)2γdVg)

1

γ

≤ (∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

+ (∫
M
(ϕuα/2)2γdVg)

1

γ

≤ (∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

+ 2CS(C + 1)∫
M
ϕ2uα + ∣∇ϕ∣2 uαdVg.

Hölder’s inequality yields

∫
M
ϕ2uαdVg ≤ Vol 2n (As1,s2(q)) ⋅ (∫

As1,s2
(q)
uαγdVg)

1

γ

Hence, if σ2 is chosen sufficiently small such that Vol
2

n (As1,s2(q)) ≤ 1
4CS(C+1) – which can be done

due to the uniform volume growth estimate (2.1) – then this term can be absorbed, leading to

(∫
As1,s2

(q)
uαγdVg)

1

γ ≤ 2(∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

+ 4CS(C + 1)∫
M
∣∇ϕ∣2 uαdVg.

Finally, applying Hölder’s inequality also to the last term, we find for some C ′′ <∞

∫
M
∣∇ϕ∣2 uαdVg ≤ (∫

supp(∇ϕ)
∣∇ϕ∣n dVg)

2

n (∫
supp(∇ϕ)

uαγdVg)
1

γ ≤ C ′′(∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

.

Here, we have used the volume growth estimate (2.1) and the assumption (4.5) for the last estimate.
We therefore conclude

(∫
As1,s2

(q)
uαγdVg)

1

γ ≤ (2 + 4CS(C + 1)C ′′)(∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
uαγdVg)

1

γ

and hence the proposition is proved with C2 = (2 + 4CS(C + 1)C ′′)γ .

16



Endowed with this proposition, we would now like to show that for small annuli As1,s2(q) (under
assumptions similar to the ones in the neck theorem), the energy of the entire annulus can be
estimated by the energy of the two dyadic annuli As1,2s1(q) and A 1

2
s2,s2
(q). It is tempting to use

the equation
∆f ∣Rm∣ ≥ −C ∣Rm∣2 , (4.6)

and try to apply Proposition 4.1 to u = ∣Rm∣, v = C ∣Rm∣ with αγ = n
2
, but unfortunately, this

does not work: For example if n = 4, we have γ = n
n−2 = 2 = n

2
, so would need to work with α = 1,

but the proposition crucially needs α > 1 and, as can be clearly seen from (4.3), the constant C2

degenerates as α ↘ 1. It is therefore necessary to improve the differential inequality (4.6), which
we will do in the following. A key ingredient for this is the following improved Kato inequality for
gradient Ricci shrinkers.

Lemma 4.2 (Improved Kato Inequality). There exists a constant δK = δK(n) > 0 such that the
following holds. If (M,g, f) is an n-dimensional oriented gradient Ricci shrinker, then

(1 + δK) ∣∇ ∣Rm∣∣2 ≤ ∣∇Rm∣2 .
Proof. One can deduce an improved Kato inequality from an explicit calculation similar to the
work of Bando–Kasue–Nakajima [9] in the Einstein case. Here however, we will rely on a general
framework, due to Branson [11] (see also Calderbank–Gauduchon–Herzlich [14] for a similar result
with a quite different proof), for determining when an improved Kato inequality holds on an
oriented manifold. Specifically, in order to apply Theorem 4 in [11] we need to consider a first
order operator D and a tensor bundle T with sections ψ. Then, if D∗D is elliptic when acting
on T and Dψ = 0 we will have an improved Kato inequality for ψ away from its zero set. Such
conditions are typically satisfied for a curvature tensor because of the Bianchi identites and some
extra structure, which in our case is the shrinker equation.

Branson’s framework requires one to work with an operator D which is the sum of generalised
gradients (also called Stein–Weiss operators), two examples of which are the exterior derivative d
and its adjoint d∗ acting on differential forms, see [31]. Viewing Rm as a vector bundle valued
2-form in Ω2 (M,End (TM)) and taking d to be the exterior covariant derivative, we note that
dRm = 0 by the second Bianchi identity.

Instead of d∗, we would like to work with d∗f = −divf = −ef div(e−f ⋅), the adjoint of d with respect to

e−fdVg. This is the natural adjoint to work with in the shrinker setting, but it is not immediately
clear if it is a Stein–Weiss operator. However we can use that forms are linear with respect to
smooth functions which gives

divf Rm (⋅) = ef div (e−fRm (⋅, ⋅)) = ef div (Rm (e−f ⋅, ⋅)) .
Thus we are actually dealing with div, or equivalently d∗, which we know is Stein–Weiss, except
now we have applied a transformation to the domain of Rm. However, since this transformation
is confromal the new domain is isomorphic to TM . This is enough for our purposes, since being
Stein–Weiss is an algebraic property. Using the second Bianchi identity, the shrinker quation (1.1),
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and the commutator rule we can compute the following in coordinates:

divRm = ∇pRmijℓp

= ∇jRiciℓ −∇iRicjℓ

= ∇j(12giℓ −∇i∇ℓf) −∇i(12gjℓ −∇j∇ℓf)
= −∇j∇i∇ℓf +∇i∇j∇ℓf

= Rmijℓp∇pf.

(4.7)

This is equivalent to d∗fRm = 0.
With all of this in mind, we take D = d + d∗f and have DRm = 0. This also gives D∗D = (d + d∗f)2 =
∆H

f where ∆H
f is the f-Hodge Laplacian, which is certainly elliptic. Therefore we can apply Theorem

4 in [11] to get the desired improved Kato inequality away from the set of points where Rm = 0.
However, such a set is empty on a non-trivial shrinker. This completes the proof.

To be precise, in dimension n = 4, we need to split 2-forms into their self-dual and anti-self-dual parts
in order to obtain Stein–Weiss operators d± and (d∗f)±, see Branson’s work in [10] for details.

As a corollary, we obtain the following improvement of (4.6).

Corollary 4.3 (Improved Differential Inequality for the Riemann Tensor on a Ricci Shrinker).
There exists a constant CK = CK(n) <∞ such that for every n-dimensional oriented gradient Ricci
shrinker (M,g, f) and δK(n) from the improved Kato inequality, we have

∆f ∣Rm∣1−δK ≥ −CK ∣Rm∣2−δK , (4.8)

where ∆fu =∆u − ⟨∇f,∇u⟩ denotes the drift Laplacian on (M,g, f).
Proof. The proof is in two steps. We first show the following shrinker version of the evolution
equation of the Riemann tensor along the Ricci flow.

Claim 4.4. The Riemann tensor on a gradient Ricci shrinker (M,g, f) satisfies the following
equation

∆fRm = Rm +Q(Rm),
where Q(Rm) is a quadratic expression in Rm.

Proof. In the argument below, the quadratic expression Q(Rm) may change from line to line.
Working in coordinates, we first note that using the commutator rule, the second Bianchi identity,
and (4.7) we have

∇p∇pRmijkℓ = −∇p∇kRmijℓp −∇p∇ℓRmijpk

= −∇k∇pRmijℓp −∇ℓ∇pRmijpk +Q(Rm)
= ∇kRmjiℓp∇pf +∇ℓRmijkp∇pf +Rmjiℓp∇k∇pf +Rmijkp∇ℓ∇pf +Q(Rm).

(4.9)
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Using the second Bianchi identity for the terms involving first derivatives of the Riemann tensor
yields (∇kRmjiℓp + ∇ℓRmijkp)∇pf = ∇pRmijkℓ∇pf . The terms involving second derivatives of the
shrinker potential are handled using the shrinker equation (1.1) one last time:

Rmjiℓp∇k∇pf +Rmijkp∇ℓ∇pf = Rmjiℓp(12gkp −Rickp) +Rmijkp(12gℓp −Ricℓp)
= Rmijkℓ +Q(Rm).

Putting everything together, the claim follows.

Using the identity ∇ ∣Rm∣ = ∣Rm∣−1 ⟨∇Rm,Rm⟩ and the improved Kato inequality

∆f ∣Rm∣1−δK = (1 − δK)∇ ⋅ (⟨∇Rm,Rm⟩ ∣Rm∣−1−δK ) − (1 − δK) ⟨⟨∇f,∇Rm⟩ ,Rm⟩ ∣Rm∣−1−δK
= (1 − δK) ⟨∆Rm,Rm⟩ ∣Rm∣−1−δK − (1 − δK) ⟨⟨∇f,∇Rm⟩ ,Rm⟩ ∣Rm∣−1−δK
+ (1 − δK) ∣∇Rm∣2 ∣Rm∣−1−δK − (1 − δK)(1 + δK) ⟨∇Rm,Rm⟩∇ ∣Rm∣ ∣Rm∣−2−δK
≥ (1 − δK) ⟨∆fRm,Rm⟩ ∣Rm∣−1−δK .

Thus, using Claim 4.4 as well as the fact that Q(Rm) ≥ −C̄ ∣Rm∣2 for some constant C̄, we find

∆f ∣Rm∣1−δK ≥ (1 − δK) ⟨Rm +Q(Rm),Rm⟩ ∣Rm∣−1−δK
= (1 − δK) ∣Rm∣1−δK + (1 − δK) ⟨Q(Rm),Rm⟩ ∣Rm∣−1−δK
≥ −(1 − δK)C̄ ∣Rm∣2−δK

Hence the corollary follows by setting CK ∶= (1 − δK)C̄.

We can now combine this improved differential inequality with Proposition 4.1 to obtain an energy
estimate in neck regions for oriented gradient shrinkers as desired. This is the main result of this
section.

Theorem 4.5 (Energy Estimate in Necks for Ricci Shrinkers). Given n ≥ 4, r ≥ 2, and µ > −∞,
there exist εee > 0, σ3 > 0 and C3 <∞ such that the following holds.

Let (M,g, f) be an n-dimensional oriented gradient Ricci shrinker with µ(g) ≥ µ. Take q ∈ Bg(p, r+
1) where p ∶= argminM f and let As1,s2(q) ⊂M be the unique connected component of the geodesic
annulus Ās1,s2(q) which satisfies the condition As1,s2(q)∩∂Bg(q, s2) ≠ ∅ (according to Lemma 3.1)
and with

s2 ≤ σ3, s1 ≤ 1
4
s2. (4.10)

Finally, assume that

∫
As1,s2

(q)
∣Rmg ∣n/2g

dVg ≤ εee. (4.11)

Then we have

∫
As1,s2

(q)
∣Rmg ∣n/2g

dVg ≤ C3∫
As1,2s1

(q)∪A 1
2
s2,s2

(q)
∣Rmg ∣n/2g

dVg.
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Proof. We set u ∶= ∣Rm∣1−δK and v ∶= CK ∣Rm∣, where δK and CK are from Corollary 4.3. Then

(4.8) is equivalent to ∆fu ≥ −uv. Letting σ3 = σ2 and εee = C−n/2K
εann (with σ2 and εann given by

Proposition 4.1), we have

∫
As1,s2

(q)
v

n
2 dVg ≤ Cn/2

K
εee ≤ εann

and moreover for α ∶= n−2
2(1−δK) > 1 the fact that ∣Rm∣ ∈ Ln

2 (and therefore by Hölder’s inequality

∣Rm∣ ∈ Ln−2
2 ) shows that u ∈ Lα. We can therefore apply Proposition 4.1 which yields the claimed

estimate as uαγ = ∣Rm∣n/2 with C3 = C2(α = n−2
2(1−δK)).

5 Construction of the Bubble Tree

It is finally time to construct the bubble tree and prove Theorem 1.2. So let n ≥ 4 and let (Mi, gi, fi)
be a sequence of n-dimensional oriented gradient Ricci shrinkers with entropy uniformly bounded
below µ(gi) ≥ µ > −∞ and basepoints pi = argminM fi. If n > 4, then additionally assume (1.3) –
recall that for n = 4 this is always satisfied automatically. Finally, we also fix a small ε > 0, k ∈ N,
and r ≥ 2 such that Q ∩ ∂Bg∞(p∞, r) = ∅ and let εneck, σ1 and γ be the corresponding constants
from Theorem 3.4.

By the arguments from Section 2 and in particular (2.3), we know that for each qℓ ∈ Qr there are
Mi ∋ qℓi → qℓ such that the convergence of Bgi(pi, r) ∖ ⋃ℓBgi(qℓi , δ) is smooth for any sufficiently
small δ << δ0. In particular, we obtain

lim
δ→0

lim
i→∞∫Bgi

(pi,r)∖⋃ℓBgi
(qℓ

i
,δ)
∣Rmgi ∣n/2gi

dVgi = ∫
Bg∞(p∞,r)

∣Rmg∞ ∣n/2g∞
dVg∞ . (5.1)

In the following, we investigate what happens inside the δ-balls. In the following argument, we
may only consider δ sufficiently small so that the regions Bg∞(qℓ,10 ⋅ δ) ∖ {qℓ} do not contain any
other orbifold points, and i sufficiently large so that all Bgi(qℓi , δ) are disjoint. This allows us to
focus on a single orbifold point q.

Given such a point q ∈ Qr, we fix a corresponding sequence Mi ∋ qi → q along which the curvature
concentrates in the sense of (2.3). The task is then to extract a (finite) number of point-scale
sequences that detect all the ALE bubbles that form at q.

The first bubble: Let ε̄ ∶=min{εreg, εgap, εneck, εee} where εreg is the constant from the ε-regularity
result (Lemma 2.5), εgap is from Bando’s gap result (Proposition 2.8), εneck has been chosen above
as in the neck theorem (Theorem 3.4), and εee is from the energy estimate in necks (Theorem 4.5).
Set

r1i ∶= inf {r > 0 ∣∫
Bgi
(q,r)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 for some Bgi(q, r) ⊆ Bgi(qi, δ)}
and let q1i be points in Mi such that Bgi(q1i , r1i ) ⊆ Bgi(qi, δ) and

∫
Bgi
(q1

i
,r1

i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 .

Clearly r1i → 0, otherwise there is no curvature concentration as described by (2.3). By Theorem 2.6
the rescaled sequence (Mi, g̃i = (r1i )−2gi, q1i ) subconverges in the pointed orbifold Cheeger–Gromov
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sense to a complete, non-compact, Ricci-flat limit (V 1, h1, q1∞) with bounded Ln/2 Riemannian
curvature and which is ALE of order n−1 in general and ALE of order n if either n = 4 or (V 1, h1)
is Kähler. By Corollary 3.3, (V 1, h1) has one end. Moreover, by the choice of r1i , any ball of radius
r ≤ 1 with respect to the rescaled metric (r1i )−2gi (and contained in Bg̃i(qi, (r1i )−1δ)) has energy at
most ε̄/2 and hence the convergence and the limit are smooth everywhere by the characterisation
of singular points (respectively points of bad convergence) in Theorem 2.6. We then conclude that

∫
B

h1
(q1∞,1)

∣Rmh1 ∣n/2
h1 dVh1 ≥ ε̄

2

which implies the limit is non-flat and hence a (smooth) ALE bubble as in Definition 1.4. By
smooth convergence, we conclude that

lim
R→∞

lim
i→∞∫Bgi

(q1
i
,Rr1

i
)
∣Rmgi ∣n/2gi

dVgi = ∫
V 1

∣Rmh1 ∣n/2
h1

dVh1 . (5.2)

We have now extracted the deepest bubble corresponding to the smallest scale, motivating the
following definition.

Definition 5.1 (Leaf and Intermediate Bubbles). An ALE bubble as in Definition 1.4 is called
a leaf bubble if it is smooth. If instead it has finitely many orbifold singularities it is called an
intermediate bubble.

If there is further curvature concentration, we continue to extract more point-scale sequences. We
first set

N ∶= 4E(2r)
ε̄

(5.3)

and note that since Bgi(qi, δ) ⊆ Bgi(pi,2r) contains at most E(2r) energy and our method detects
disjoint regions containing at least ε̄/4 energy, the process will terminate after a finite number of
steps Nq ≤ N .

The second bubble: First, in order to make sure we do not simply find the same bubble again,
we pick K1 >> 1 large enough, so that

∫
V 1∖B

h1
(q1∞,K1)

∣Rmh1 ∣n/2
h1 dVh1 ≤ ε̄

10N
,

with N given by (5.3), which is possible as (V 1, h1) has bounded Ln/2 curvature. From this, we
conclude that for any constant R >K1 we have

∫
A

K1r1
i
,Rr1

i
(q1

i
)
∣Rmgi ∣n/2gi

dVgi ≤ ε̄

8N
(5.4)

for sufficiently large i. We then set

r2i ∶= inf {r > 0 ∣∫
Bgi
(q,r)∖Bgi

(q1
i
,K1r1

i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 for some Bgi(q, r) ⊆ Bgi(qi, δ)}
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and let q2i be points in Mi such that Bgi(q2i , r2i ) ⊆ Bgi(qi, δ) and
∫
Bgi
(q2

i
,r2

i
)∖Bgi

(q1
i
,K1r1

i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 . (5.5)

Note that r2i ≥ r1i by construction. We can assume that r2i → 0, otherwise there is no more
curvature concentration and the process of extracting point-scale sequences stops. We first claim
the following.

Claim 5.2. The point-scale sequences satisfy

r2i
r1i
+ d(q1i , q2i )

r2i
→∞. (5.6)

Proof. If (5.6) is not true, then there is some number M >K1 such that

1 ≤ r
2
i

r1i
≤M,

d(q1i , q2i )
r2i

≤M

and therefore
d(q1i , q2i )

r1i
≤M2.

This implies that q2i ∈ Bgi(q1i ,M2r1i ) and thus

Bgi(q2i , r2i ) ∖Bgi(q1i ,K1r1i ) ⊆ AK1r1
i
,(M2+M)r1

i
(q1i ).

In particular, (5.4) and (5.5) now yield a contradiction (for R =M2+M) and hence the claim must
hold.

Remark 5.3. An alternative approach is to not pass fromBgi(q1i , r1i ) to the larger balls Bgi(q1i ,K1r1i )
but instead mark and later discard the point-scale sequences that do not satisfy (5.6). Such a strat-
egy was used in the bubble tree construction in [13].

We then distinguish two cases.

Case 1: We have
d(q1i , q2i )

r2i
→∞.

This is the easy case because the bubbles are forming separately. Indeed, the reader can easily
verify that if we blow up using (q2i , r2i ) in a similar way as for (q1i , r1i ) above, we get the same
conclusion and the first bubble will disappear off at infinity. In particular, we obtain another leaf
bubble. Clearly, since r2i ≥ r1i , we also have

d(q1i , q2i )
r1i

→∞,

motivating the following definition.
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Definition 5.4 (Separable Bubbles). If (qki , rki ) and (qℓi , rℓi ) are two point-scale sequences such
that

d(qki , qℓi )
rki

→∞ and
d(qki , qℓi )

rℓi
→∞,

then we say that the two associated bubbles (V k, hk) and (V ℓ, hℓ) are separable.

Case 2: For some M , we have
d(q1i , q2i )

r2i
≤M <∞. (5.7)

This is the much more delicate case as the bubbles will form on top of each other. We consider the
rescaled sequence (Mi, g̃i = (r2i )−2gi, q2i ) which by Theorem 2.6 and Corollary 3.3 subconverges in the
pointed orbifold Cheeger–Gromov sense to a complete, non-compact, Ricci-flat limit (V 2, h2, q2∞)
with bounded Ln/2 Riemannian curvature and with one end satisfying the required ALE condition.
The assumption (5.7) shows that, by possibly passing to a further subsequence, q1i converge to
some q̂1∞ ∈ V 2 (with d(q̂1∞, q2∞) ≤ M). Since by (5.6) and (5.7) we know that r1i /r2i → 0, we have
energy concentration for g̃i around q

1
i and hence the limit point q̂1∞ ∈ V 2 is an orbifold point. By

the choice of r2i , we see that there are no other energy concentrations and hence no further orbifold
singularities.

Note that for any R ≥K1, by the choice of r2i , we have

∫
Bgi
(q1

i
, 1
R
r2
i
)∖Bgi

(q1
i
,Rr1

i
)
∣Rmgi ∣n/2gi

dVgi < ε̄2 .

and hence, for sufficiently large i, ARr1
i
, 1
R
r2
i
(q1i ) satisfies the assumptions (3.7)–(3.8) of the neck

theorem – we therefore call such an annulus a neck region. We claim the following.

Claim 5.5. No energy is concentrating in the neck region in the following sense:

lim
R→∞

lim
i→∞∫A

Rr1
i
, 1
R

r2
i
(q1

i
)
∣Rmgi ∣n/2gi

dVgi = 0.

Proof. It is clear that for R → ∞ and i → ∞ the innermost dyadic sub-annulus ARr1
i
,2Rr1

i
(q1i )

converges smoothly, after rescaling by 2Rr1i , to an annular portion of a flat cone C(Sn−1/Γ1),
where Γ1 is given by the asymptotic structure of the end of the ALE bubble (V 1, h1). Similarly,
the outermost dyadic sub-annulus A 1

2R
r2
i
, 1
R
r2
i
(qi) converges smoothly, after rescaling by 1

R
r2i , to an

annular portion of a flat cone C(Sn−1/Γ2) where Γ2 is given by the orbifold singularity structure at
q̂1∞ in (V 2, h2). In particular, the energy of these inner- and outermost dyadic annuli is converging
to zero.

If R > ε−1/2
neck

, then by the neck theorem, for large i there exists an ε-quasi isometry from the entire
neck region ARr1

i
, 1
R
r2
i
(q1i ) to CRr1

i
, 1
R
r2
i
(Sn−1/Γ) for some Γ with ∣Γ∣ < γ. This shows that Γ1 = Γ2 = Γ.

One might then show that it is possible to let ε → 0 as R → ∞, so that, after rescaling, one
obtains (smooth) convergence of any dyadic sub-annulus A 1

2
si,si
(q1i ) ⊆ ARr1

i
, 1
R
r2
i
(q1i ) to a portion of

C(Sn−1/Γ) hence the energy on each such sub-annulus is converging to zero (as R →∞, i→∞). But
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this is not sufficient to conclude the claim, as the number of dyadic sub-annuli could increase very
fast with i→∞, and hence a more careful argument is required – a delicate fact that is unfortunately
ignored in some articles proving bubbling theorems. This is exactly where our energy estimate in
annular neck regions from the last section comes into play. In fact, Theorem 4.5 shows that the
energy over the entire neck region can be estimated by the energy of the innermost and outermost
dyadic sub-annuli – for which we have just deduced that the energy converges to zero (as R →∞
and i→∞). The claim therefore follows from this theorem.

Endowed with this claim, we continue the analysis of Case 2. First, we fix some R >K1 sufficiently
large so that

lim
i→∞∫A

Rr1
i
, 1
R

r2
i
(q1

i
)
∣Rmgi ∣n/2gi

dVgi ≤ ε̄

8N
.

Combining this with (5.4), we obtain

lim
i→∞∫A

K1r1
i
, 1
R

r2
i
(q1

i
)
∣Rmgi ∣n/2gi

dVgi ≤ ε̄

8N
+ ε̄

8N
= ε̄

4N
≤ ε̄
4
.

Finally, combining this with (5.5) shows that for this R, similarly as in the case of the first bubble

∫
B

h2
(q2∞,1)∖B

h2
(q̂1∞, 1

R
)
∣Rmh2 ∣n/2

h2 dVh2 = lim
i→∞∫Bgi

(q2
i
,r2

i
)∖Bgi

(q1
i
, 1
R
r2
i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄4 ,

therefore (V 2, h2) is non-flat and thus an intermediate ALE bubble (see Definitions 1.4 and 5.1).
We might also say that (V 2, h2) is a parent of (V 1, h1).
By smooth convergence, we have

lim
R→∞

lim
i→∞∫Bgi

(q2
i
,Rr2

i
)∖Bgi

(q1
i
, 1
R
r2
i
)
∣Rmgi ∣n/2gi

dVgi = ∫
V 2

∣Rmh2 ∣n/2
h2

dVh2 . (5.8)

Therefore, combining (5.2), (5.8), and Claim 5.5, we obtain the energy estimate

lim
R→∞

lim
i→∞∫Bgi

(q2
i
,Rr2

i
)
∣Rmgi ∣n/2gi

dVgi = lim
R→∞

lim
i→∞∫Bgi

(q2
i
,Rr2

i
)∖Bgi

(q1
i
, 1
R
r2
i
)
∣Rmgi ∣n/2gi

dVgi

+ lim
R→∞

lim
i→∞∫Bgi

(q1
i
, 1
R
r2
i
)∖Bgi

(q1
i
,Rr1

i
)
∣Rmgi ∣n/2gi

dVgi

+ lim
R→∞

lim
i→∞∫Bgi

(q1
i
,Rr1

i
)
∣Rmgi ∣n/2gi

dVgi

= ∫
V 2

∣Rmh2 ∣n/2
h2 dVh2 + ∫

V 1

∣Rmh1 ∣n/2
h1 dVh1 .

In particular, all the energy is fully accounted for by the two bubbles detected.

Further bubbles: We then continue to extract more bubbles and to build bubble trees, a concept
which is defined as follows.

Definition 5.6 (Bubble Tree). A bubble tree T is a tree whose vertices are ALE bubbles and whose
edges are neck regions. The single ALE end of each vertex is connected by a neck region (which
it meets at its smaller boundary component) to its parent and possibly further ancestors toward
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the root bubble of the tree T , while at possibly finitely many isolated orbifold points it is connected
by more necks (which it meets at their larger boundary components) to its children and possibly
further descendants toward leaf bubbles of T . We say two bubble trees T1 and T2 are separable if
their root bubbles are separable.

We proceed inductively, assuming that we have already extracted (ℓ− 1) point-scale sequences and
the associated bubbles that will form separable bubble trees {Tj}j∈J . After possibly re-labelling,
we assume {(V j, hj)}j∈J are their separable root bubbles and we can ignore all descendants for the
argument that follows. Assume further that Kj are picked (as described for the first bubble above)
such that for R >Kj we have

∫
A

Kjr
j
i
,Rr

j
i

(qj
i
)
∣Rmgi ∣n/2gi

dVgi ≤ ε̄

8N
, ∀j ∈ J. (5.9)

We then set

rℓi ∶= inf {r > 0 ∣∫
Bgi
(q,r)∖⋃j∈J Bgi

(qj
i
,Kjr

j
i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 for some Bgi(q, r) ⊆ Bgi(qi, δ)}
and let qℓi be points in Mi such that Bgi(qℓi , rℓi) ⊆ Bgi(qi, δ) and

∫
Bgi
(qℓ

i
,rℓ

i
)∖⋃j∈J Bgi

(qj
i
,Kjr

j
i
)
∣Rmgi ∣n/2gi

dVgi ≥ ε̄2 . (5.10)

Note that rℓi ≥ rji for each j ∈ J by construction. We can assume that rℓi → 0, otherwise there is no
more curvature concentration and the process of extracting point-scale sequences stops with the(ℓ − 1) point-scale sequences already extracted.

As for the second bubble, there are now two cases.

Case 1: For all j ∈ J
d(qji , qℓi)

rℓi
→∞.

In this case, just as in the case of the second bubble, if we blow up using (qℓi , rℓi), all other bubbles
disappear at infinity and we obtain another leaf bubble which is separable from all all trees Tj (thus
forming a new tree consisting only of one vertex).

Case 2: For some j ∈ J
d(qji , qℓi )

rℓi
≤M j <∞. (5.11)

In this case, denote by J ⊆ J the set of indices j for which (5.11) holds. By assumption J ≠ ∅. We
claim the following.

Claim 5.7. There exists η > 0 such that for each pair of indices j ≠ k in J we have

lim inf
i→∞

d(qji , qki )
rℓi

≥ 2η > 0.
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Let us for the moment assume that the claim holds and continue. We consider the rescaled sequence(Mi, g̃i = (rℓi)−2gi, qℓi ) which by Theorem 2.6 and Corollary 3.3 subconverges in the pointed orbifold
Cheeger–Gromov sense to a complete, non-compact, Ricci-flat limit (V ℓ, hℓ, qℓ∞) with bounded Ln/2

Riemannian curvature and with one end satisfying the required ALE condition. By assumption,
after possibly passing to a further subsequence, for each j ∈ J the sequence qji converges to some

q̂
j
∞ ∈ V ℓ (with d(q̂j∞, qℓ∞) ≤M j) and by Claim 5.7 these limit points are distinct and at least distance
η away from one another. This is the crucial ingredient that allows us to proceed essentially in the
exact same way as if there was only one such point. More precisely, as for the second bubble, we
can conclude that these points q̂j∞ are orbifold points of (V ℓ, hℓ) and there are no other orbifold
singularities. Furthermore, as in Claim 5.5, no energy is concentrating in the neck regions around
q
j
i , i.e.

lim
R→∞

lim
i→∞∫A

Rr
j
i
, 1
R

rℓ
i

(qj
i
)
∣Rmgi ∣n/2gi

dVgi = 0, ∀j ∈ J . (5.12)

In particular, for R >maxj∈J K
j sufficiently large, we obtain for every j ∈ J
lim
i→∞∫A

Rr
j
i
, 1
R

rℓ
i

(qj
i
)
∣Rmgi ∣n/2gi

dVgi ≤ ε̄

8N
.

Combining this with (5.9)–(5.10) and using the obvious estimate ∣J ∣ ≤ N then implies

∫
B

hℓ
(qℓ∞,1)∖⋃j∈J B

hℓ
(q̂j∞, 1

R
)
∣Rmhℓ ∣n/2

hℓ dVhℓ ≥ ε̄
2
− ∣J ∣ ⋅ ε̄

4N
≥ ε̄
4
.

Therefore (V ℓ, hℓ) is non-flat and thus a new parent bubble of all the bubbles (V j, hj) with j ∈ J .
This means that the trees {Tj}j∈J will be combined to a single tree with the new root (V ℓ, hℓ).
Finally, as for the second bubble, we obtain the energy estimate

lim
R→∞

lim
i→∞∫Bgi

(qℓ
i
,Rrℓ

i
)
∣Rmgi ∣n/2gi

dVgi = lim
R→∞

lim
i→∞∫Bgi

(qℓ
i
,Rrℓ

i
)∖⋃j∈J Bgi

(qj
i
, 1
R
r
j
i
)
∣Rmgi ∣n/2gi

dVgi

+ ∑
j∈J

lim
R→∞

lim
i→∞∫Bgi

(qj
i
, 1
R
rℓ
i
)∖Bgi

(qj
i
,Rr

j
i
))
∣Rmgi ∣n/2gi

dVgi

+ ∑
j∈J

lim
R→∞

lim
i→∞∫Bgi

(qj
i
,Rr

j
i
)
∣Rmgi ∣n/2gi

dVgi

= ∫
V ℓ
∣Rmhℓ ∣n/2

hℓ dVhℓ + ∑
j∈J

∑
V k∈Tj

∫
V k
∣Rmhk ∣n/2

hk dVhk .

In particular, all the energy is fully accounted for by (V ℓ, hℓ) and all its descendants. This uses
the fact that no energy concentrates in the new neck regions according to (5.12), as well as the
inductive assumption that the energy in each Bgi(qji ,Rrji ) is already fully accounted for by the
bubbles in the tree Tj .

It remains to prove the claim.

Proof of Claim 5.7. Assume towards a contradiction that there exists a non-empty subset J ′ ⊆ J
such that, after possibly passing to a subsequence

lim
i→∞

d(qji , qki )
rℓi

= 0, ∀j, k ∈ J ′. (5.13)
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Then we set
µi =min{d(qji , qki ) ∣ j, k ∈ J ′} = d(qj1i , qk1i ).

As we started with separable trees by the inductive assumption, we have rji /µi → 0 for all j ∈ J ′.
Therefore, as in the previous argument, the rescaled sequence (Mi, g̃i = (µ1i )−2gi, qj1i ) subconverges
in the pointed orbifold Cheeger–Gromov sense to a complete, non-compact, Ricci-flat limit (X,h)
with one ALE end and at most ∣J ′∣ isolated orbifold singularities. Note also that there are at least
two orbifold singularities (coming from the sequences qj1i and qk1i ). On the other hand, by (5.13)
we have rℓi /µi →∞ and therefore (X,h) has energy at most ε̄/2 and is hence flat by Bando’s gap
result (Proposition 2.8). But a flat ALE orbifold is either smooth or a flat cone with only one
orbifold singularity, yielding the desired contradiction. The claim is proved.

Termination of the process and completion of the proof of Theorem 1.2: As already noted
above, the process of finding new point-scale sequences for q ∈ Qr terminates after a finite number
of steps Nq ≤ N because for each bubble we have found disjoint regions in each Mi containing at
least ε̄/4 energy, and by assumption the energy in the ball Bgi(qi, δ) is uniformly bounded in i. We
can therefore move on to the next orbifold point in Qr after a finite number of bubbles have been
extracted.

By construction, Points 1 and 2 of Theorem 1.2 obviously hold. As we made sure that the δ-balls
around the sequences corresponding to different orbifold points in Qr are disjoint, Point 4 also
follows immediately. Point 3 can be seen as follows: If we take a point-scale sequence (qi, ̺i) as
in the theorem, if it converges to a limit which is non-flat, then we must be able to detect a new
region of energy concentration (disjoint to all the regions from our point-scale sequences), but this
cannot happen as we have exhausted all such regions in our process. Hence, to complete the proof
of the theorem, it only remains to prove the energy identity from Point 5.

We first note that at each singular point q ∈ Q there is only one tree forming. This is proved
with the exact same argument a Claim 5.7. Assume that the tree forming at q consists of bubbles{(V k, hk)}Nq

k=1
and that its root bubble (V Nq , hNq) =∶ (V,h) is detected by a point-scale sequence

(qNq

i , r
Nq

i ) =∶ (qi, ri). By the above construction, we already know that

lim
R→∞

lim
i→∞∫Bgi

(qi,Rri)
∣Rmgi ∣n/2gi

dVgi =
Nq

∑
k=1
∫
V k
∣Rmhk ∣n/2

hk dVhk .

There is one further neck region connecting the tree to M∞. As in Claim 5.5, we can show

lim
R→∞

lim
i→∞∫Bgi

(qi, 1R )∖Bgi
(qi,Rri)

∣Rmgi ∣n/2gi
dVgi = 0,

so that this neck also does not contribute to the total energy. Writing δ = 1/R, we therefore conclude
that

lim
δ→0

lim
i→∞∫Bgi

(qi,δ)
∣Rmgi ∣n/2gi

dVgi =
Nq

∑
k=1
∫
V k
∣Rmhk ∣n/2

hk dVhk .

The claimed energy identity now immediately follows by repeating this for all orbifold points in Q
and combining with (5.1). Note that the condition Q∩∂Bg∞(p∞, r) = ∅ ensures that for sufficiently
large i and sufficiently small δ, each Bgi(qi, δ) will be fully contained in Bgi(qi, r), avoiding potential
issues with capturing “half-bubbles”. This finishes the proof of Theorem 1.2.
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6 Proofs of the Corollaries from the Introduction

We will first transform the energy identity into an identity for the Euler characteristic. This
reinforces the notion that, while the formation of orbifold singularities can cause some topological
degeneration, we can recover the lost topology in a quantitative and systematic way.

Proof of Corollary 1.3. As noted in Anderson’s work on Einstein manifolds [2], bubbling can be
excluded if the dimension n is odd. In this setting we have Qr,Qk = ∅ and the result trivially
holds. Therefore, we only need to consider the case when n is even. The proof is rather direct and
will be clear for experts; we therefore only give the full details for the easiest case n = 4 and then
briefly point out the necessary modifications for higher dimensions.

One of the main ingredients is the Chern-Gauss-Bonnet theorem for compact 4-manifolds N with
boundary ∂N , namely

32π2χ (N) = ∫
N
( ∣Rm∣2 − 4 ∣Ric∣2 +R2)dV

+ 16∫
∂N

κ1κ2κ3dA + 8∫
∂N
(κ1K23 + κ2K13 + κ3K12)dA, (6.1)

see for example [19]. Here κa = II(ea, ea) are the principal curvatures of ∂N (hence {e1, e2, e3} is an
orthonormal basis of T∂N diagonalising the second fundamental form), andKab = Rm (ea, eb, ea, eb)
are the sectional curvatures of N . In particular, if (V k, hk) is a Ricci-flat ALE orbifold with one
ALE end with fundamental group Θk and with a finite discrete set (possibly empty) of orbifold
points Qk = {qk,j∞ } with isometry groups {Γk,j}, respectively, then (6.1) implies the well known
formula

1

32π2 ∫V k
∣Rmhk ∣2hk dVhk = χ(V k ∖Qk) − 1

∣Θk∣ + ∑
q
k,j
∞ ∈Q

k

1

∣Γk,j ∣
Now fix r > 0. Take a sequence (Mi, gi, fi, pi) as in Theorem 1.2. Denote by Qr = Q ∩Bg∞(p∞, r)
the orbifold points forming and fix some q ∈ Qr. Then denote by {(V k, hk)}Nq

k=1
the ALE bubbles

of the bubble tree Tq. Intermediate bubbles will have a non-empty discrete set of orbifold points

Qk = {qk,j∞ } (where the bubble tree is connected via neck regions to the children {(V j, hj)}) while
for leaf bubbles Qk = ∅.
By the neck theorem, as explained in the proof of Claim 5.5, the fundamental group at infinity Θj

of each child bubble is the same as the orbifold group Γk,j at qk,j∞ , hence these terms cancel each
other when summing over all bubbles and for the entire tree Tq at q we find

1

32π2

Nq

∑
k=1
∫
V k
∣Rmhk ∣2hk dVhk =

Nq

∑
k=1

χ(V k ∖Qk) − 1

∣ΘNq
∣ . (6.2)

Here ΘNq is the fundamental group at infinity of the root bubble (V Nq , hNq) of the tree Tq.

Similarly, we also have

1

32π2
[∫

Bg∞(p∞,r)
( ∣Rm∣2 − 4 ∣Ric∣2 +R2)dVg∞ + T (∂Bg∞(p∞, r))] = χ(Bg∞(p∞, r) ∖Qr) + ∑

q∈Qr

1

∣Γq ∣
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where Γq is the finite isometry group associated to the orbifold point q and T (∂Bg∞(p∞, r)) denotes
the boundary integral in (6.1) above. Using once again the neck theorem for the neck connecting
the root bubble of the tree Tq to the smoothly converging body part, similarly as above, we find
ΘNq = Γq. Hence, by Point 5 of Theorem 1.2 (respectively its version using the Chern-Gauss-Bonnet

integrand ∣Rm∣2 − 4 ∣Ric∣2 +R2, which holds with identical proof2), we conclude

lim
i→∞

χ(Bgi(qi, r)) = lim
i→∞

1

32π2
[∫

Bgi(pi,r)

( ∣Rm∣2 − 4 ∣Ric∣2 +R2)dVgi + T (∂Bgi(pi, r))]
= 1

32π2
[∫

Bg∞(p∞,r)
( ∣Rm∣2 − 4 ∣Ric∣2 +R2)dVg∞ + T (∂Bg∞(p∞, r))]

+ 1

32π2
∑
q∈Qr

Nq

∑
k=1
∫
V k
∣Rmhk ∣2hk dVhk

= χ(Bg∞(q∞, r) ∖Qr) + ∑
q∈Qr

1

∣Γq ∣ + ∑q∈Qr

( Nq

∑
k=1

χ(V k ∖Qk) − 1

∣ΘNq
∣)

= χ(Bg∞(q∞, r) ∖Qr) + ∑
q∈Qr

Nq

∑
k=1

χ(V k ∖Qk).
We have proved the result for n = 4. In higher even dimensions, we can use the Chern–Gauss–
Bonnet formula for a compact manifold with boundary from Theorem 1.9.2 in [20]:

χ (N) = ∫
N
Cn ε

I
J RI,n

J,1
dVg + ∫

∂N

n−1
∑
l=0

Cl,n ε
A
B RA,2l

B,1
IIA,n−1

B,2l+1dAg. (6.3)

Here

εIJ ∶= εi1...ilj1...jl
RI,t

J,s
∶= Rmisis+1js+1js ⋯ Rmit−1itjtjt−1

III,t
J,s
∶= IIisjs ⋯ IIitjt.

where εIJ is shorthand for the Levi-Civita symbol, IIij is the second fundamental form of ∂N , and
I, J are (n−1) tuples of indices associated to an orthonormal basis {ei1 , . . . , eil , ej1 , . . . , ejl} of T∂N
that diagonalises IIij. We also note the following:

1. The first term in Equation (6.3) is the integral over a sum of products of n
2
Riemann curvature

tensors and is bounded above by a multiple of the energy E (r). Similar to the energy identity
in Point 5 of Theorem 1.2, one can prove an identity for these integrals.

2. εAB IIA,n−1
B,1 is, up to a constant, the Gauss curvature of ∂M :

εAB IIA,n−1
B,1

= (n − 1)!n−1∏
s=1

κs. (6.4)

where κs is a principal curvature of ∂N . However, as in the argument in n = 4, these terms
are only needed at the boundary of Bgi(pi), r) (as all “inner” boundary terms near orbifold
points will appear twice with opposite sign and thus cancel out).

2Note that in neck regions the energy vanishes and thus also the Chern-Gauss-Bonnet integral disappears. Instead

in bubble regions, the energy and Chern-Gauss-Bonnet integrals agree due to Ricci-flatness
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Using Equation (6.3) the proof is therefore the same as the n = 4 case, up to dealing with the much
more cumbersome notation.

Now we will use the bubble tree construction to prove the local diffeomorphism finiteness result.

Proof of Corollary 1.5. Fix r > 0. Take a sequence (Mi, gi, fi, pi) inM and assume for a contradic-
tion that Mi ∩Bgi(pi, r) have pairwise distinct diffeomorphism types. By Theorem 1.1, we obtain
pointed orbifold convergence to an orbifold shrinker (M∞, g∞, f∞, p∞). As before, let Q be the set
of orbifold points. By possibly slightly enlarging r (without relabelling it), we can assume thatQ ∩ ∂Bg∞(p∞, r) = ∅. We then set Qr = Q ∩Bg∞(p∞, r). By Theorem 1.2 we know that at each

of the finitely many orbifold points q ∈ Qr a finite number of ALE bubbles {(V k, hk)}Nq

k=1
will be

detected via point-scale sequences (qki , rki )i∈N, forming a bubble tree Tq. Finally assume that the
last bubble, i.e. (V Nq , hNq), is the root bubble of Tq.

Next pick R sufficiently large, so that for each bubble (V k, hk) we have R > Kk (where Kk come

from the bubble tree construction in Section 5) and R > ε−1/2
neck

(where εneck comes from the Neck
Theorem 3.4).

Then each Bgi(pi, r) can be covered by finitely many of the following regions:

1. Body Regions: These are the regions Bgi(pi, r) ∖ ⋃q∈Qr
Bgi(qNq

i , 1
2R
). By the construction

in Section 5, we have smooth convergence

(Bgi(pi, r) ∖ ⋃
q∈Qr

Bgi(qNq

i , 1
2R
), gi)→ (Bg∞(p∞, r) ∖ ⋃

q∈Qr

Bg∞(q, 1
2R
), g∞)

and hence these regions will eventually all be diffeomorphic to each other.

2. Bubble Regions: Let q be an orbifold point and (V k, hk) a fixed ALE bubble of the
bubble tree Tq. Denote by {(V j, hj)}j∈J its children in the bubble tree Tq (with J = ∅ for a

leaf bubble). Then the corresponding bubble regions are Bgi(qki ,2Rrki ) ∖⋃j∈J Bgi(qji , 1
2R
rki ).

After rescaling with (rki )−2, these regions will smoothly converge to a region in V k∖{qk,j∞ }j∈J ,
more precisely

(Bgi(qki ,2Rrki ) ∖ ⋃
j∈J

Bgi(qji , 1
2R
rki ), (rki )−2gi)→ (Bhk(qk∞,2R) ∖ ⋃

j∈J

Bhk(qk,j∞ , 1
2R
), hk).

This implies that the bubble regions will eventually be diffeomorphic to each other and this
argument works for each of the finitely many bubbles (V k, hk).

3. Neck Regions: Again, let (V k, hk) be a fixed ALE bubble in a tree Tq detected by the
point-scale sequence (qki , rki ). Denote by (V ℓ, hℓ) its parent bubble, detected by (qℓi , rℓi), if it
exists. If instead (V k, hk) = (V Nq , hNq) is a root bubble and therefore does not have a parent,
then we set (qℓi , rℓi ) ∶= (qki ,1). Then Bgi(qki , 1

R
rℓi) ∖Bgi(qki ,Rrki ) are the corresponding neck

regions. By Theorem 3.4, for sufficiently large i these annular regions will be diffeomorphic
to an annulus on the cone C(Sn−1/Γ) for some Γ ⊂ O(n) with ∣Γ∣ ≤ γ and thus in particular
diffeomorphic to each other.
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The regions above are defined in such a way that each (annular) neck region overlaps with a bubble
region on its innermost dyadic annulus and with the corresponding parent bubble region (or the
body region in case of root bubbles) at its outermost dyadic annulus giving controlled regions where
the diffeomorphism can be “glued together”. In particular, after possibly passing to a subsequence,
for i sufficiently large Mi ∩Bgi(pi, r) are all diffeomorphic to each other. This then obviously also
holds true for the original (not enlarged) r, which is the desired contradiction.
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