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Bubbles: a unifying framework for low-level
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Recently, different models of the statistical structure of natural images have been proposed. These models
predict properties of biological visual systems and can be used as priors in Bayesian inference. The funda-
mental model is independent component analysis, which can be estimated by maximization of the sparsenesses
of linear filter outputs. This leads to the emergence of principal simple cell properties. Alternatively, simple
cell properties are obtained by maximizing the temporal coherence in natural image sequences. Taking ac-
count of the basic dependencies of linear filter outputs permit modeling of complex cells and topographic or-
ganization as well. We propose a unifying framework for these statistical properties, based on the concept of
spatiotemporal activity ‘‘bubbles.’’ A bubble means here an activation of simple cells (linear filters) that is con-
tiguous both in space (the cortical surface) and in time. © 2003 Optical Society of America

OCIS codes: 330.3790, 330.4060, 330.4270.
1. INTRODUCTION
A widespread assumption is that the visual cortex is
adapted to process the particular kind of information it
receives.1,2 The visual cortex is important for survival
and reproduction, and evolutionary forces thus drive the
visual system toward signal processing that is optimal for
the natural stimuli. This does not imply that genetic in-
structions completely determine the properties of the vi-
sual system: A large part of the adaptation to the natu-
ral stimuli could be accomplished during individual
development.

One property that distinguishes natural images from
other kinds of input is statistical structure. The gray-
scale values of luminances at different retinal points, for
example, have robust and nontrivial statistical regulari-
ties. Previous research has built statistical models of
natural images and utilized them to model the receptive
fields, the spatial organization, and the interaction of
neurons in the visual cortex.3–5 Such models can also be
used as priors in Bayesian inference.6–9

This paper proposes a unifying framework for several
models of the statistical structure of natural image se-
quences. The framework combines three properties:
sparseness, temporal coherence, and energy correlations;
these will be reviewed below. It leads to models where
the joint activation of the linear filters (simple cells) takes
the form of ‘‘bubbles,’’ which are regions of activity that
are localized both in time and in space, space meaning the
cortical surface or a grid on which the filters are ar-
ranged.

The paper is organized as follows. First, we discuss
the principal statistical properties of natural images in-
vestigated so far, and we examine how these can be used
in the estimation of a linear image model (Section 2).
Then we show how sparseness and temporal coherence
can be combined in a single model, which is based on the
concept of temporal bubbles, and attempt to demonstrate
that this gives a better model of the outputs of Gabor-like
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linear filters than either of the criteria alone (Section 3).
We extend the model to include topography as well, lead-
ing to the intuitive notion of spatiotemporal bubbles (Sec-
tion 4). We also discuss the extensions of the framework
to spatiotemporal receptive fields (Section 5). Finally, we
discuss the utility of our model and its relation to other
models (Section 6).

2. BASIC STATISTICAL PROPERTIES OF
NATURAL IMAGES
Here we review the research on the basic statistical prop-
erties to be included in our model. These are sparseness,
temporal coherence, and correlation of energies.

A. Sparseness
Sparseness is a property of a random variable, such as the
output of a linear filter when the input consists of natural
images. Sparseness means that the random variable
takes very small (absolute) values or very large values
more often than a Gaussian random variable; to compen-
sate, it takes values in between relatively more rarely.
Thus the random variable is activated, i.e., significantly
nonzero, only rarely. We assume here and in what fol-
lows that the variable has zero mean.

The probability density function p of a sparse variable,
say s, is characterized by a large value (‘‘peak’’) at zero
and relatively large values (‘‘heavy tails’’) far from zero.
Here ‘‘relatively’’ means compared with a Gaussian distri-
bution of the same variance. For example, the absolute
value of a sparse random variable is often modeled as an
exponential density. The exponential density is com-
pared with the density of the absolute value of a Gaussian
variable in Fig. 1. If the absolute value of a symmetric
random variable has an exponential distribution, the dis-
tribution is called Laplacian. If we scale the distribution
to have variance equal to 1, the density function is then
given by
2003 Optical Society of America
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p~s ! 5
1

A2
exp~2A2usu!. (1)

Sparseness is not dependent on the variance (scale) of
the random variable. To measure the sparseness of a
random variable s, let us first normalize its scale so that
the variance E$s2% equals 1. Sparseness can then be
measured as the expectation E$G(s2)% of a suitable non-
linear function of the square. Typically, G is chosen to be
convex, i.e., its second derivative is positive. For ex-
ample, if G is the square function, sparseness is measured
by the fourth moment E$s4%. This is closely related to
using kurtosis,2,5 defined as kurt(s) 5 E$s4%
2 3(E$s2%)2. If kurtosis is positive, the variable is
called leptokurtic, which is a simple operational definition
of sparseness. However, kurtosis suffers from some ad-
verse statistical properties,10 which is why in practice
other functions G may have to be used.

Both information-theoretic and estimation-theoretic
considerations show that in some ways the ideal function
would be such that G(s2) is equal to the logarithm of a
sparse probability density function, optimally of s itself.5

For example, taking the logarithm of the Laplacian den-
sity, one obtains

G~s2! 5 2aAs2 1 b 5 2ausu 1 b. (2)

The constants a 5 A2 and b 5 2log A2 are needed in the
probability density to make its integral equal to 1 and to
standardize it to unit variance, but they are irrelevant
when considering a sparseness measure, so one could just
as well take a 5 1 and b 5 0 in any practical measure-
ment of sparseness.

The importance of sparseness lies in its ability to model
the principal properties of simple cell receptive fields.
Given natural image input, the outputs of linear filters
that model simple cells are very sparse; in fact, they
maximize typical measures of sparseness.2,11

Fig. 1. Illustration of a sparse probability density. The vertical
axis is the probability density, and the horizontal axis is the (ab-
solute) value of random variable s. The sparse exponential den-
sity function is given by the solid curve. For comparison, the
density of the absolute value of a Gaussian random variable of
the same variance is given by the dashed curve.
B. Temporal Coherence
An alternative to sparseness is given by temporal coher-
ence or stability.12–16 This means that when the input
consists of natural image sequences, i.e., video data, the
outputs of simple cells (linear filters) in subsequent time
points should be ‘‘coherent’’ or ‘‘stable,’’ i.e., change as
little as possible. The change can be defined in many
ways, and therefore temporal coherence can give rise to
quite different definitions and measures.

First, it must be noted that ordinary linear (auto)corre-
lation or (auto)covariance is not able to produce plausible
receptive fields. That is, if we measure the temporal co-
herence of a cell output s(t), centered to have zero mean,
as

cov@s~t !, s~t 2 t!# 5 E$s~t !s~t 2 t!%, (3)

where t is a time lag (delay), maximization of this mea-
sure does not characterize most simple cell receptive
fields. In fact, this measure is maximized by low-pass fil-
ters, such as the dc component of image patches and non-
localized low-frequency Fourier components.16 Note that
maximizing this measure is equivalent to minimizing the
mean change E$@s(t) 2 s(t 2 t)#2% if the variance of s(t)
is kept constant.

We proposed previously16 that temporal coherence
could be measured by the correlation of squares (ener-
gies):

cov$@s~t !#2, @s~t 2 t!#2% 5 E$@s~t !#2@s~t 2 t!#2%

2 E$@s~t !#2%E$@s~t 2 t!#2%.

(4)
This measure was inspired by recent advances in the
theory of blind source separation, in which it was shown
that the correlation of squares is a valid measure for blind
source separation.17 It was found that typical simple cell
receptive fields maximize this criterion, just like
sparseness.16 Thus, when properly defined and mea-
sured, temporal coherence provides an interesting alter-
native to sparseness.

C. Correlation of Energies

1. Definition and Models
The third statistical property considers the relationships
between the outputs of different linear filters (simple
cells), which will be denoted by si , i 5 1,..., n. When
sparseness or temporal coherence is used, the outputs of
simple cells, si , are usually assumed independent, i.e.,
the value of sj cannot be used to predict si for i Þ j. To
go beyond this basic framework, we need to model the sta-
tistical dependencies of the linear filters, assuming that
their joint distribution is dictated by the natural image
input.18–21

Note that, again, we must consider nonlinear correla-
tions. Linear correlations are not interesting in this re-
spect, because they can easily be set to zero by standard
whitening procedures. In fact, in the estimation of
simple cell receptive fields, their outputs are often con-
strained to be exactly uncorrelated10,21 (see also Subsec-
tion 2.D). In image data, the principal form of depen-
dency between two model simple cell outputs seems to be
captured18–22 by the correlation of their energies, or
squares si

2. This means that
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cov~si
2, sj

2! 5 E$si
2sj

2% 2 E$si
2%E$sj

2% Þ 0. (5)

This covariance is usually positive. Thus we see a close
connection to the temporal coherence framework.

Intuitively, positive correlation of energies means that
the cells tend to be active, i.e., have nonzero outputs, at
the same time, but the actual values of si and sj are not
easily predictable from each other. For example, if the
variables are defined as products of two independent com-
ponents zi , zj and a common ‘‘variance’’ variable v,21,23

given by

si 5 ziv, (6)

sj 5 zjv, (7)

then si and sj are uncorrelated but their energies are
not.21 In fact, assuming that zi and zj have zero mean
and unit variance, the covariance of their energies can be
calculated to equal E$v4% 2 (E$v2%)2, which is positive
because it equals the variance of v2. Further, if zi and zj
are chosen Gaussian, the resulting variables si and sj can
be shown to be sparse (leptokurtic).21

A simple density that incorporates both energy correla-
tion and sparseness is given by20,21

p~si , sj! 5
2

3p
exp~2A3Asi

2 1 sj
2!. (8)

This could be considered a two-dimensional generaliza-
tion of the Laplacian distribution, standardized so that its
variance equals unity. The correlation of energies in this
probability distribution is illustrated in Fig. 2. A gener-
alization to more than two dimensions is straightforward
by just taking the sum of the squares inside the square
root in the exponential; the scaling and additive constants
are then difficult to calculate, but they are rarely needed.
Just as in the case of sparseness measures, the density in
Eq. (8) gives us a measure of the combination of energy
correlation and sparseness by considering the expectation
of the log density. We can take the logarithm of the den-
sity to obtain a function of the form

E$G~si
2 1 sj

2!%, (9)

where G(b) 5 2Ab, up to irrelevant constants.

2. Topographic Structure of Dependencies
The correlation of energies could be embedded in a model
of natural image statistics in many ways. A simple way
would be to divide the si into groups, so that the si in the
same group have correlation of energies whereas the si in
different groups are independent. In such a model,20 it
was found that the groups (called ‘‘independent sub-
spaces’’) show emergence of complex cell properties. The
sum of squares inside a group (which could be considered
an estimate of the variance variable associated with that
group) has the principal invariance properties of complex
cells. Thus simple cells that pool to the same complex
cell have energy correlations, whereas simple cells that
are not pooled together are independent.

Here we concentrate on a more general framework of
modeling the energy correlation of modeled simple cell
outputs, based on topography or spatial organization of
the cells. By topography, we mean here the existence of
ordered maps, in which the spatial location of a cell on the
cortical surface is related in a systematic way to its func-
tional properties. In the visual cortex, the location of the
receptive field, as well as selectivity for orientation, spa-
tial frequency, and many other parameters, forms such
cortical maps.24–27 Let us assume that the si are ar-
ranged on a two-dimensional grid or lattice, as is typical
in topographic models.28–30 The topography is formally
expressed by a neighborhood function h(i, j) that gives
the proximity of the cells with indices i and j. (Note that
these indices are two dimensional.) Typically, one de-
fines that h(i, j) is 1 if the cells are sufficiently close to
each other and 0 otherwise.

Looking at the statistical structure of natural images,
we see that the pairwise dependencies can be used to de-
fine a topography.31 This means that model simple cells
can be arranged on a grid so that any two cells that are
close to each other have dependent outputs whereas cells
that are far from each other have independent outputs.
Since we are using the correlation of energies as the mea-
sure of dependency, the energies are strongly positively
correlated for neighboring cells. This means simulta-

Fig. 2. Illustration of the energy correlation in the probability
density in Eq. (8). (a) Two-dimensional conditional density of sj
(vertical axis) given si (horizontal axis). The conditional density
is obtained by taking vertical slices of the density function, and
then normalizing each slice so that it integrates to 1, and thus
defines a proper probability density function. Black means low
probability density, and white means high probability density.
We see that the conditional distribution gets broader as si goes
further from zero in either direction.19 This leads to correlation
of energies, since the expectation of the square is nothing but the
variance. (b) Conditional variance of sj (vertical axis) for given
si (horizontal axis).
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neous activation of neighboring cells; such simultaneous
activation is implicit in much of the work in cortical to-
pography.

D. Linear Generative Models of Natural Images
A powerful framework for utilizing the statistical proper-
ties discussed above is provided by generative models.4,8

Let us denote by I(x, y) the pixel gray-scale values (point
luminances) in an image or, in practice, a small image
patch. The models that we consider here express each
image patch as a linear superposition of some features or
basis vectors ai :

I~x, y ! 5 (
i51

n

ai~x, y !si (10)

for all x and y. The si are stochastic coefficients, different
from patch to patch. In a cortical interpretation, the si
model the responses of (signed) simple cells, and the ai
are closely related to their classical receptive fields. For
simplicity, we consider only spatial receptive fields in
most of this paper; spatiotemporal receptive fields are
considered in Section 5.

For simplicity, we assume that the number of pixels
equals the number of basis vectors, in which case the lin-
ear system in Eq. (10) can be inverted. Then a simple
cell with index i is modeled as a spatial linear filter with
adaptable weights, say wi . The output of the simple cell,
when the input is an image patch I, is given by

si 5 ^wi , I& 5 (
x,y

wi~x, y !I~x, y !. (11)

It can be shown31 that the ai are basically low-pass fil-
tered versions of the receptive fields wi .

Estimation of the model consists in determining the
values of ai , observing a sufficient number of patches I
without knowledge of the modeled simple cell outputs si .
In the most basic models, the si are assumed to be statis-
tically independent. Then we can use either sparseness
or temporal coherence to estimate the receptive fields.
That is, we assume either that the si are sparse or that
they have temporal coherence.

The estimation can be simplified by suitable prepro-
cessing. First, we consider the contrast only, i.e., the lo-
cal mean or dc component has been removed from the im-
age, which also implies that the si have zero mean.
Second, we whiten the data in the spatial domain: The
data are transformed into an image so that for any two
spatial points (x, y) and (x8, y8) the values of I(x, y) and
I(x8, y8) are uncorrelated, and all points are normalized
to unit variance. In the whitened space, we can then con-
sider orthonormal transformations only, i.e.,
(ai(x, y)aj(x, y) 5 0 if i Þ j and 1 if i 5 j. This is be-
cause the simple cell outputs are assumed uncorrelated
and normalized to unit variance in all the relevant mod-
els, and these properties are equivalent to orthonormality
of the ai in the whitened space.5

If sparseness is used,11,32,33 the temporal structure of
the data is ignored; indeed, the data do not need to have
any temporal structure in the first place. The resulting
model is called independent component analysis
(ICA),5,34,35 and it can be considered a non-Gaussian ver-
sion of factor analysis. A deep result5 in the theory of
ICA says that if the data are actually generated according
to a linear generative model, as in Eq. (10), the underly-
ing basis vectors can be recovered by finding basis vectors
(or, equivalently, receptive fields) such that the sparse-
ness of the outputs is maximized under some conditions.

In the case of temporal coherence, it is not so well es-
tablished that the estimation of a generative model could
be accomplished by maximizing the temporal coherence of
simple cell outputs. However, using a suitable definition
of temporal coherence, such as the temporal correlation of
squares, one can show such a connection.17 In that case,
the sparseness structure of the data is not utilized in the
estimation.

When topography is used, the si are not assumed to be
independent anymore. Instead, they have topographic
energy correlations as defined in Subsection 2.C. This
leads to the topographic ICA model,21,31 which precisely
combines the properties of sparse components and topo-
graphic dependencies in a single model. When the model
is estimated from natural image data,31 the emerging to-
pography is qualitatively very similar to the one observed
in V1: There are clear maps of orientation, frequency,
and retinal location and no map for phase. Also, the
model may be the first one to explicitly show a connection
between topography and complex cells. The topographic,
columnar organization of the simple cells is such that
complex cell properties are automatically created when
considering local activations (energies of outputs of neigh-
borhoods).

3. TEMPORAL BUBBLES: COMBINING
SPARSENESS AND TEMPORAL COHERENCE
A. Definition of the Model
As discussed above, both maximization of the sparseness
of linear filter outputs and maximization of their tempo-
ral coherence lead to receptive fields that have the prin-
cipal properties of simple cells. How is it possible that
two quite different criteria give quite similar receptive
fields? What is the connection between the two criteria?

To answer these questions, we propose a model of the
linear filter outputs that combines the two properties.
The model explains why both criteria give similar estima-
tion results from natural images and can be expected to
give an improved model of the statistical structure of lin-
ear filter outputs. In this section, we consider only the
estimation of simple cell receptive fields; dependencies
and topography will be considered in Section 4.

The new model is based on the concept of a sparse tem-
poral activity bubble. (This will be extended to a sparse
spatiotemporal activity bubble in Section 4.) We assume
that the observed linear filter output s(t) is the product of
an underlying latent signal z(t) and a variance signal
v(t), much as in Eqs. (6) and (7), but in the temporal do-
main. Thus we define

s~t ! 5 v~t !z~t !. (12)

The underlying signal z(t) does not need to have any spe-
cial properties. In fact, we assume here, for simplicity,
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that z(t) is Gaussian white noise with unit variance.
The interesting statistical properties of s(t) are thus due
to v(t) alone.

The crucial assumptions are that v(t) is sparse and has
temporal correlation. To model such a signal, we assume
that it is a low-pass filtered (smoothed) version of a very
sparse signal possibly followed by a pointwise (scalar)
function:

v~t ! 5 f(f~t ! * u~t !) 5 fS (
t

f~t!u~t 2 t! D , (13)

Fig. 3. Illustration of a temporal bubble. The original signal
z(t) (top) is multiplied by a variance (activity) signal v(t)
(middle) to obtain the observed signal s(t) (bottom). The ob-
served signal is both sparse and temporally coherent.
where f is a simple low-pass filter, such as the Gaussian
kernel exp@2t 2/(2s 2)#. The random process u(t) is ob-
tained by sampling a very sparse nonnegative random
variable independently at each time point, resulting in
something similar to a point process with nonnegative
values. The function f is a technical addition that has
little influence on the basic principle, and in most cases
we could just take a linear f. However, a suitable nonlin-
ear f enables us to get a simple approximation of the prob-
ability densities involved, as will be seen below.

The signal generation is illustrated in Fig. 3. (Note
that we ignore any border effects that will occur in the
convolution of finite-length signals.) The resulting signal
s(t) has both sparseness and temporal coherence. The
sparseness can be shown as follows21:

kurt@s~t !# 5 E$@s~t !#4% 2 3~E$@s~t !#2%!2

5 E$@v~t !#4@z~t !#4% 2 3~E$@v~t !#2@z~t !#2%!2

5 3@E$@v~t !#4% 2 3~E$@v~t !#2%!2#, (14)

which is always positive because it is the variance of v(t)
multiplied by 3. The correlation of squares follows from
a proof similar to the one following Eq. (7).

Thus, if one mixes linearly independent signals of this
kind, the original signals can be separated by using either
of these two properties.5,17 In particular, if we consider
the image sequences to be linear sums of spatial basis
vectors, i.e.,

I~x, y, t ! 5 (
i51

n

ai~x, y !si~t !, (15)

and assume that the signals si(t) consist of temporal
bubbles as defined above, it is natural that we obtain
similar basis vectors with either criterion, since both are
applicable on data of this type.

For illustration, let us look at the output of a spatial
ICA/sparse coding filter when the input consists of an im-
age sequence. The output for a randomly sampled se-
quence of 1000 points is shown in Fig. 4. One can clearly
see bubblelike behavior.

Fig. 4. Output of a filter estimated by ICA when the input con-
sists of an image sequence. A temporal bubble structure is
clearly visible. For details on the data, see Subsection 3.C.
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B. Estimation of the Model
Next, we propose a computationally simple objective func-
tion for estimating optimal linear filters. Using the same
derivation as that in topographic ICA21 (see Appendix A),
we can give a simple approximative formula for the prob-
ability density in the temporal bubble model:

log p(s~1 !,..., s~T !) ' (
t50

T

G(b~t !), (16)

where

b~t ! 5 f~t ! * @s~t !#2 5 (
t

f~t!@s~t 2 t!#2. (17)

Here f is the low-pass filter in Eq. (13). The function G
depends on the probability densities of u and the nonlin-
earity f. For typical sparse densities, the function G is
again a convex function, similar to those used above (see
Appendix A for details).

Intuitively, b(t) measures the sum of squares around
the given time point. Since G is convex, this approxima-
tion can be interpreted as measuring the sparseness of
the bubbles. This means that most of the data should
have practically no activity, the variance signal v(t) being
almost zero. To compensate, the variance signal some-
times takes relatively large values.

Estimation of the filters and the basis vectors can be
accomplished by maximizing the approximative likeli-
hood of the linear generative model in Eq. (15), given ob-
servations of an image sequence I(x, y, t) for all x and y
and t 5 0,..., T. This is given, based on the approxima-
tion in relation (16), by the sum

log L(w1 ,..., wn ; I~x, y, t !) ' (
i51

n

(
t50

T

G(bi~t !),

(18)

where

bi~t ! 5 (
t

f~t!^wi ,It2t&
2

5 (
t

f~t!F(
x,y

wi~x, y !I~x, y, t 2 t!G2

(19)

and it is assumed that the filters wi are constrained to be
orthogonal.

A reasonable approximation of the sparse structure of
image data is obtained21 by defining G using the square
root as in Eq. (8):

G~b ! 5 2aAb 1 b, (20)

where a . 0 and b are some unknown constants that are
necessary for the approximation of relation (16) to be in-
terpreted as a likelihood. The values of these constants
have no effect on the maximal points of the function, how-
ever, so one can again take a 5 1, b 5 0 in any optimiza-
tion algorithm. To improve the stability of the optimiza-
tion, it may be useful to avoid the singularity that the
derivative of the square root has at zero by using a func-
tion of the form of G(b) 5 2Ab 1 e, where e is a small
constant.

C. Experiment 1: Optimal Integration Time in
Temporal Bubbles

1. Motivation
In an attempt to show that temporal bubbles characterize
outputs of Gabor-like linear filters better than either
sparseness or temporal coherence alone, we conducted
separation experiments on natural image sequences.

In the experiments, we sought to find the optimal ker-
nel f for temporal integration to be used in the likelihood
in relation (18) and Eq. (19). Note that the case of ordi-
nary sparseness is obtained when the kernel does not in-
tegrate over time, being 1 for zero lag and 0 elsewhere.
Thus, if the optimal kernel is longer than this, we have
also proven that the temporal bubble model is better than
plain sparseness. We considered only the space of ker-
nels that are 1 inside a given integral and 0 outside the
interval, thus reducing the problem to determining the
optimal length of the integration interval.

2. Methods
We used the same data as those in previous work on natu-
ral image sequences.16 The data consisted of natural im-
age sequences36 cleaned of some artifacts and less-natural
parts with man-made objects.16 A sampling rate of 25
samples per second was used.

In principle, the comparison might be accomplished by
computing the values of the likelihoods for kernels f of
different widths. In practice, however, this is difficult,
since different kernels need different normalization con-
stants a and b, and these are most difficult to compute.

Thus we used a different approach based on signal
separation. Given a kernel, we measured the modeling
power of the bubble model by its efficiency in separating
signals that have the relevant statistical structure.

At each trial, we computed four Gabor-like linear filters
either by ICA or by maximization of temporal coherence.
(The number 4 is arbitrary.) We took four image se-
quences of 1000 time points at random locations and com-
puted the outputs of the four filters si(t), i 5 1,..., 4, with
one input sequence fed to each filter (the location of the
filter was fixed, so the point was to look at the image se-
quence ‘‘through a Gabor function’’). Thus we obtained
four source signals. Then we took a random orthogonal
mixing matrix A 5 @aji#, i, j 5 1,..., 4, and mixed the
four signals to obtain xj(t) 5 ( iajisi(t), j 5 1,..., 4, just as
in the basic linear mixing model in ICA. We then sepa-
rated the signals, i.e., estimated the si(t) from the mix-
tures, by finding linear combinations si 5 ( jwijxj that
maximize the objective function in relation (18), where
the mixtures xj are substituted for the images sequence I
by using G(b) 5 Ab 1 e with e 5 0.0001. Maximization
was performed by a gradient method using symmetric
orthogonalization5,10 of the four vectors wi
5 (wi1 , wi2 , wi3 , wi4)T, i 5 1,..., 4.

After separation, we computed the error in the separa-
tion, which is a measure of how well we have modeled the
signals si(t), and compared the errors in the different
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cases.5 Once we had obtained a separating matrix W
5 @wij#, the error was computed as the sum of the
squares of the matrix WA, minus the four largest squares.
If W really were the inverse of A (possibly up to permu-
tation and arbitrary signs), this would equal zero.

We repeated this procedure 268 times (as much as our
computer could take). At each trial, the data were
sampled at different random points (half of the trials used
temporally decorrelated data,16 and half used the raw
data), four different filters were randomly chosen from a
set of 120 filters (half of the trials used ICA filters, and
half used temporal coherence filters), and a new mixing
matrix was randomly generated. Thus, for each kernel,
we obtained 268 measured errors. We took the loga-
rithms of the errors because the distribution of the log er-
rors was close to normal, and we computed the averages.
As mentioned above, we used the simplest possible ker-
nels, ones that were 0 outside a given radius and 1 inside.
The radius ranged from 0 to 8, leading to intervals of size
1–17. Since the log errors were close to normally distrib-
uted, we computed the standard error of the mean in the
usual way for each temporal kernel.

3. Results
The results are shown in Fig. 5. Temporal integration
decreases the error, approximately by a factor of 2.8
(0.446 in log10 scale). The error for purely sparse coding
(interval 5 1) was very significantly larger ( p , 0.001)
than the others. Temporal integration with three time
points was significantly worse ( p , 0.01) than integra-
tion with at least seven points, although not significantly
different from integration with five time points. Other-
wise, the differences were not significant. Increasing the
integration interval above seven time points does not
yield significant improvement. Presumably, the error
will start to increase when the interval becomes very
long, but this was not visible in our results, probably be-
cause of the rather limited maximum length that we
used.

Fig. 5. Log error in separation of artificial signal mixtures as a
function of the size of the interval of temporal integration. This
reaches a minimum at approximately 7. Size 1 would corre-
spond to ordinary sparseness, i.e., no temporal integration.
Standard errors of the mean are shown as well.
We also tried the temporal coherence criterion16 on the
same problem. The errors (not shown) were approxi-
mately three times larger than those obtained with
sparseness. Thus the bubble model also performs better
than temporal coherence as a model of the statistical
structure. This is not very surprising, since the temporal
coherence criterion16 was constructed so as to be blind to
sparseness in order to demonstrate that temporal coher-
ence alone is sufficient. Moreover, the temporal coher-
ence criterion was based on simple nonlinear correlation
and not on statistically optimal criteria such as likeli-
hood. In fact, if kurtosis is used as the sparseness mea-
sure, the increase in estimation errors when compared
with those of optimal maximum-likelihood estimation is
quite comparable.10

Thus temporal integration in the temporal bubble
model does reduce separation errors, indicating that the
model is better than basic sparse coding or ICA. An in-
terval of 5–7 time points seems to be sufficient. As the
time interval between two samples was 40 ms, this corre-
sponds to an optimal temporal integration interval of
200–300 ms.

4. SPATIOTEMPORAL BUBBLES: A
UNIFYING FRAMEWORK
In spatiotemporal bubbles, the idea is to combine all three
properties discussed above: sparseness, temporal coher-
ence, and topography. Combination of sparseness and
temporal coherence was done in Section 3 and was shown
to lead to temporal activity bubbles.

Combination of sparseness and topography means that
each input activates a limited number of spatially limited
‘‘blobs’’ on the topographic grid.31 If these regions are
temporally coherent, they resemble activity bubbles as
found in many earlier neural network models. A spa-
tiotemporal activity bubble thus means the activation of a
spatially and temporally limited region. This is illus-
trated in Fig. 6 for a one-dimensional topography.

What could such bubbles represent in practice? Since
we are about to define a general-purpose unsupervised
learning procedure, the meaning of bubbles depends on
the data on which they are applied. In the case of natu-
ral image sequences, we can assume that the topographic
grid is rather similar to the one obtained by topographic
ICA. Then a bubble would mean a temporally persistent
activation of Gabor-like basis vectors of similar orienta-
tion and spatial frequency in nearby spatial locations.
This would correspond to a short contour element of given
orientation and spatial frequency. In contrast to a spa-
tial ‘‘independent component’’ of an image, this contour el-
ement can move a bit, and its phase can change, during
the temporal extent of the bubble, because the bubble de-
termines only the general activity level while the actual
values of outputs randomly change from one time point to
another. A bubble thus gives a more flexible, invariant
feature than a coefficient in a linear representation.

A. Definition of the Model
Based on earlier work31 and the developments in Section
3, we can formulate generative models based on activity
bubbles. We postulate a higher-order random process u
that determines the variance at each point. This nonne-
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Fig. 6. Four types of representation. The plots show the outputs of filters as a function of time (horizontal axis) and the position of the
filter on the topographic grid (vertical axis). Each pixel is the output of one unit at a given time point, gray being zero, white and black
meaning positive and negative outputs. For simplicity, the topography is here one dimensional. In the basic sparse representation, the
filters are independent. In the topographic representation, the activations of the filters are also spatially grouped. In the represen-
tation that has temporal coherence, they are temporally grouped. The bubble representation combines all these aspects, leading to
spatiotemporal activity bubbles. Note that the two latter types of representation require that the data have a temporal structure, un-
like the two former ones.
gative, highly sparse random process obtains independent
values at each point in time and space (with space refer-
ring to the topographic grid). For simplicity, let us de-
note the location on the topography by a single index i.
Then the variances v of the observed variables are ob-
tained by a spatiotemporal convolution followed by a
pointwise nonlinearity:

vi~t ! 5 fS (
j

h~i, j !@ f~t ! * uj~t !# D , (21)

where h(i, j) is the neighborhood function that defines
the spatial topography and f is a temporal smoothing
kernel. The simple cell outputs are now obtained by
multiplying simple Gaussian white noise zi(t) by this
variance signal:

si~t ! 5 vi~t !zi~t !. (22)

Finally, the latent signals si(t) are mixed linearly to give
the image. If I(x, y, t) denotes an image sequence, this
mixing can be expressed as

I~x, y, t ! 5 (
i51

n

ai~x, y !si~t !. (23)

The three equations (21)–(23) define a statistical genera-
tive model for natural image sequences.

The combination of temporal and spatial energy corre-
lation is illustrated in Fig. 7. The two signals in the fig-
ure are uncorrelated, and also have no temporal correla-
tion, but the temporal dependence of activation is clear.
Since the active intervals coincide, this is a prototype of
what the dependency between two adjacent cells would
look like.

Fig. 7. Combination of temporal and spatial (i.e., topographic)
energy correlation. The two signals are caricatures of what the
outputs of two simple cells with strong energy correlation could
look like. They are uncorrelated, both from each other and tem-
porally. Nevertheless, we see temporal bubbles of activity in the
outputs, and these bubbles are simultaneous, which eventually
leads to spatiotemporal bubbles when there are many cells ar-
ranged topographically. Note that a very similar figure was
used to illustrate basic energy correlation in topographic ICA.21

In that context, the temporal energy correlation was added for
the purposes of illustration only, whereas here it is an essential
part of the model.
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The higher-order process ui(t) could be called the
bubble process. When this process obtains a value that
is different from zero, which is a rare event by definition,
a bubble is created: The nonzero value spreads to neigh-
boring temporal and spatial locations because of the
smoothing by f and h. The spread of activation means
that simple cells have large variances inside that spa-
tiotemporal window.

The combination of temporal and spatial energy corre-
lation also explains why sparse coding and temporal co-
herence give similar results when estimating complex cell
receptive fields. For si and sj close to each other in the
topography, the joint distribution over time would be
sparse and have strong energy correlation. If one esti-
mates independent subspaces,20 such components would
fall in the same subspace. On the other hand, those
same components together would form a subspace or an
energy detector whose output has maximum correlation
over time.13,14 Thus independent subspaces and tempo-
rally stable subspaces coincide, which is why the two
methods give similar results for natural image data. In
the same way, topographic ICA and its temporal coher-
ence counterpart give similar results. This temporal co-
herence counterpart is a model37 in which topography is
defined solely by using temporal coherence of the local
squared activations.

It should be emphasized that the model defined here is
quite different from a basic ICA model using spatiotempo-
ral basis vectors (see Section 5). The transformation
from the bubble process ui(t) to the observed data is not
linear even if the function f is linear; in fact, it is not even
a deterministic transformation. The bubble process, af-
ter being convolved in time by f and in space by h, gives
only the variances of the linear components si(t). Thus
the basis vector ai is added with random amplitudes and
completely random signs in subsequent time points ‘‘in-
side’’ a bubble because of the interference of the variable
zi(t). This is in contrast to ICA using spatiotemporal ba-
sis vectors,36,38 where the generation of the data is linear
and a single coefficient is used for the whole spatiotempo-
ral basis vector. Therefore our model is not similar to
ICA using ai(x, y)f(t) as spatiotemporal basis vectors.
In fact, a spatiotemporal bubble is more similar to the ac-
tivity of a complex cell with a space–time-separable re-
ceptive field,39 although it is still quite different from con-
ventional models of complex cells40 because of the random
generation of zi(t) at every cell and time point.

B. Estimation of the Model
In the estimation of the spatiotemporal bubble model, we
can use the same ideas as those in the case of temporal
bubbles and topographic ICA,21,31 in particular the ap-
proximation of the density function in relation (16).

Here the approximation has an interesting neurophysi-
ological interpretation. We assume that the simple cell
outputs are rectified by taking squares (energies), and
these are fed to complex cells. The pooling weights from
simple cells to complex cells are fixed by using the as-
sumption that complex cells pool only outputs of simple
cells that are nearby on the topographic grid. The out-
puts of complex cells are sums of squares inside a small
spatial region (‘‘neighborhood’’). While the above is simi-
lar to topographic ICA, the bubble model also pools over
time. Thus we define the output of a ‘‘bubble detector’’ at
grid point i and time point t as

bi~t ! 5 (
t

(
j51

n

h~i, j !f~t!^wj , It2t&
2. (24)

This is basically like a complex cell (energy detector)
whose output is pooled over time. The output can be con-
sidered a simple, though quite crude, estimator of the
variance process ui(t).

We can now approximate the likelihood of our model
using the outputs of such feature detectors as

log L(w1 ,..., wn ; I~x, y, t !) ' (
t50

T

(
i51

n

G(bi~t !).

(25)

The bubble pooling given by h(i, j) and f is considered
fixed, and only the first-layer weights wj are estimated, so
this likelihood is a function of the wi only. The function
G is typically convex to enforce sparseness of bubbles, as
was discussed above.

In practice, it is not really necessary to compute the
value of the bubble detector for all values of t. For com-
putational convenience, one would rather sample spa-
tiotemporal patches Ik(x, y, t) from the image sequence
and compute only one output of the bubble detector for
each spatiotemporal patch. If we denote the temporal ex-
tent of the patch by 0,..., T, this approach gives

bik 5 (
j51

n

h~i, j !(
t50

T

f~T/2 2 t !^wj , Ikt&
2, (26)

where ^wj , Ikt& 5 (x,ywj(x, y), Ik(x, y, t). One would
then use bik instead of bi(t) in relation (25). Note that
since the sampling of a spatiotemporal patch automati-
cally introduces limits for temporal integration, one can
also define f to be identical to 1 in this case, which is as-
sumed in the following.

Learning the representation can then be accomplished
by a gradient ascent of the approximative likelihood.
This gives the following algorithm:

1. Whiten the image sequence spatially.
2. Sample K spatiotemporal patches Ik(x, y, t) of

length T 1 1 for k 5 1,..., K.
3. Do a gradient step for all j and x, y:
wj~x, y! ← wj~x, y!

1 m(
k51

K

(
t50

T

Ik~x, y, t!(
i51

n

h~i, j!^wj , Ikt&g~bik!,

where g is the derivative of G and m is a small step size.
4. Orthogonalize the matrix W, whose rows are the

filters wj :
W ← ~WWT!21/2W.

5. Go back to step 3 if not converged.

As the nonlinearity g, we typically use 2(b 1 e)21/2,
where e is a small constant added for stability. This cor-
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responds to a stabilized version of G(b) 5 2Ab (up to an
irrelevant scaling constant 1/2). Additional preprocess-
ing, such as removal of the dc component, temporal deco-
rrelation, or normalization, may also be useful.16

C. Experiment 2: Spatiotemporal Bubbles in Natural
Image Sequences
In this experiment, we applied the spatiotemporal bubble
model on natural image sequences.

1. Methods
Data were obtained from the same database as that in ex-
periment 1. We took 70,000 spatial patches of 16 3 16
gray-scale pixels at five consecutive time points. The
two-dimensional topography was defined as a 14 3 14
rectangular grid. The dimension of the data was accord-
ingly reduced by principal component analysis (PCA) to
196 5 14 3 14 dimensions to reduce noise and aliasing
artifacts.33 The neighborhood function h was defined as
being 1 inside a spatial window of 3 3 3 units and 0 out-
side that window. The topography was toroidal; i.e., the
borders of the topographic rectangle were joined together
to avoid border effects.21 The temporal kernel f was de-
fined as equal to 1 inside the sampling window and 0 else-
where; i.e., the temporal integration interval was of
length 5.
As preprocessing, we first temporally decorrelated the
data as in previous work16 and then removed the dc com-
ponent of each patch.

We estimated the basis by maximization of the objec-
tive function in relation (25), as explained at the end of
Subsection 4.B. The nonlinearity G(b) 5 Ab 1 e with
e 5 0.00001 was used. Optimization was performed by
gradient ascent with symmetric orthogonalization.5,10

2. Results and Discussion
The topographic basis estimated is shown in Fig. 8. The
basis is quite similar to the one estimated by the topo-
graphic ICA model.21,31 The basis consists of Gabor-like
patches, not unlike those obtained by maximization of
sparseness or temporal coherence. The topography is
also similar to the one obtained by topographic ICA: The
orientation and the location of the feature within the
patch change smoothly when moving on the topographic
grid. Low-frequency patches are spatially segregated
from the rest.

Thus an activity bubble in this basis consists of the
temporally coherent activation of basis patches (simple
cells) that have similar orientation and rather similar lo-
cation. This corresponds to a basic element of visual in-
put: a luminance contour that is of a given orientation
and frequency and is inside a small spatiotemporal patch,
possibly slightly moving.
Fig. 8. Spatial basis vectors estimated by our model from natural image sequences. The results are very similar to what was found by
topographic ICA.31
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Fig. 9. Bubbles that emerge from image sequences. (a) We used a representation with one-dimensional topography to be able to vi-
sualize the results (shown arranged on a two-dimensional grid for reasons of space). (b) Outputs of the cells for two different input
image sequences, coded as gray-scale values (gray 5 0). The vertical axis is the cell index, and the horizontal axis is the time index.
One can clearly see the bubblelike quality of the data. (c) Image sequences used as input in (b) (again, shown in two dimensions for
reasons of space).
The basis looks quite similar to the one obtained by to-
pographic ICA, but this is not disappointing, since it
means only that the estimation of the basis was already
quite well accomplished by topographic ICA. To see the
new contribution of our model, we need to consider the
spatiotemporal properties of the representation. To fa-
cilitate the visualization of the results, we use in the fol-
lowing a one-dimensional basis of 81 units and a neigh-
borhood range of five units. The basis is shown in Fig.
9(a).

We attempted to reproduce Fig. 6 (lower right), which
was an artificial illustration of ‘‘bubbleness,’’ but this time
by using real natural image sequence data. Figure 9(b)
shows the outputs of the units for two different short im-
age sequences [the sequences are shown in Fig. 9(c)].
The outputs are thresholded for illustration. Here we
can see that the data indeed produce spatiotemporal ac-
tivity bubbles, that is, clusters of activity that are both
spatially and temporally contiguous. Thus we see emer-
gence of spatiotemporal bubbles in the topographic repre-
sentation, as postulated in our model.

5. EXTENSION TO SPATIOTEMPORAL
RECEPTIVE FIELDS
A. Extension of the Model
In the preceding sections, we considered only spatial basis
vectors and filters. This was for purposes of simplicity,
both conceptual and computational. The principle of
bubbles can be directly used in the case of spatiotemporal
receptive fields, however.

It is important to note that bubbleness is a property of
the representational units, such as linear filters or neu-
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rons (see Fig. 6). It does not depend on how those repre-
sentational units compute their outputs, i.e., whether
they are based on spatial or spatiotemporal filters. In
fact, the same applies also for the principle of temporal
coherence.16

Thus, to model spatiotemporal receptive fields, we do
not need to change the model of the simple cell responses
si . We need only to change the way the input data are
generated from the si in the generative model, as in pre-
vious extensions of ICA to the spatiotemporal domain.36,38

This is accomplished by replacing Eq. (23) by

I~x, y, t ! 5 (
i51

n

(
t

ai~x, y, t!si~t 2 t!. (27)

Thus the basis vectors are spatiotemporal. In other
words, they are basis vectors in the space of spatiotempo-
ral patches.

While the framework using spatiotemporal bubbles and
spatial basis vectors already modeled some of the spa-
tiotemporal properties of the data, using spatiotemporal
basis vectors makes the model richer. In particular, spa-
tiotemporal basis vectors are required to properly repre-
sent motion. A spatiotemporal basis vector that is
space–time inseparable39 is able to represent a contour el-
ement moving in a specific direction. Such direction se-
lectivity cannot be accomplished by basis vectors that
have only spatial extent.

B. Experiment 3: Bubbles with Spatiotemporal Basis
Vectors

1. Methods
We used the same database as that in the previous experi-
ments, preprocessed by temporal decorrelation. The in-
put consisted of 40,000 spatiotemporal patches whose
spatial extent was 11 3 11 pixels and contained eight
consecutive time points (sampling was constrained to con-
sist of couples of temporally consecutive patches, as ex-
plained below). The dimension of the data was reduced
to 289 5 17 3 17 by PCA. The neighborhood function on
the 17 3 17 grid was 1 inside a spatial square of 3 3 3
units. The removal of the spatial dc component was here
replaced by the removal of the mean dc component over
the spatiotemporal patch.

In principle, the outputs si(t) of the spatiotemporal fil-
ters would be computed by inverting Eq. (27). In prac-
tice, to reduce the computational load, we sample spa-
tiotemporal patches from images, so that at each
spatiotemporal sampling point, we take m temporally
consecutive spatiotemporal patches. We take m 5 2 to
further reduce the computational load. Let us denote the
temporal length of a single patch by T, the sample index
of each temporally consecutive couple of spatiotemporal
patches by k 5 1,..., K, and pixel values in the couple of
patches by Ik(x, y, t), where t 5 1,..., 2T. We computed
the two outputs of a spatiotemporal filter given by

si~k, 1! 5 (
x,y

(
t51

T

wi~x, y, t!Ik~x, y, t!, (28)

si~k, 2! 5 (
x,y

(
t51

T

wi~x, y, t!Ik~x, y, T 1 t!, (29)
where the indices 1 and 2 distinguish the first and second
patches in each couple of consecutive samples. Thus the
objective function had the form

log L(w1 ,..., wn ; I~x, y, t !)

5 (
k51

K

(
i51

n

GS (
j51

n

h~i, j !$@sj~k, 1!#2 1 @sj~k, 2!2#%D .

(30)

2. Results
See http://www.cis.hut.fi/aapo/papers/bubbleanimation.gif
for results shown as animation.

These spatiotemporal basis vectors are quite similar to
those obtained previously.36,38 They are Gabor-like basis
vectors, most of them temporally modulated. Approxi-
mately half of them are space–time separable, and half of
them are inseparable.39 The separable ones are often
constant over time, some showing weak temporal modu-
lation. The topography is mainly organized on the axis of
separable–inseparable, the frequency (spatial and tempo-
ral frequencies tend to be strongly related), and the direc-
tion of motion. A topographic organization by direction
of motion has been observed in the cortex as well.41

6. DISCUSSION
A. Benefits of Bubble Coding
Here we propose some reasons why the visual system
should use the model based on spatiotemporal bubbles.
Some of these are admittedly speculative, and further re-
search is necessary to investigate their validity.

Better prior model. First and foremost, we expect the
bubble model to provide a better internal model of the
structure of natural stimuli compared with that gained
from previous work. If we consider visual processing in a
Bayesian framework,9 it is paramount to use statistical
models of the input that are as accurate as possible. It is
difficult to conclusively demonstrate that the bubble
model is better than previous ones, and we have not been
able to do so in this paper. Nevertheless, some indica-
tions that this claim might be true have been provided in
this paper: the better separation capability of the tem-
poral bubble model in experiment 1 and the basic fact
that the model combines, for the first time, the three
properties of natural images.

Better denoising by bubble thresholding. One useful
application of such an internal model can be found in
noise reduction. Noise in cell outputs can be reduced by
using the Bayesian framework. If the ICA model is used,
this leads to coring and shrinkage methods,6,7,42 in which,
basically, the outputs of the linear filter outputs are
thresholded. More sophisticated models of the statistics
lead to more sophisticated noise reduction methods.43 In
topographic ICA and related models,21,23,43 information on
the activation of the neighboring cells would be used in
the noise reduction, so that if the neighboring cells are ac-
tive, the denoising threshold is decreased. In other
words, it is the output of a complex cell that is thresh-
olded instead of the output of a simple cell; a simple cell
output is then either set to zero or left unchanged, de-
pending on whether the relevant complex cell outputs ex-
ceeded the threshold. Our bubble model further brings
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the temporal aspect to such a scheme: What is thresh-
olded is essentially a temporally integrated output of a
neighborhood, that is, the magnitude of a bubble.

Better rate coding. Temporal coherence can be moti-
vated by rate coding: If the output of a linear filter is
coded by the firing rate of a simple cell (or possibly two
cells tuned for opposite polarities), the output of the lin-
ear filter must have some temporal coherence.16 If there
were no temporal coherence and the output of the linear
filter changed very rapidly, the ‘‘readout’’ of the firing rate
would be impossible: The Poisson noise that is inherent
in such an operation would be too strong. Rate coding
using bubbles is particularly efficient in this respect be-
cause there can be both temporal and spatial (population)
pooling of firing rates, as nearby cells are coding for more
or less the same thing.

Minimum wiring length. Bubble coding is also related
to minimum wiring length.44 Responses of cells that are
strongly dependent often need to be considered together
in further computations; this is the case for the noise re-
duction operation discussed above, as well as computation
of invariant features discussed below, and many other op-
erations such as contrast gain control.45,46 The topo-
graphic spatiotemporal organization makes response
pooling computationally faster and simpler, since the
pooling area in many operations is directly given by the
topographic structure: Cells whose outputs need to be
pooled together are close to each other on the cortical sur-
face. This reduces the need for wiring (neural connec-
tions). In contrast to the case of topographic ICA, we as-
sume in the bubble model that not only cells that fire
simultaneously, but also cells whose firings are correlated
over time, need to send signals to each other. This means
that if cell A is a good predictor of the firing of cell B, the
information about firing cell A should be sent to cell B.

More-invariant features. The pooled activations of
bubbles may be more interesting for higher visual pro-
cessing than the activations of single cells. In fact, tem-
poral coherence has earlier been proposed as a principle
for learning invariant features,12,14 and topographic ICA
leads to emergence of features that are invariant to
phase, being very similar to complex cell responses.
Thus the bubbles are strongly connected to low-level in-
variant features. The main difference between the
bubble model and conventional models of complex cells is
the temporal pooling inherent in the bubbles. Thus
bubbles can be considered an improved version of complex
cell outputs: Invariance is enhanced by integrating the
outputs over time.

B. Related Models
The concept of temporal bubbles is similar to those found
in the literature on blind source separation. The tech-
nique of blind source separation by nonstationary
variance47 assumes a smoothly changing variance
signal.48 This formulation can be shown to be related to
energy correlation.17 The econometric models based on
autoregressive conditional heteroscedasticity are also
closely related.49

The concept of purely spatial bubbles, on the other
hand, is closely related not only to our previous models on
complex cells and topography20,21,31 but also to models re-
lated to gain control22 and earlier models on complex cells
and energy correlation.18

Olshausen38 proposed that single spikes could signal
the onset of a spatiotemporal basis vector. The model in-
cluded sparsification so that a single edge element moving
across the image patch could be coded by the single spike.
This seems to be in stark contrast to our model, in which
an edge element would elicit a spatiotemporal bubble in
the cell population. The contradiction can be solved, at
least partially, by noting that the sparsification process
includes nonlinear interactions between the cells after
they have performed the initial linear filtering. Thus it
is conceivable that such a sparsification process could re-
duce the number of active cells in a bubble, as well as the
number of spikes that they fire. In the extreme case, the
number of active cells could be reduced to 1, and so would
the number of spikes. Thus we would obtain an estimate
of the original bubble process ui(t). Olshausen’s model
can thus be conceived as a possible nonlinear extension of
our linear filtering model.

An alternative approach to the formulation of the
bubble model could be based on the autoregressive model
instead of the moving-average model that we used here.
We have previously used a related autoregressive model37

because it offers some technical advantages. In particu-
lar, it is possible to estimate the pooling weights h(i, j) as
well. However, the moving-average formulation used
here seems to be more realistic and also easier to inter-
pret.

C. Extensions and Limitations
Our contribution is to combine the three properties of lin-
ear filter outputs that are well-known in the natural im-
age statistics literature: sparseness, correlation of ener-
gies, and temporal coherence. To accomplish this in the
simplest manner possible, we have neglected some impor-
tant properties considered by other models; some of these
omissions will be discussed next.

Using an overcomplete basis is often considered neces-
sary in image modeling.50–52 That is, there should be
more basis vectors ai than there are pixels, and, corre-
spondingly, more components si . We have not included
this property in our model mainly because it increases the
computational complexity quite considerably.51,52 More-
over, it seems that using an overcomplete basis does not
change the properties of the individual basis vectors too
much, so the qualitative properties of the results are un-
likely to be affected. Yet, in any practical application of
the model, overcomplete bases may be necessary. A
simple way of making the obtained basis overcomplete is
cycle spinning, i.e., including all the possible translations
of the basis vectors in a larger basis set.

Recently, ICA and sparse coding models have been ex-
tended to multiscale representations (wavelets),53 which
also allows the modeling of whole images instead of small
patches. Such an extension could be possible with our
model as well. In particular, our model could be modified
to incorporate multiresolution properties on the level of
the bubbles as well, i.e., bubbles of different sizes. Cur-
rently, the size of the bubbles, as given by the function h,
is fixed.
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Another property that we have not included in our
model is nonnegativity.54,55 This might be important,
even on the low level of simple cells, if one wanted to add
more biological realism to the model16,56 by considering
some basic nonlinear properties of simple cells. How-
ever, as long as simple cells are modeled as linear filters,
this may not be important.

The extension of our model to further modalities such
as color and stereopsis may be possible by just adding the
relevant properties to the data, as has been successfully
done in previous work.57–59

7. CONCLUSION
We have proposed a new framework for the low-level sta-
tistical structure of natural image sequences, based on
the notion of spatiotemporal activity bubbles. This is a
unifying theoretical framework that combines the proper-
ties of sparseness (the bubbles being sparse), topography
(the bubbles having spatial continuity), and temporal co-
herence (the bubbles having temporal continuity).

APPENDIX A: DERIVATION OF RELATION
(16)
The joint density of s(t) and u(t) can be expressed as

p(s~t !, u~t !; t 5 1,..., T) 5 )
t

psS s~t !

v~t !
D pu(u~t !)

v~v !
,

(A1)

where pu is the marginal density of u(t) and ps is the con-
ditional marginal density of s(t) given all the u(t), for
variance fixed to unity. The marginal density of s can be
obtained by integrating out the u(t). Unfortunately,
such an integration is intractable. To obtain a useful ap-
proximation, we first fix the density ps to be Gaussian, as
discussed above, and we define the nonlinearity f as f(v)
5 v21/2. The main motivation for this latter definition is
algebraic simplicity that makes a simple approximation
possible. Then the marginal density p(s(t); t 5 1,..., T)
equals

E 1

A2pT
expH 2

1

2 (
t

@s~t !#2F(
t

f~t!u~t 2 t!G J
3 )

t
pu(u~t !)F(

t
f~t!u~t 2 t!G1/2

du~1 !¯du~T !,

(A2)

which can be manipulated to give (by making the change
of variables t8 5 t 2 t)

E 1

A2pT
expS 2

1

2 (
t8

u~t8!(
t

$@s~t !#2f~t 2 t8!%D
3 )

t8

pu(u~t8!)F(
t

f~t!u~t8 2 t!G1/2

du~1 !¯du~T !.

(A3)

Now we use the simple approximation
F(
t

f~t!u~t8 2 t!G1/2

' Af~0 !u~t8!. (A4)

This is actually a lower bound, and thus our approxima-
tion will be a lower bound of the likelihood as well. Now
the probability is factorizable with respect to u(t8), and
we can integrate component by component. This gives us
the following approximation:

p(s~t !; t 5 1,..., T) ' )
t

expH GS (
t

f~t!@s~t 2 t!#2D J ,

(A5)
where the scalar function G is obtained from pu by

G~ y ! 5 log E 1

A2p
expS 2

1

2
uy D pu~u !Af~0 !udu.

(A6)

The function G has a similar role to that of the log density
of the independent components in classic ICA. The for-
mula for G in Eq. (A6) can be exactly evaluated only in
special cases. One such case is obtained if the u(t) are
obtained as squares of standardized Gaussian variables.
Straightforward calculation then gives the following func-
tion:

G0~ y ! 5 2log~1 1 y ! 1
1
2 log p2f~0 !. (A7)

In ICA, it is well-known that the exact form of the log
density does not affect the consistency of the estimators,
as long as the overall shape of the function is correct.
This is probably true here as well. Simulations that we
have performed support this conjecture.21 The G in Eq.
(A7) is a typical convex function, and thus we use the
same convex functions as G as those in ICA and related
models. However, the above derivation shows what is
the (approximately) optimal G as a function of the prob-
ability densities in the model.
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35. C. Jutten and J. Hérault, ‘‘Blind separation of sources.
Part I: An adaptive algorithm based on neuromimetic ar-
chitecture,’’ Signal Process. 24, 1–10 (1991).

36. J. H. van Hateren and D. L. Ruderman, ‘‘Independent com-
ponent analysis of natural image sequences yields
spatiotemporal filters similar to simple cells in primary vi-
sual cortex,’’ Proc. R. Soc. London Ser. B 265, 2315–2320
(1998).

37. J. Hurri and A. Hyvärinen, ‘‘A two-layer temporal genera-
tive model of natural video exhibits complex-cell-like pool-
ing of simple cell outputs,’’ in Computational Neuroscience:
Trends in Research 2003, E. De Schutter, ed. (Elsevier, Am-
sterdam, The Netherlands, 2003).

38. B. A. Olshausen, ‘‘Sparse codes and spikes,’’ in Statistical
Theories of the Brain, R. Rao and B. A. Olshausen, eds.
(MIT Press, Cambridge, Mass. 2001).

39. R. C. Emerson, J. R. Bergen, and E. H. Adelson, ‘‘Direction-
ally selective complex cells and the computation of motion
energy in cat visual cortex,’’ Vision Res. 32, 203–218 (1992).

40. D. Pollen and S. Ronner, ‘‘Visual cortical neurons as local-
ized spatial frequency filters,’’ IEEE Trans. Syst. Man Cy-
bern. SMC-13, 907–916 (1983).

41. M. Welicky, W. H. Bosking, and D. Fitzpatrick, ‘‘A system-
atic map of direction preference in primary visual cortex,’’
Nature (London) 379, 725–728 (1996).

42. P. O. Hoyer and A. Hyvärinen, ‘‘A multi-layer sparse coding
network learns contour coding from natural images,’’ Vision
Res. 42, 1593–1605 (2002).

43. J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-
celli, ‘‘Adaptive Wiener denoising using a Gaussian scale
mixture model in the wavelet domain,’’ in Proceedings of the
International Conference on Image Processing (Institute of
Electrical and Electronics Engineers, New York, 2001).

44. R. Durbin and G. Mitchison, ‘‘A dimension reduction frame-
work for understanding cortical maps,’’ Nature (London)
343, 644–647 (1990).

45. W. S. Geisler and D. G. Albrecht, ‘‘Cortical neurons: isola-
tion of contrast gain control,’’ Vision Res. 32, 1409–1410
(1992).

46. D. Heeger, ‘‘Normalization of cell responses in cat striate
cortex,’’ Visual Neurosci. 9, 181–198 (1992).

47. K. Matsuoka, M. Ohya, and M. Kawamoto, ‘‘A neural net for
blind separation of nonstationary signals,’’ Neural Net-
works 8, 411–419 (1995).

48. D.-T. Pham and J.-F. Cardoso, ‘‘Blind separation of instan-
taneous mixtures of non-stationary sources,’’ in Proceedings
of the International Workshop on Independent Component



1252 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 Hyvärinen et al.
Analysis and Blind Signal Separation (ICA2000) (Helsinki
University of Technology, Espoo, Finland, 2000), pp. 187–
193.

49. R. F. Engle, ed., ARCH: Selected Readings (Oxford U.
Press, Oxford, UK, 1995).

50. B. A. Olshausen and D. J. Field, ‘‘Sparse coding with an
overcomplete basis set: a strategy employed by V1?’’ Vi-
sion Res. 37, 3311–3325 (1997).

51. A. Hyvärinen and M. Inki, ‘‘Estimating overcomplete inde-
pendent component bases from image windows,’’ J. Math.
Imaging Vision 17, 139–152 (2002).

52. A. Pece, ‘‘The problem of sparse image coding,’’ J. Math. Im-
aging Vision 17, 87–106 (2002).

53. B. A. Olshausen, P. Sallee, and M. S. Lewicki, ‘‘Learning
sparse image codes using a wavelet pyramid architecture,’’
in Advances in Neural Information Processing Systems,
(MIT Press, Cambridge, Mass., 2001), Vol. 13, pp. 887–893.

54. P. Paatero and U. Tapper, ‘‘Positive matrix factorization: a
non-negative factor model with optimal utilization of error
estimates of data values,’’ Environmetrics 5, 111–126
(1994).

55. D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by
non-negative matrix factorization,’’ Nature (London) 401,
788–791 (1999).

56. P. O. Hoyer, ‘‘Modeling receptive fields with non-negative
sparse coding,’’ in Computational Neuroscience: Trends in
Research 2003, E. De Schutter, ed. (Elsevier, Amsterdam,
The Netherlands, 2003).

57. D. R. Tailor, L. H. Finkel, and G. Buchsbaum, ‘‘Color-
opponent receptive fields derived from independent compo-
nent analysis of natural images,’’ Vision Res. 40, 2671–2676
(2000).

58. T. Wachtler, T-W. Lee, and T. J. Sejnowski, ‘‘Chromatic
structure of natural scenes,’’ J. Opt. Soc. Am. A 18, 65–77
(2001).

59. P. O. Hoyer and A. Hyvärinen, ‘‘Independent component
analysis applied to feature extraction from colour and ste-
reo images,’’ Network Comput. Neural Syst. 11, 191–210
(2000).


