
Bubbles: Adaptive Routing Scheme for High-Speed Dynamic

Networks

�

(Preliminary Version)

Shlomi Dolev

y

Evangelos Kranakis

z

Danny Krizanc

z

Abstract

We present the �rst dynamic routing schemes for high-speed networks. The scheme is

based on a hierarchical bubbles partition of the underlying communication graph. We rank

dynamic routing schemes by their adaptability, i.e., the maximum number of sites to be

updated upon a topology change.

We consider the case in which each node in the network may be directly connected with

at most � neighboring nodes. An advantage of our scheme is that it implies small number

of updates upon a topology change. In particular, for the case of constant � we prove that

our scheme is optimal in its adaptability by presenting a matching tight lower bound.

Our bubble routing scheme is a combination of a distributed routing data-base, a routing

strategy and a routing data-base update. We show how to perform the routing data-base

update on a dynamic network in a distributed manner.

1980 Mathematics Subject Classi�cation: 68Q99

CR Categories: C.2.1

Key Words and Phrases: Adaptability, Dynamic, Fiber Optic, Network, Routing

Carleton University, School of Computer Science: SCS-TR-253

Note: This paper will be submitted for publication elsewhere.

�

Research supported in part by NSERC (Natural Sciences and Engineering Research Council of Canada)

grant.

y

School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada and Department of

Computer Science, Texas A&M University, College Station, TX 77843, USA. Email: shlomi@cs.tamu.edu.

z

School of Computer Science, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. Email: fkranakis,

krizancg@scs.carleton.ca.



1 Introduction

The advent of �ber-optic technology dramatically changes the characteristics of distributed

networks. It also improves the capabilities of distributed networks because it gives them the

potential of supporting new services such as multimedia and real-time applications. Traditional

algorithms designed for the point-to-point classical model of distributed networks may neither

�t the new characteristics of the high-speed network nor support the new tasks it is capable

of achieving. The relation between the bandwidth of a �ber-optics cable (on the order of a

Gigabit per second) and the speed of a processor implies a bottleneck in the process time

as opposed to the communication time. Therefore, high-speed networks use a fast switching

subsystem in order to utilize the power of the �ber optic cables.

Algorithms for basic tasks that match the new network structure are of interest. In (high-

speed) distributed networks messages are used for communication between di�erent sites. A

message sent from one site to another is transferred through the network according to a routing

scheme. The routing scheme ensures that the message is forwarded towards its destination. The

routing scheme serves the basic communication primitive in the network | message delivery.

Being such a basic component, the performance of the distributed network as a whole may be

dominated by the quality of the routing scheme. Thus, �nding an e�cient routing scheme is

one of the most important tasks in distributed networks.

Imagine a network in which users may be connected and disconnected upon request. Users

may migrate from one geographical region to another causing a change in the demand for

services at di�erent parts of the network. Assume further that the network spans the entire

world and a single user (or a network junction) changes its location from one street of New York

to another: is it reasonable to update the entire network with a new routing data-base? We

would not like the entire distributed network to be updated upon each such dynamic change.

In fact we would like to minimize the e�ect of a topology change as much as possible.

Beyond planned topology changes, such as users migration, some transient topology changes

may take place due to a failure of communication links or processors. One would like the

network to automatically change the routing data-base to re
ect the new topology upon the

change. The resources used by such distributed routing data-base update (messages and time)

have an inherent relation with the number of sites that have to change their portion of the

distributed routing data-base.

We distinguish between static and dynamic routing schemes. A static routing scheme is

a combination of a distributed routing data-base and a �tting routing strategy. The routing

data-base is tailored to the network topology. Whenever the network changes its topology,

a new distributed routing data-base is assigned to the network possibly changing the routing

data-base portion of each processor. A dynamic routing scheme has in addition a �tting routing

data-base update. Upon a topology change (e.g. link addition or removal) this �tting routing

data-base update would change the distributed data-base only in a limited number of sites. We

rank the dynamic routing schemes by their adaptability, i.e., the maximum number of sites to

1



be updated upon a topology change. By this de�nition static routing schemes are associated

with adaptability that is in the order of the number of nodes in the network.

The e�ciency of a dynamic routing scheme is measured not only by its adaptability. It is

also measured by the time and memory complexities associated with it. The time performance

is measured by a stretch factor | the maximal ratio (over all possible origin-destination pairs)

between the number of packets produced in order to deliver a message from an origin to a

destination using the scheme and the minimal number of packets required for this delivery.

The memory complexity is the total number of bits used for the routing data-base

1

.

Previous work: Many clever routing schemes and lower bounds for the resources required

for routing in point-to-point networks were presented in the past. The �rst set of works were

mostly designed for special classes of networks like trees [SK85], complete networks [vLT86],

and grids [vLT87]. Then routing schemes for general networks were presented in [PU89],

[AB+90] and [AP92].

Unfortunately, most of the success in this �eld is for static networks. Few papers consider

the dynamic property of the network. The following quotation is taken from [SK85]: \In actual

network the topology may vary in time; in particular, nodes or links may be added or deleted".

[SK85] present a partial solution for limited cases of topology changes that keep the network

in a tree structure. In [AGR89] it is argued that network changes in static routing schemes

(such as [PU89], [AB+89]) \require expensive pre-processing to reconstruct the routing scheme

over the whole network. The newly constructed structure is used until the next change...". In

contrast [AGR89] design a routing scheme for the restricted case of dynamic growing trees.

The solution of [AGR89] can handle neither link nor processor failures nor can it be applied

to the case of general graphs.

The previous works mentioned above are for the traditional point-to-point communication

network. Those solutions are not applicable for the �ber optic high-speed networks of today.

Recently, [GZ94] presented static routing schemes for high-speed networks. The scheme stat-

ically assigns links along a path to act as a virtual long link. Upon a single topology change

the entire routing data-base might have to be updated.

Contributions of this paper: In this work we present the �rst dynamic routing scheme

for high-speed networks. We present a family of hierarchical bubbles schemes. The intuition

behind this structure is the behavior of natural bubbles. Assume a partition of a space into

bubbles. Whereas bubbles may lose air (members are disconnected) or blow up (new members

are inserted) we want to avoid total change of every bubble structure upon a change at a single

bubble. We de�ne an upper and lower threshold for the size of a bubble. When the upper

threshold is reached the bubble is split into two bubbles. When the lower threshold is reached

the bubble is combined with a single neighboring bubble which \swallows" the small bubble

(and then is split if necessary).

1

Note that there is an interesting relation between the adaptability and the memory requirement e.g., it is

clear that the worst case in terms of adaptability and memory requirement is when the entire topology is stored

in the memory of each processor. Roughly speaking, both the adaptability and the memory requirements gain

when the processors have less information on the system.

2



We consider the case in which each node in the network may be directly connected with

at most � neighboring nodes. This is the case in reality where the number of communication

ports of a single processor is limited. For the case of constant � we prove that our scheme is

optimal in its adaptability by presenting a matching tight lower bound.

Our bubble routing scheme is a combination of a distributed routing data-base, a routing

strategy and a routing data-base update. We present a distributed routing data-base update

for dynamic changing networks.

The rest of the paper is organized as follows. The de�nition of the problem appears in

Section 2. Section 3 presents three routing schemes: The multiple spanning trees, the single

leader, and the bubbles. The �rst two are brought as examples for our complexity measures

and a base for comparison with the bubbles scheme. See �gure 1 for the comparison summary.

Section 4 presents a lower bound on the adaptability of any routing scheme. The distributed

update of the bubbles routing data-base is sketched in Section 5. Concluding remarks are given

in Section 6.

Stretch Factor Memory Required Adaptability

Multiple Trees 1 O(n

2

logn) O(n)

Single Leader 2 O(n

2

log �) O(n)

Bubbles k O((k� 1)n

2

log �) O(k3

k�1

�

2

n

1=k

)

Figure 1: Comparison of Routing Schemes

2 De�nition of the Problem

2.1 High-Speed Dynamic Network

We consider the high-speed model of a communication network as described in [CG88]. The

network is described by an undirected graph G = (V;E). The vertices, V = f1; : : : ; ng,

represent the processors of the network (where n is essentially an upper bound on the number

of processors in a connected component). The edges of the graph represent bidirectional

communication channels between the processors. Each processor consists of two components,

a switching subsystem and a node control unit that are connected by a virtual link. The

switching subsystem is a fast and simple hardware device that switches arriving packets to the

appropriate communication link or to its node control unit. Within the switching subsystem

each communication link (including the virtual link to the switching subsystems' node control

unit) has a unique label. When a packet p arrives at a switching subsystem and the header

of p contains at least one label, then the switching subsystem removes the �rst label, l, and

the shortened packet is sent on the link with label l. The node control unit of each processor

contains the processing hardware and software necessary to extract the information content

3



of messages (delivered in the packets), do internal computation, and generate packets to be

forwarded to other nodes via the processor's switching subsystem.

Due to the above network architecture, it is assumed that a message sent from any proces-

sor, P , to any destination, Q, in the network may arrive in one time unit provided the labels

along the entire path from P to Q are known to P .

The network is dynamic in the strong sense: processors and links may crash and recover

arbitrarily. However, the number of edges connected to a node P , which we call the degree of

P , does not exceed �.

2.2 Complexity Measures for Routing Schemes

The routing of packets in the network is done according to a distributed routing data-base

maintained by the node control unit and a �tting routing strategy and data-base update.

Stretch Factor: The stretch factor of a routing scheme is the ratio between the number of

packets generated by the scheme and the optimal number of packets generated in order to send

a message from one node control unit to another. Obviously, a single packet is su�cient when

every processor knows the entire topology (including the link labels). Thus, the ratio of a

routing scheme is the maximum number of packets generated by node control units to deliver

a message sent from one node control unit to another.

Memory: The memory complexity is the total number of bits maintained by the node control

units for the routing data-structure.

Adaptability: A single topology change C occurs when a single processor or a single link joins

(or recovers) or leaves (or crashes) the system. Note that for any two topologies T

1

and T

2

there exist a �nite sequence of single topology changes C

1

; C

2

; : : : that transfer T

1

into T

2

. For

example the sequence can start with adding all the processors that do not appear in T

1

but do

appear in T

2

, one processor at a time. Then links are added in a similar fashion. Finally, links

and then processors are removed to form T

2

.

Ideally a topology change causes only very limited number of processors to change their

portion of the routing distributed data-base. Thus, we choose the adaptability measure to be

the maximum number of processors that have to change their portion of the routing distributed

data-base upon a single topology change.

We �rst ignore the issue of how the routing data-base is updated upon a topology change

and only count the number of processors that have to change their routing data-base. Then

we present a distributed update for the bubbles routing scheme which we call bubbles update.

Distributed adaptability: is the maximal number of node control units that have to par-

ticipate in the distributed routing data-base update upon a single topology change.

The distributed adaptability of our bubbles update is in the same order of the (centralized)

adaptability, and thus is optimal too.

4



3 Routing Schemes

3.1 Multiple Spanning Trees

The simplest routing scheme for our network is the multiple spanning trees routing scheme.

Routing Distributed Data-base: The routing distributed data-base is a description of a

spanning tree of the entire topology at each processor.

Routing Strategy: The routing strategy is to use the entire path given by the routing

distributed data-base.

Routing Update: The routing update has to change the distributed routing data-base upon

every processor addition and removal as well as upon removal of a link used as part of a

spanning tree by some processor. The update would change the spanning trees representation

in an obvious way.

The stretch factor is de�ned with relation to this scheme | where a single packet is

generated for the delivery of a message. The next two lemmas state the memory requirements

and adaptability of the multiple spanning trees routing scheme.

Lemma 3.1 The memory requirement of the multiple spanning trees scheme is n

2

(logn+log �)

bits.

Proof: n(log n+ log �) bits are required in order to describe a spanning tree with link labels

for every processor. The description is by the use of parentheses form.

Lemma 3.2 The adaptability of the multiple trees scheme is n.

Proof: By the fact that a single crash or recovery of a processor requires the update of the

tree of every processor.

The following theorem summarizes the properties of the multiple trees routing scheme.

Theorem 3.3 The multiple trees routing scheme has the following properties:

(1) Stretch factor = 1.

(2) Memory requirement = n

2

(logn+ log �).

(3) Adaptability = n.

5



3.2 Single Leader

Routing Distributed Data-base: Only a single processor, L, has a spanning tree of the

entire topology. Every other processor, P , has the path description to L, path

L

. path

L

is a

list of link labels that de�nes a path from P to L.

Routing Strategy: To deliver a message m to a processor Q a packet (path

L

; Q;m) is sent

to L and then L sends a packet (path

Q

; m) to Q.

Routing Update: The routing update has to change the distributed routing data-base upon

the leader failure, processors' addition, processors' removal, a failure of a link along a path

used by some processor to reach the leader, an addition of a link that connects two connected

components. For a given choice of a single leader the update is de�ned in a natural way.

The stretch factor is two since at most two packets are generated for each message.

The next two lemmas state the memory requirements as well as the adaptability of the single

leader scheme.

Lemma 3.4 The memory requirement for the single leader routing scheme is bounded by

n(logn + log �) + (n� 1)n log �.

Proof: The description of a spanning tree of the entire topology requires n(logn+log �) bits

as explained in the proof of Lemma 3.1. The description of a path from a processor P to L

includes at most n link labels. Each link label requires log � bits. Thus, each processor but L

uses at most n log � bits for the routing data-base.

Lemma 3.5 The adaptability of the single leader scheme is n � 1.

Proof: A topology change that may cause every processor to change its topology data-base

is a crash of L. Upon such a crash every processor should change the path, path

L

, to reach a

new leader.

The following theorem summarizes the properties of the single leader routing scheme.

Theorem 3.6 The single leader routing scheme has the following properties:

(1) Stretch factor = 2.

(2) Memory requirement = n(logn+ log �) + n

2

log �.

(3) Adaptability = n� 1.

6



3.3 Bubbles

Routing Distributed Data-base: Given a list of k integers x

1

; x

2

; � � �x

k

, where x

1

= n

and x

i

> �x

i+1

, the communication graph G is partitioned into connected components called

bubbles.

The partition is done in levels. The �rst level is a single bubble of the entire graph. We

say that the �rst level is illegal since no partition can take place at this level. If the number

of processors in G is greater than x

2

then each of the second level bubbles includes at least x

2

processors and at most �x

2

processors. Otherwise, no partition can take place at the second

level and the bubble of the second level is illegal too.

Then, every bubble of the second level (whether it is legal or not) is further partitioned into

third level bubbles that include at least x

3

processors and at most �x

3

processors. Similarly if

G contains less than x

3

processors then the bubble of the third level is illegal. The i'th level of

the bubble partition is a partition of the graph into connected components each containing at

least x

i

processors and at most �x

i

processors. The de�nition of an illegal bubble is naturally

applied to the i'th level. Typically we choose x

i

= dn

(k�i+1)=k

e. The next theorem uses a

technique presented in [Va81].

Theorem 3.7 Every graph has a bubble partition.

Proof: The proof is by presenting a partition algorithm. Choose an arbitrary node of the

graph, R, and construct a spanning tree, T

R

, rooted at R with directed edges towards the

leaves.

We use T

R

in the presentation of the algorithm that partitions T

R

into a forest of spanning

trees of the second level bubbles. Then we show how each tree of the forest is further partitioned

into spanning trees of all the other levels.

The algorithm has three steps:

(1) Mark every node, P , in T

R

by, M

P

, the total number of processor in the subtree rooted

at P . If M

R

� �x

2

then terminate.

(2) Find a processor P with M

P

� x

2

, but all of whose children Q satisfy M

Q

< x

2

and

disconnect the edge leading to P .

(3) Assign T

R

to be the connected tree rooted at R following (2) and goto (1).

Obviously, each edge disconnection results in a bubble of size at least x

2

and no larger than

�x

2

. We now show that every execution of step two results in a new bubble. Step two is

executed only when M

R

> �x

2

; thus R must have a child Q with M

Q

> x

2

; if Q has no child

with more than x

2

nodes in its subtree then the subtree rooted at Q is disconnected to form

a spanning tree of a new bubble. Otherwise, let S be the child of Q with M

S

� x

2

and repeat

7



the arguments used for Q. Since the number of nodes in T

R

is �nite eventually a new bubble

is disconnected from T

R

. The fact that any execution of step two results in a new bubble and

the fact that T

R

is �nite implies the termination of the algorithm.

Now we show that if the number of nodes in G is at least x

2

then when the algorithm

terminates x

2

� M

R

� �x

2

. The termination condition of step one implies that when the

algorithm terminates it holds that M

R

� �x

2

. If the number of processors in G is also smaller

than �x

2

then we are done. Otherwise, there exist at least one bubble partition. Examine the

last partition executed at step two before the termination of the algorithm. Right before this

partition M

R

is greater than �x

2

and during the partition no more than (� � 1)(x

2

� 1) + 1

nodes are disconnected from T

R

leaving at least �x

2

� (�� 1)x

2

+(�� 1)� 1 = x

2

+ �� 2 � x

2

nodes that are connected to R.

Essentially the same algorithm is used in order to partition any bubble of level i � 1 into

bubbles at level i. We use the portion of T

R

that spans the bubble at level i� 1 and partition

it into a forest. In order to partition the connected component that is formed by every bubble

of level i� 1 the algorithm uses x

i

instead of x

2

.

Next we describe the distributed routing data-base by the use of the bubble partition. We

use B

i

to denote a bubble at level i. For every bubble at level k choose one node of the bubble

to be a leader. De�ne the members of a bubble B

k�1

to be all the bubble leaders of level k that

reside in the connected component of B

k�1

. In addition, we de�ne the nodes that reside in a

k'th level bubble, B

k

, to be members of B

k

. In general any leader of a bubble B

i

, 1 < i � k,

is a member of a bubble B

i�1

and every bubble, but the single bubble of level one B

1

, has a

single leader which is one of its members.

Figure 2 depicts a partition of a graph into bubbles. First a spanning tree is constructed

(the upper part of the �gure) then the spanning tree is partitioned into bubbles of level two

and three (lower parts of the �gure). In Figure 3 we show the way the members of the bubbles

are chosen. The member of a bubble at level three are the nodes that reside in the bubble

(omitted from the �gure description). For each bubble at level three a single leader is chosen

(e.g. A, D, E) this leader is a member of the bubble of level two in which it resides. For every

bubble at level three a leader is chosen among its members (e.g. D, G).

For every bubble B

i

let T B

i

be a representation of the spanning tree portion of the bubble

2

.

In the sequel we refer to both the description of the spanning tree and the spanning tree itself

by T B

i

. The spanning tree T B

i

is a combination of the spanning trees of the bubbles of level

i+1'st that resides in B

i

(in the sequel we show that this property is important for the bubble

partition upon a topology change).

T B

i

is known to every member of B

i

. In addition every member of B

i

, k � i > 1, that is

not the leader of B

i

has a path description to its bubble leader. Note that every member of B

1

maintains T B

1

in its memory which is a spanning tree of the entire communication graph.

2

The representation of the spanning tree can be extended to include the full topology of the bubble by

increasing the memory requirement by a factor of �.

8



Routing Strategy: P delivers a message m to a processor Q by the following procedure: Let

i � k be the lowest bubble level that P is a member in and say this bubble is B

i

. P searches

for Q in the spanning tree description T B

i

. If Q is not found in T B

i

then P sends the packet

(path

L

; Q;m) to the leader of B

i

. The leader, L, of the bubble B

i

is a member of a bubble

at level i � 1, say B

i�1

. When the packet reaches L, L checks T B

i�1

and sends the packet

(path

Q

; m) to Q upon �nding Q. Otherwise, when Q is not found in T B

i�1

then L sends the

packet (path

L

0

; Q;m) to its leader L

0

. This procedure must terminate at a member of B

1

since

every member of B

1

has a spanning tree description of the entire communication graph namely,

T B

1

.

Centralized Bubbles Update: We now present the strategy for each topology change. The

strategy is centralized as if an outside operator changes the distributed routing data-base.

We use the following de�nitions:

De�nition 3.1 Two bubbles B

0

l

and B

00

l

both at level l are called tree-neighboring bubbles if

the following two conditions are satis�ed:

(1) B

0

l

and B

00

l

reside in the same bubble, say B

l�1

.

(2) There exists a tree link of T B

l�1

that connects T B

0

l

with T B

00

l

.

De�nition 3.2 The combination of two tree-neighboring bubbles B

0

l

and B

00

l

that belong to

the same bubble B

l�1

results in a bubble B

l

that is obtained by connecting T B

0

l

and T B

00

l

using

a tree-link of T B

l�1

. (Typically the combined bubble includes less than �x

i

+ x

i

nodes.)

De�nition 3.3 The split of a bubble B

i

is done according to the algorithm presented in Theo-

rem 3.7. The algorithm chooses one of the nodes of B

i

to be R and directs T B

i

from R towards

the leaves. Then steps (1) to (3) of the algorithm are executed using x

i

instead of x

2

. (Note

that only a single split is executed for a combined bubble of less than �x

i

+ x

i

nodes.)

As detailed below there are four possibilities for topology changes:

Link Removal: If the removal of the link does not partition the spanning tree of any bubble

then no change of the bubbles routing data-base is required

3

.

If the spanning tree of a bubble is disconnected then the link removal is handled at each

level starting with level one. Let B

l

be the bubble whose tree T B

l

has been disconnected.

T B

0

l

and T B

00

l

denote the two portions of the broken T B

l

, while T B

0

l�1

and T B

00

l�1

,

respectively, denote the trees in which T B

0

l

and T B

00

l

reside. Each of these portions is

combined with a tree neighboring bubble. Then the combined bubble is split if it include

more than �x

l

members. The members of B

l

and the two tree neighboring bubbles have to

3

If T B

i

is extended to include the full topology of the bubble then a change takes place at every T B

i

of any

member of a bubble to which the removed link belonged. Since each link belongs to at most k bubbles the number

of members that are updated is less than k times the maximal number of members e.g. for x

i

= n

(k�i+1)=k

the

total number of processors that need to update their routing data-base is k�n

1=k

.

9



update the spanning tree description of their bubble. Note, that the number of members

of B

l

together with the members of the two tree neighboring bubbles is at most 3�x

l

=x

l+1

.

Now we analyze the number of processors that have to be updated in level l + 1. The

removal of the link may disconnect a bubble at level l + 1 as well. In addition at most

two split operations take place at level l. Since the bubbles at level l + 1 that resides

in a bubble B

l

are connected components of T B

l

it holds that a split of T B

l

causes at

most one split of a bubble at level l + 1. Thus, there are at most three tree links that

disconnect bubbles at level l + 1. For each of these links we use the same procedure we

used for the single link removal at level l. Thus, the number of processors that have to

update their routing data-base is no more than 9�x

l+1

=x

l+2

.

Similarly, the number of links that are removed at level l + i is 3

i

and the number of

processors that have to update their data-base is 3

i

�x

l+i

=x

l+i+1

(where l + i � k and

x

k+1

= 1).

Link Addition: An addition of a link that does not connect two previously separated

connected components does not change the routing data base. An addition of a link that

does connect two previously disconnected components G and G

0

is handled as follows.

Let T B

0

1

be the spanning tree of G before the link addition and let T B

00

1

be the spanning

tree of G

0

before the link addition. Connect T B

0

1

with T B

00

1

using the new link to form a

spanning tree T B

1

of the new connected communication graph. Update every member of

B

1

with the new T B

1

. Continue with levels two up to k one at a time. For level 2 � i � k

if the new link connects two legal bubbles then no update operations are triggered by

level i. Otherwise, when the new link connects at least one illegal bubble then combine

the illegal bubble with the new tree neighboring bubble and split the combined bubble if

necessary. The split operation may result with a link removal at the next level. This is

handled by the link removal procedure described above. Then the update for level i+ 1

may be started.

Node Addition or Removal: Both the addition and the removal of a node can be described

in terms of addition and removal of links. The addition is handled by �rst adding a link

that connects two separated connected components one of which is the single node. Then

adding the rest of the links one by one. Node removal is done by removing one link at a

time and then removing the node.

The next three lemmas state the stretch factor, the memory requirement and the adapt-

ability of the bubble routing scheme. For these lemmas we use x

i

= n

(k�i+1)=k

.

Lemma 3.8 The stretch factor of the bubble routing scheme is bounded by k.

Proof: In the worst case a processor P that is only a member in level k sends a packet to

its bubble leader, Q, that is a member at level k � 1, and so on. With no more than k � 1

packets a member of level 1 is reached; this member knows T B

1

and sends a direct packet to

the destination of the message.

10



Lemma 3.9 The memory requirement for the bubble routing scheme is bounded from above by

k�n

1+1=k

(logn+ log �) + (k � 1)n

2

log �.

Proof: Every processor maintains a spanning tree of the lowest bubble it is a member of.

The members of bubbles at level i maintain a spanning tree of at most �n

(k�i+1)=k

nodes. This

requires �n

(k�i+1)=k

(logn + log �) bits. Since there are at most n

i=k

members at level i the

memory requirement for the i'th level is �n

(k�i+1)=k

(logn+ log �)n

i=k

= �n

1+1=k

(logn+ log �)

bits.

Each non-leader processor in G

i

has a path of at most n hops to its leader. This requires

n log � bits. Note that members at level one does not need a path to their leaders. Thus, the

total memory used is bounded from above by k�n

1+1=k

(logn+ log �) + (k � 1)n

2

log �.

Lemma 3.10 The adaptability of the bubble routing scheme is bounded from above by

k3

k�1

�

2

n

1=k

.

Proof: Obviously, the number of processors that change their routing data-base is greatest

when a processor is removed. This number is bounded from above by the e�ect of removal of �

links one at a time. The removal of a link that partitions a spanning tree of a bubble at every

level implies the largest number of updates. Such a link removal requires at most n

1=k

updates

of the members of B

1

. We continue our analysis according to the description of the link removal

procedure. The members of 3

i�1

bubbles at level i have to change their routing data-base.

Thus, the number of updates at each level is no more than 3

k�1

�n

1=k

. Therefore, the total

number of processors that are updated upon a node removal is no more than k3

k�1

�

2

n

1=k

.

The following theorem summarizes the properties of the bubbles routing scheme.

Theorem 3.11 The bubble routing scheme has the following properties:

(1) Stretch factor = k.

(2) Memory requirement = k�n

1+1=k

(logn+ log �) + (k � 1)n

2

log �.

(3) Adaptability = k3

k�1

�

2

n

1=k

.

4 Lower Bounds

In this section we prove a lower bound on the adaptability for graphs with bounded degree �

and stretch factor k.

Given any source-oblivious routing scheme with stretch factor k we build a spanning tree

T

k

as follows. The root of the spanning tree is a processor P . Assume that every processor is

to send a message m to P and connect each processor Q with the destination of its �rst packet

when Q sends m to P . The depth of a tree is the maximal number of edges from the root to a

leaf.

11



Claim 4.1 T

k

is of depth no more than k.

Proof: Otherwise the stretch factor is greater than k.

Claim 4.2 There exists at least one node in T

k

with at least n

1=k

subtrees.

Proof: There are n processors in T

k

and the depth of T

k

is k. Thus, by the pigeon-hole

principle there must be a node with at least n

1=k

subtrees.

Theorem 4.3 Any source oblivious routing scheme with stretch factor k has adaptability


(n

1=k

) in a communication graph of constant degree.

Proof: Let Q be a processor that has at least n

1=k

subtrees in T

k

. Q is connected to the

rest of the processor in G by at most � links. Thus, by the pigeon-hole principle there must

be a link, (Q;R), used by at least n

1=k

=� processors in sending their �rst packet to carry

the message to P . We now show a sequence of at most three topology changes that implies

n

1=k

=(3�) adaptability. If a disconnection of (Q;R) does not partition the communication

graph then obviously n

1=k

=� processors must change their routing data base.

Now we analyze the case in which (Q;R) does partition the graph. We need to show that

there exists a sequence of changes that preserve the bound on the degree � and force an omis-

sion of the link (Q;R) from the routing tables. We claim on two di�erent cases.

Case 1: Before the disconnection of (Q;R) G is a tree and the number of processors is greater

than two. In this case following the disconnection of (Q;R) there must be at least one leaf

X 62 fQ;Rg, say w.l.o.g. in the connected component of Q. The connection of X to R is

possible without exceeding �.

Case 2: Before the disconnection of (Q;R) G contains at least one cycle. In this case fol-

lowing the disconnection one of the connected components must contain a cycle (otherwise no

partition would take place). Let (X; Y ) be a link in this cycle. W.l.o.g assume that (X; Y ) is

in Q's connected component and X 6= Q. Disconnect (X; Y ) and connect X to R. Again the

connection of X to R is possible without exceeding �.

Thus at most three topology changes cause n

1=k

=� processors to change their routing data-base.

5 Distributed Bubbles Update

So far we have not been concerned with the issue of how to distribute the bubbles update algo-

rithm. Still the above upper bound for the adaptability of the bubble routing scheme is useful

12



Figure 2: Bubble Partition k = 3

13



A

B

C

D

E

F

G

H

I J

K

L

M

N

O

P

Q

R

S

T

W

X

Y

Z

U

D

T

P

Q

S

Z

G

Figure 3: The members at level 2 and level 1

14



for the case of manually adding and removing links and nodes. This is the case for telephone

networks where new users may be connected and existing users may be disconnected. However,

our results are made stronger by handling automatically topology changes while keeping the

low adaptability. For the sake of keeping a low adaptability we introduce a distributed bubbles

update algorithm that can cope with transient failures and recoveries as well as permanent

disconnections and connections.

The distributed bubble update uses additional features of the switching subsystem. Each

link connected to the switching subsystem has, in addition to the unique link label, a set of

labels that may be controlled by the node control unit. It is also assumed that each switching

subsystem has a sack variable which may be modi�ed by the node control unit. This sack

variable can be collected by a special arriving message. We also assume that an arriving

message may be concatenated with the label of the link through which it arrived. Note that no

direct modi�cation of the set of labels or the sack variable by an arriving message is allowed.

The main idea for the distributed bubble update is to have the processors neighboring a

topology change to be the monitor of the change. The task of the monitor is (1) to collect

information on the tree structure it belongs to and on the existing routing data-base, (2) to

try to merge with other neighboring trees and (3) to modify the existing routing data-base to

�t the current topology. The modi�cation should be performed in a way that involves the least

number of node control units.

Towards this end we assume that the sack variable of every processor contains its portion

of the distributed routing data-base. The spanning tree link T B

1

is distributively marked on

edges of the system. The two end points of a tree link are marked by a label T . In the sequel,

we use the term marked tree to be the graph obtained by the set of marked links and the node

they connect. Upon failure of a tree links the marked tree of a connected component may

essentially be a marked forest that has to be fused to a new marked tree. Each tree in the

forest is an autonomous entity with a monitor. The monitors of trees in the forest negotiate in

order to promote a non tree link into a tree link. Upon such a promotion the number of trees

(and monitors) in the forest is reduced by one. More details follow.

A monitor is associated with the time of the topology change that created it. We assume

the existence of a synchronized clock at every processor. Each monitor uses the marked tree it

belongs to for tree broadcast with feedback (in short TBF). The TBF collects the information

in the sacks of every processor that belongs to the tree and delivers the information to the

monitor. The monitor initiates the TBF by sending a message with its identi�er, the timestamp

of its creation and a TB (tree-broadcast) label on every marked tree link. Every switch that

receives a message m of type TB concatenates the unique label of the link through which m

arrived to the end of the message and forwards a copy of the message to each link that is

labeled T except the link through which m arrived. If no other tree link exists (the switch is a

leaf in the marked tree) then the switch modi�es the message as follows: TB is replaced by TF

(tree-feedback) the labels at the end become the address of the message (that transfer it back

to the TBF initiator ), and the content of the sack is concatenated to the end of the message.

When a switch receives a TF message it removes the �rst label of the message arrived and

15



concatenates the value of its sack to the tail of the message.

A processor P starts to act as a monitor when: Either one of the tree links attached to

it fails or an attached link recovers. A monitor marks the label that leads from its switching

subsystem to itself byM . This enables the switching subsystem to deliver a copy of every BF

message to its node control unit when the node control unit is a monitor. Then the monitor

waits for a period of time that ensures the completion of every ongoing corrections and collects

information on its tree and the distributed routing data-base of this tree. This is done by the

tree broadcast with feedback mechanism. Whenever a tree broadcast with feedback of another

monitor arrives to P and the timestamp of the arriving TBF is greater (breaking ties by the

monitors identi�ers) then P stops being a monitor.

Upon receiving the information from the tree broadcast with feedback P checks whether

there are neighboring processors that do not belong to its tree. If such neighboring processor

exists P sends a promote message to the processor Q attached to the link with the highest

lexicographic order

4

that leads to a neighboring tree. Q becomes the monitor and enquires the

other side on the possibility to merge. Upon receiving an accept message the link changes its

status to a tree link and the monitor with the smaller identi�er sends the information collected

in its TBF to its neighbor. At the same time it stops being a monitor. When there is no

further possibilities to merge the corrections of the routing data base is sent to the appropriate

node control units, and the processor that acted as a monitor resumes operation as a regular

processor.

Lemma 5.1 In every instance of time and for every connected component, if the marked tree

does not span the entire connected component then for each tree in the forest there exists at

least one monitor.

Proof: This is true in the �rst instance of the system. Further topology changes keep this

invariant. A monitor stops existing only when there exist another monitor in the same tree or

when the marked tree spans the entire connected component.

Lemma 5.2 If no monitor exists in a connected component then the distributed routing data-

base of this connected component is correct.

Proof: For every connected component of more than a single processor there has been an

instance in which one processor of this connected component has been a monitor. The instance

that follows a connection of any two neighboring processors by a link. The last processor that

stopped being a monitor in this connected component must have �nished the right corrections

of the distributed routing data-base.

4

The name of a link is de�ned by the identi�ers of the two processors that are attached to it. The �rst

identi�er in the pair is always greater than the second. Then the names of the links may be lexicographically

ordered in a natural way.

16



Lemma 5.3 Some time following the last topology change no monitor exists.

Proof: The tree broadcast with feedback terminates. Then the monitor may wait for a

promotion of a link into a tree link. Assume towards contradiction that the monitor waits for

some link promotion forever. This in turn implies that the monitor of the other tree portion

is waiting on another edge that has greater identi�er. Since links that are to be promoted into

tree links are chosen according to lexicographical order this chain of waiting monitors is �nite

and must end with two monitors waiting on the same edge.

Theorem 5.4 The number of node control units that participate in a routing update upon a

single topology change is of the adaptability order.

Proof: Only monitors and the node control units that have to change their distributed rout-

ing data-base participate in the distributed bubbles update. The number of monitors is no

more than 2� for a topology change: At most � are directly in
uenced and another � are

because of monitors migration.

Note that during the correction process of the distributed routing data-base by one monitor

a topology change might take place stopping the update before its completeness. Never the

less, the partial correction process took place in a limited number of bubbles (as explained for

the centralized case) leaving most of the bubbles una�ected. Thus, the number of node control

units that have to change their distributed routing data-base following c topology changes is

O(ck3

k�1

�

2

n

1=k

).

The theorem is proved since the additional O(�) monitors does not change the

O(k3

k�1

�

2

n

1=k

) adaptability.

6 Concluding Remarks

In this paper we de�ned new measures for the e�ciency of routing schemes for high-speed

dynamic networks. We demonstrated the applicability of these measures by presenting the

bubbles routing scheme. Many variants of our bubble routing scheme are possible. We now

mention some of them.

� As shown in the analysis of the topology changes (in Section 3.3) the number of bubbles

to be updated upon a topology change grows rapidly with the level index. In order to

improve on the complexity of the adaptability (as a function of k), one would choose to

have bubbles of di�erent number of members at each level | the number of members

shrinks for higher levels. When x

i

= d1=3

i�1

n

(k�i+1)=k

e the number of bubble members

that are e�ected at each level is the same. Resulting in an O(k�

2

n

1=k

) adaptability.

17



� For certain graphs a di�erent bubbles construction may �t better. These graphs are

characterized by their small (e.g. constant) bubble degree denoted by �. The bubble degree

of a graph G is the maximal number of links, over all possible connected components of

G, that connects a node in the connected componet with a node outside the connected

componet. One obvious example for a graph with small � is a ring or a chain (dynamic

networks with � = 2). In such a case the graph may be partitioned �rst into bubbles

at level k. This partition de�nes a new graph in which each cluster is represented by

a node and two nodes are connected by an edge if they belong to neighboring bubbles

(bubbles that have members that are connected by a physical link). By the fact that the

bubble degree is � the new graph may be partitioned into bubbles of size x

l�1

to �x

l�1

.

This procedure may repeat itself for levels with smaller index. When such a partition is

possible the number of bubbles that are in
uenced by a topology change is at most 3 at

each level.

� Note that the routing strategy presented in section 3.3 essentially uses a single spanning

tree in order to communicate. However, by extending the spanning trees representations

into the topologies of the bubbles we can achieve better distribution of the communication

(choose randomly a path to the leader or to the destination). Note that the complexity

of the adaptability will not be changed.

� For some cases the bubbles partition might be restricted due to other constraints e.g.,

geographical constraints. For instance, one would not like to have two bubbles (say

at level two) to cover the network in the USA, such that one of the bubbles includes

Japan and the other includes England, instead a single bubble for the USA is preferred.

Our bubble partition can take into account such considerations during the partition by

ignoring some of the communication links during the bubble partition in some levels.

� In some cases, the bubble partition can be used in a graph with more than � links per a

processor. Roughly speaking the algorithmmarks at most � links per a processor and uses

the marked links for the bubble partition. In some cases, a link might become marked

upon a disconnection of the marked graph. This link should connect separated connected

components of the marked graph and still should not violate the � upper bound.

References

[AGR89] Y. Afek, E. Gafni, and M. Ricklin. \Upper and lower bounds for routing schemes

in dynamic networks," Proc. 30th Symp. on Foundations of Computer Science, pp.

370-375, 1989.

[Aw85] B. Awerbuch. \Complexity of network synchronization," J. of the ACM , 32(4):804-

823, October 1985.

18



[AB+89] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. \Compact Distributed Data

Structure for Adaptive Routing," Proc. 21th ACM Symp. on Theory of Computing,

pp. 479-489, 1989.

[AB+90] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. \Improved routing strategies

with succinct tables," J. of Algorithms, 11:307-341, 1990.

[AP92] B. Awerbuch and D. Peleg. \Routing with polynimial communication-space trade-

o�," SIAM J. on Discrete Math, 5(2) pp. 151-162, 1992.

[CG88] I. Cidon and I. Gopal, \PARIS: An approach to private integrated networks," Jour-

nal of Analog and Digital Cabled Systems 1(2), pp. 77-86, 1988.

[GZ94] O. Gerstel and S. Zaks, \The Virtual Path Layout Problem in Fast Networks," Proc.

13th ACM Symp. on Principles of Distributed Computing, to appear, 1994.

[PU89] D. Peleg and E. Upfal. \A tradeo� between size and e�ciency for routing tables,"

J. of the ACM, 36:510-530, 1989.

[SK85] M. Santoro and R. Khatib. \Labeling and implicit routing in networks," The Com-

puter Journal, 28:5-8, 1985.

[Va81] L. G. Valiant. \Universality consideration in VLSI circuits," IEEE Transactions on

Computers, 30, 135-140, 1981.

[vLT86] J. van Leeuwen, and R.B. Tan. \Routing with compact routing tables," The Book

of L, G. Rozenberg and A. Salomaa, eds. Springer-Verlag, New York, 1986, pp.

259-273.

[vLT87] J. van Leeuwen, and R.B. Tan. \Interval Routing," The Computer J., 30 (1987),

298-307.

19


