NBER WORKING PAPER SERIES

BUBBLES, FADS ANL STOCK PRICE VOLATILITY TESTS:
A PAkTIAL EVALUATION

Kenneth D. West

Working Paper No. 2574

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 1988

Paper prepared for an AEA/AFA meeting on "The Volatility Debate," December 28, 1987. I thank Ben Bernanke and John Campbell for helpful comments and discussions and the National Science Foundation for financial support.
The research reported here is part of the NBER's research program in Financial Markets and Monetary Economics. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research.

NBER Working Paper \#2574
May 1988

Bubbles, Fads and Stock Price Volatility Tests:
A Partial Evaluation

ABSTRACT

This is a summary and interpretation of some of the literature on stock price volatility that was stimulated by Leroy and Porter (1981) and Shiller (1981a). It appears that neither small sample bias, rational bubbles nor some standard models for expected returns adequately explain stock price volatility. This suggests a role for some nonstandard models for expected returns. One possibility is "fads" models ln which noise trading by naive investors is important. At present, however, there is little direct evidence that such fads play a significant role in stock price determination.

Kenneth D. West

Woodrow Wilson School
Princeton University
Princeton, NJ 08544

Nearly seven years have passed since the publication of the original LeRoy and Porter (1981) and Shiller (1981a) volatility tests. The number of papers analyzing or developing volatility tests on stock prices has now grown to the point that a nonspecialist may have trouble getting an even general sense of the current state of the volatility debate. This paper is intended to help such a nonspecialist, by summarizing and interpreting the literature.

Section I sumarizes the techniques and conclusions of some volatility tests that assume constant expected returns. Section II considers whether small sample bias is likely to explain the excess stock price volatility found in most of the studies summarized in section I. The presence of near or actual unit root nonstationarity in stock prices certainly causes substantial small sample bias in the test in Shiller (1981a), and quite possibly in other studies that assume stationarity. Subsequent studies that explicitly allow for unit roots find excess volatility that is typically an order of magnitude smaller than for studies that assume stationarity-but they do still tend to find substantial excess volatility. While not much is known on small sample bias in tests that allow for unit roots, it does not seem that such bias explains the persistent finding of excess volatility,..Indeed, I present a little evidence that certain tests that do not find excess volatility have poor small sample power against interesting alternatives.

The rest of the paper proceeds under the tentative conclusion that stock prices are more volatile than can be explained by a standard constant expected return model. Section III considers explaining the excess volatility by adding to the usual constant expected return stock price an explosive rational bubble (Blanchard and Watson (1982), West (1987)). For a variety of theoretical and empirical reasons, this does not seem to produce a satisfactory explanation.

If bubbles are ruled out, so that any deviations from the constant expected return stock price are transitory, these deviations will give rise to predictabie variations in returns. Section IV considers whether stock price volatility is adequetely explained by some standard models for expected returns. The evidence here is somewhat limited, but the answer appears to be no (Campbell and Shiller (1987b), West (1988)). This seems to be true at least in part becanse such models do not generate sufficient varibbility in expected returns.

This suggests that it might be useful to consider some nonstandard models for what determines expected returns. Section v interprets "fads" models as arguing that trading by naive investors creates nondiversifiable risk that sophisticated investors must take into account (Campbell and Kyle (1986), DeLong et ai. (1987), Shiller (1984)). It follows that an appropriate model for expected returns will reflect such trading. The fads literature is, however, rether new, and has yet to model risk as precisely as have the traditional models aiscussed in section $\quad \mathrm{V}$. There is littie direct evidence that trading by nave investors plays a substantial role in stock price determanation. Such evidence as there is in favor of fads is largely indirect, and consists of negative verdicts on traditionsl present value models. One would prefer a parametric model, so that the model potentially could be rejected becsuse of implausible pareneter estimates or painfully large test statistics.

I conclude that the most important direction for future research on stock price volatility is therefore not still more volatility tests, but development of parametric models to explain the excess volatility that some, inciuding me, believe to be reasonably well established. My own sense is that consideration of fads is likely to be productive. But someone skeptical about fads models could reasonably conjecture thet any such models will be in as much conflict with the
data as are traditional present value models, and that refinements of these latter models are a more promising avenue for research.

Before turning to a detailed discussion, it is well to remind the reader that this is a partial evaluation of volatility tests, in two senses. First, space constraints preclude detalled discussion of many relevant issues. I give relatively short shrift to some of the topics covered in detail in the survey papers of Gilles and LeRoy (1987b), which focuses on potential problems with Shiller's (1981a) test, and of Camerer (1987), which discusses in detail how imperfect aggregation of information can lead to seeming excess volatility of stock prices. Second, as a participant in this literature, I am hardly unbiased. While I have attempted to represent all points of view, I have of course emphasized those that I find most compelling.

1. Overview of Empirical Results

Table I summarizes the results of some volatility tests that assume constant ex-ante returns. To make this task manageable, I have limited myself to empirical results that in my somewhat arbitrary opinion could be cast in the form V / V^{*}, where V measures the volatility of the market's forecast of fundamentals, $V *$ the volatility of the econometrician's measure of fundamentals, and $V / V^{*}>1$ indicates excess volatility. This means that while most of the papers cited below test a number of implications of the model being studied, I will consider oniy those tests that seem to me to be similar in spirit to the original LeRoy and Porter (1981) and Shiller (1981a) comparison of the variance of a stock price (V) to that of a certain function of dividends (V^{*}). My sense is that my self-imposed restriction probably selects from the studies cited below the less rather than the more striking evidence: the equality tests in LeRoy and Porter
(1981) and Mankiw et al. (1985), for example, yield sharper results thar do the fnequality tests reported below. Analyses that supply neither new empirical nor Monte Carlo estimates (e.g., Marsh and Merton (1986)) are ignored in this section but will be discussed later.

To facilitate the discussion below of whether inappropriate accounting for unit root nonstationarity explains the results of the volatility tests, the papers in Table I are grouped according to whether the cest is asymptoticably valid oniy under stationarity, with a unit writhmetic root (Ap stationary), or With a mit logarithmic root (Liog(P) scationaty). Listings within each group are alphabetican. In table I, colum (2) gives the sample period. Most of the studies use Shilier's (1981a) long term anmsi data, which splices Comles Comaission data beginning in 1.871 to moxe recent date from the Standard and Poor's Composite Stock Price index. For convenience I will refer to this as simply the S and P date. Shiller (19818) and west (1988) also use the Shiller's modifiec Dow-Jones. Campbell and Shllex (1987b) also use the New York stock gachange equal and welue weighted indices. With the exception of LeRoy and Porter, all the studies cited in the Teble use anmal date, in part to avoid dealing with seasonaltey in divicends. See the cited papers for aditional. detail on the data.

Golumn (3) reports the empirical value of $V / V *$, calculated for a given paper as described below. The p-value in column (4) gives the probsbillty of seeine the colum (3) value for $V / V *$, under the null that the model is equation (4) below and unft roots, if any, take the form indicated in colum (5). For Monte Carlo studies, indicated by "T=sample size" in column (2), the V/Vt value is not the median but instead matches an estimated empinical value.

A brief discussion of the models and tests now follows. This may be skipped.
by readers familiar with this literature. This is intended to suggest the basic ideas involved, but not to spell out the precise details. I will slur over inconsequential differences between the models and tests described below and those in the papers cited (e.g., whether current dividends are known when price is set). Some authors have reported asymptotic p-values for test statistics other than V / V^{*} (e.g., West (15.8) reports the p-value for $H_{0}: V^{*}-V \geq 0$, for V^{*} and \forall defined below). In such cases, I have felt free to associate those p-values with V / V^{*}, even though the statistic for V / V^{*} would of course be numerically different. Detailed references to the sources of the entries in the table may be found in the appendix.

The constant expected return model supposes
(1) $P_{t}=b E\left(P_{t+1}+D_{t} \mid I_{t}\right)$,
where P_{t} is a real stock price, b a constant discount rate, $b=1 /(1+r)$, re the constant real expected return, $E\left(. \mid I_{t}\right)$ is mathematical expectations conditional on the market's period t information set I_{t}, and D_{t} is the real dividend on the stock. I_{t} is assumed to contain, at a minimum, current and past P_{t} and D_{t}. Substituting recursively for P_{t+1}; P_{t+2}, etc., and using the law of iterated expectations, gives
(2) $P_{t}=E\left(\bar{\Sigma}_{0}^{n-1} b^{j+1} D_{t+j}+b^{n} P_{t+n} \mid I_{t}\right) \equiv E\left(P_{t, n}^{*} \mid I_{t}\right)$.

Suppose that the terminal condition
(3) $\quad \lim _{n-->\infty} E\left(b^{n} P_{t+n} \mid I_{t}\right)=0$
holds (this rules out rational bubbles, as explained below). Then (2) implies
(4) $P_{t}=E\left(\Sigma_{0}^{\infty} b^{j+1} D_{t+j} \mid I_{t}\right) \equiv E\left(P_{t}^{*} \mid I_{t}\right)$,
where P_{t}^{*} is used rather than $p_{t, \infty}$ to match Shiller (1981a). Since P_{t} is the conditional expectation of P_{t}^{*},
(5) $\operatorname{var}\left(P_{t}\right) / \operatorname{var}\left(P_{t}^{*}\right) \leq 1$.
if the unconditional variances exist. LeRoy and Porter (198i) and Shiller (1981a) estimate (5), using different techniques to caiculate the ratio. Kleidon (1986b) and Shiller (1986b) use Monta Cario methods to determine the finite sample behavior of (5) when log(D_{t}) follows a random walk, and I_{t} consists solely of lagged dividends. These studies are summarized in lines (2) to (5) of Table I, with $V / V+$ an estimate of the left hand side of (5).

The Blanchard and Watson (1982) test, in line (1), compares variances of innovations rather than levels. Let $H_{t} \equiv\left\{D_{t}, D_{t-1}, \cdots\right.$, be the information set determined by current and lagged dividends; H_{t} is a subset of I_{t} Let $P_{t H} \equiv$ $E\left(\Sigma_{0}^{\infty} b{ }^{j+1_{D}}{ }_{t+j} \mid H_{t}\right) \equiv E\left(P_{t} \mid H_{t}\right)$. Then since more information tends to lead to more precise forecests (West (1988)),
(6) $\left\{E\left[P_{t}-E\left(P_{t} \mid I_{t-1}\right)\right]^{2} / E\left[P_{t H}-E\left(P_{t H} \mid H_{t-1}\right)\right]^{2}\right\} \leq 1$.

The left hand side of (6), which Blanchard and Watson (1982) calculate assuming stationerity of dividends, is reported as V / V^{*} in ine 1.

One of the major problems of the fnitial volatility tests, emphasized in particular by Kleidon (1986b) and Marsh and Merton (1986), was of course the assumption that variables do not have unit roots. Lines (6) to (B) of Table I sumarize some tests that are appropriate if the nonstationarity results from e unit arithmetic root. In such a case, the model (4) implies that P_{t} and D_{t} are cointegrated (Engle and Granger (1987)), and $P_{t}-b(1-b)^{-1} D_{t}$ is stationary
(Campbell and Shiller (1987a)). Basically, a unit arithmetic root causes a linear (but not exponential) stochastic trend in dividends and prices, so subtracting a suitable multiple of D_{t} from P_{t} removes this linear trend in P_{t} and leaves a stationary random variable. Mankiw et al. (1985) show that as a result

$$
\begin{equation*}
\left\{E\left[P_{t}-b(1-b)^{-1} D_{t}\right]^{2} /\left[P_{t, n}^{*}-b(1-b)^{-1} D_{t}\right]^{2}\right\} \leq 1 \tag{7}
\end{equation*}
$$

for any finite n, with $P_{t, n}^{*}$ defined in (2). The V / V^{*} reported in line 7 results when $n=T-t$, T the last period in the sample.

Campbell and Shiller (1987a) (line (8)) calculate statlstics similar to (6) and (7), expanding H_{t} to include lagged P_{t} and D_{t}. West (1988) calculates (6), with H_{t} deffned as in Blanchard and Watson (1982) to consist of just lagged dividends, but allows for unit arithmetic roots.

Lines (9) to (12) in Table I report studies that have accounted for nonstationarity by allowing for unit logarithmic roots. Kleidon (1986b) and Shiller (1983) both assume that $\log \left(D_{t}\right)$ follows a random walk, with I_{t} consisting of only lagged dividends. The model implies that P_{t} is proportional to D_{t}, so that
(8) $\operatorname{var}\left(P_{t} / P_{t-1}\right) / \operatorname{var}\left(D_{t} / D_{t-1}\right)=1$.

Kleidon notes that the model (4) also implies that for finite n
(9) $\left\{\operatorname{var}\left(P_{t+n} / P_{t}\right) / \operatorname{var}\left(P_{t+n}^{*} / P_{t}\right)\right\} \leq 1$,

Estimates of the ratios in (8) and (9) are reported in 1 ines (12) and (10).
LeRoy and Parke (1987) also assume that $\log \left(D_{t}\right)$ follows a random walk. By the logic used to develop (5) above, the model (4) implies
(10) $\left\{\operatorname{var}\left(P_{t} / D_{t}\right) / \operatorname{var}\left(P_{t}^{*} / D_{t}\right)\right] \leq 1$.

Line (11) reports this ratio, calculated assuming that ${ }^{2} t_{t} D_{t}$ follows an AR(1). Campell and Shiller (1987b) work with a linearized logarithmic version of (4), assuming stationarity of the \log dividenc price ratio and log differences of dividends and prices. Line (9) reports estimates of

$$
\begin{equation*}
\text { var }\left[\log \left(D_{t} / P_{t}\right)\right] / \operatorname{var}\left[\left[\log \left(D_{t} / P_{t}\right)\right]_{H}\right] \tag{11}
\end{equation*}
$$

where $\left.\log \left(D_{t} / p_{t}\right)\right]_{H}$ is the variance of the \log divicend price ratio wher the ratio is calculatec as eforecast from an information set $H_{\text {t }}$ consisting of laged $\log \left(\mathrm{D}_{t} / \mathrm{P}_{t}\right) \operatorname{and} \operatorname{siog}\left(\mathrm{D}_{t}\right)$.

IL Smal1 Sample Bies

The inftial tests, in lines (1), (3) and (4) of Table f found extreme excess volatility, with the variance of stock prices or their innovations exceeding a theoretical upper bound by orders of magnitude. The statistical significance of the excess volatilfty has, howevex unclear. For example, Lofoy and Porter (1981), using the asymptotic distribution, found a violation significant at the five percent level in oniy one of thair four data sets. As is evident from a glance at the estimates of V / V^{*} for lines (6) on, allowing for unit roots resuits in considerably smaller estimates of excest volatility. It seems that these initial tests tend to find spuriously large estimates, at ieast if unit roots are present.

For the Shiller (1981a) technique for calculating $\left.V / V * \equiv \operatorname{var}\left(P_{t}\right) / \operatorname{Far}^{(} \mathrm{F}_{\mathrm{t}}{ }^{*}\right)$, reasons for this are developed in Flavin (1983); R1eidon (1985,1986b) and Mankis et al. (1985). Assume first that P_{t} and D_{t} are stationary, so that the population variances of P_{t} and $P_{t} *$ exjst. Even though V / V^{*} can be estimated
consistently, Shiller's (1981a) procedure tends to produce finite sample estimates that are spuriously high, with the bias likely to be quite pronounced for the relevant sample sizes. Kleidon (1985, pp20-21), for example, reports a simulation with a sample size of 100 in which the population value of V / V^{*} is .81 but the mean estimated value is 2.2. The Marsh and Merton (1986) nonstationary example in which the sample estimate $\operatorname{var}\left(P_{t}\right) / \operatorname{var}\left(P_{t}{ }^{*}\right)$ is greater than one with probability one, for any size sample, might be interpreted as simply a nonstationary limiting case of the biases noted by Flavin (1983) and Kleidon (1985) (Mankiw et al. (1985)) ${ }^{1}$

While the logic of Flavin (1983) and Kleidon (1985) does not apply directly to the Blanchard and Watson (1982) or LeRoy and Porter (1981) tests, the dramatic fall in V / V^{*} when unit roots are allowed suggests that similar arguments are likely to be relevant for those tests. Indeed, the Monte Carlo simulations in Mattey and Meese (1986) Indicate that the Blanchard and Watson (1982) procedure will tend to spuriously find $V / V^{*}>1$ if unit roots are present but, as in Blanchard and Watson (1982) (but not West (1988)), are not imposed. Similarly, Gilles and LeRoy (1987b, p64), seem to concede that biases similar to those in Shiller (1981a) are probably present in LeRoy and Porter (1981).

This leaves open the question of whether these biases are so large as to explain the entire excess of V over V^{*} reported in the various tests in Table I. Whether they even totally explain the Shiller (1981a) results is debatable. Shiller (1986b) argues that Kleidon's simulation results (1ine (2)) are very sensitive to the assumed dividend/price ratio. Kleidon allows a range for this ratio of about 1.5 percent (p-value of $V / V^{*} \approx .50$) to about 4 percent ($p-v a l u e \approx$.05). If the empirical mean dividend/price ratio of about 5 percent is used, the p-value suggested by Kleidon's simulation falls to . 01 (1ine (5)).

While another iteration of the Kleidon-Shiller debate may well suggest that the p-value of .01 is too low, it seems to me unlikely that small sample biases Will suffice to overturn the conclusion thet stock prices move more relative to dividends than is consistent with the model (4). I conclude this for two reasons. First, while there is some conflict among the papers summarized in Table I, there often are differences in assumptiong and approbch that suggest wing some tests find excess voletility while others do not. These differences usually seam to me to axgue for the plausibiltty of the testry that find excess volatility. Specificaliy, the "1 " and "O" entries in rows (6) and (7)) tend to result when expected returns of less than 4 percent are assumed. Expectea retums closer to the actual samplemean of about 8 percent result in the larger, and statistically more significant, figures in these rows. More importantly, as documented below, the Klefdon (ine (10)) and LeRoy and parke (line (11)) tests, Which stend out from the other entries in the Table for finding little or no excess voletrifty, appear to have poot power agatnat a Shilier (1984) "fads ${ }^{1 t}$ alternetive (see Gilles and LeRoy (1987b, 4)) . Since de is just such ath aitexnative that hes been proposed as an explanation of the results of other Folatilty tests (Shilier (1984)), the Riedon (ine (10)) and LeRoy and Parke (Iine (11)) results are not persuasive evidence that the results of other tests gre misleading.

The second reason I think it unlikely that swell sample biases will overturn the finding of excess volatility is that the other sests in Table I that allow for unit roots do tend to find violations of the relevent variance bounds. Fhile these violations typically are an order of magritude sumber then those of the inftial tests, they still are numerically lexge. Stnce these tests directiy Gllow the (near or actual) nonstationarity that probably is central to the small
sample problems with the papers in panel A, there does not seem to me to be a reason to suppose any particular bias. In fact, while there is of course some small sample bias in these tests (Mattey and Meese (1986), West (1986,1988)), the evidence on this does not suggest that such bias explains the excess volatility that those tests tend to find. See the entries for West (1988) in Table I.

The rest of this section cuntains a small study of the power of the Kleidon (line (10)) and LeRoy and Parke (line (11)) tests against a Shiller (1984) "fads" alternative, or, more generally, any alternative that generates slowly decaying deviations of stock prices from the constant expected return price determined by (4). Suppose that

```
\((12)(a) \quad \log \left(D_{t}\right)=\mu+\log \left(D_{t-1}\right)+\varepsilon_{t}\),
    (b) \(\log \left(P_{t}\right)=\tau+\log \left(D_{t}\right)+a_{t}\),
    (c) \(a_{t}=\$ a_{t-1}+v_{t}\),
        \(|\phi|<1, \varepsilon_{t} \sim N\left(0, \sigma_{\varepsilon}^{2}\right), v_{t} \sim N\left(0, \sigma_{v}^{2}\right), E \varepsilon_{t} v_{s}=0 a 11 t, s\)
```

Equation (12a) says that dividends follow a logarithmic random walk, as in Kleidon (1986b) and LeRoy and Parke (1987). Equations (12b) and (12c) say that the mean \log price-dividend ratio t is perturbed by the stationary AR(1) random variable a_{t}. The Kleidon (1986b) setup is a special case of (12) with $a_{t} \equiv 0$. In the spirit of 0^{\prime} Brien (1984), Shiller (1984) and Sumers (1986) ; one can interpret a_{t} as a "fad" that drives the stock price away from the value that would result if the data were generated by a model consisting of (4) and (12a). ${ }^{2}$

The S and P data (1871-1985) were used to calculate point estimates of the parameters in (12). The numbers at the foot of Table II result when μ and σ_{ε}^{2} were set to the mean and sample varlance of $\Delta \log \left(D_{t}\right)$, τ to the sample mean of
$\log \left(P_{t}\right)-\log \left(D_{t}\right), \sigma_{a}^{2} \equiv \operatorname{var}\left(a_{t}\right)$ to the sample variance of $\log \left(P_{t}\right)-\log \left(D_{t}\right)$, q to the sample estimate of $\operatorname{cov}\left(a_{\mathrm{t}} / a_{t-1}\right) / \sigma_{a}^{2}$ and $\sigma_{\mathrm{V}}^{2}=\left(1-\phi^{2}\right) \sigma_{a}^{2}$. There are several ways to emphasize that with these parameter estimates, the data generated by (12) are rather different from those generated by a model with constant expected returns and a lognormal random walk dividend process. First, a shock to a that pushes $\log \left(\mathrm{P}_{\mathrm{t}}\right)-\log \left(\mathrm{D}_{\mathrm{t}}\right)$ from its mean has a half life of nearly four years $\left(\phi^{4}=.83^{4}=\right.$ 48). In the sense suggested by Sumers (1986), this can be argued to be a significant deviation from the constant dividend-price ratio predicted by Kleidon's (1985b) model. Second, more than half (57 percant, to be exact) of the implied variance of $\Delta \log \left(F_{t}\right)$ is due to shocks to a_{t} rather than to $\log \left(D_{t}\right)$. Third, the implied standard deviation of the one period expected return $E\left[\left(P_{t+1}+D_{t}\right) / P_{t} \mid I_{t}\right]$ is quite substantiel, about $.05 .^{3}$ (The implied unconditionai mean return is about 1.08). For any or all of these reasons, one would hope that a volatility tast would distinguish between data gonerated by (12) on the one hand and (4) and (12a) on the other.

Consider finst the Leroy and Parke test. Computing var $\left(P_{t} / D_{t}\right) /$ var $\left(P_{t} / D_{t}\right)$ requires estimates of just four moments: the mesn ex-post retum, the variance of P_{t} / D_{t} and the mean and variance of D_{t} / D_{t-1} (Leroy and Parke (1987)), But with the parameters listed at tho bottom of Table II, date generated by (12) will imply essentially the $V / V *$ computed by the LeRoy and Parke (1987) test, since such data imply essentially these four sample moments. See Table II, panel A. A finding of $V / V^{*}<1$ using the LeRoy and Parks (1987) test therefore does not in distinguish the model (4) from the alternative (12). ${ }^{4}$

Evaluation of the power of the Rleidon (1986b) test seems to require a Monte Carlo experiment. The simulation generated 1000 samples of size 115 , with the presample values of $\log \left(P_{t}\right)$ and $\log \left(D_{t}\right)$ watched to those of the S and P data in

1871, and the presample value of a_{t} drawn from its unconditional distribution (with a different draw for each simulation). P_{t}^{*} was generated recursively, as in Kleidon $(1986 b)$. The sample estimates of $\operatorname{var}\left(P_{t+n} / P_{t}\right)$ and $\operatorname{var}\left(P_{t+n}^{t} / P_{t}\right)$ were calculated in the usual way. As stated in Table I, panel B, the estimates of $\operatorname{var}\left(P_{t+n} / P_{t}\right) / \operatorname{var}\left(P_{t+n}^{*} / P_{t}\right) \equiv V / V *$ were less than one for $n=1,2$, more for $n=5,10$. The question is whether the small values for $n=1$ and 2 are comforting evidence concerning a model consisting of (4) and (12a). The answer appears to be no. In the Monte Carlo simulations for $n=1$, for example, only 6 of the 1000 samples produced a V / V^{*} greater than 1 . It appears, then that Kleidon's (1986b) test, like LeRoy and Parke's (1987), has poor power against this alternative. ${ }^{5}$

I certainly do not consider this a definitive statement on the power of the various tests in Table I, and fully agree with LeRoy and Parke (1987) that additional study of the power of volatility tests is of great interest. Nor do I consfder the question of small sample bias complately resolved. Nonetheless, for the reasons sumarized above, it seems unlikely to me that small sample blas provides the bulk of the explanation for the excess volatility reported in Table I. 6

IIL. Rational Bubbles

Stochastic difference equations such as (1) have a multiplicity of solutions. The solution (4) is unique provided that the terminal condition (3) holds. But if not, there are an infinity of solutions

$$
\begin{align*}
P_{t} & =E\left(\Sigma b^{j+1} D_{t+j} \mid I_{t}\right)+C_{t} \tag{13}\\
& \equiv P_{t}^{f}+C_{t}
\end{align*}
$$

C_{t} is any variable that satisfies $E\left(C_{t} \mid I_{t-1}\right)=b^{-1} C_{t-1} \equiv(1+r) C_{t-1}$, 1.e.,$C_{t}=$
$(1+r) C_{t-1}+V_{t}, E\left(V_{t} \mid I_{t-1}\right)=0 . C_{t}$ is by deffnition rational bubble, an otherwise extraneous event that affects stock prices because everyone expects it to do so. ${ }^{7}$ Since the solution (13) satisfies the first order condition (1), expectec returns are constant and there are no arbitrage possibilities.
(Rational bubbles are possible with time varying expected returns. See Flood and Fodrick (1987), I use a constant expected return wodel for simplicity.) The "f" superscript on p_{t}^{f} is present because ${ }_{t}^{f} f_{t}^{f}$ bepends only on fundamentals. Dlanchard and Watson (1982) note that it is possible to have bubbles that grow and pop. The following eyample of atrictly positive bubble is from hest (1987):

$$
\begin{align*}
& C=\left(C_{t-1}-C^{*}\right) / \pi b \quad \text { with probability } \pi \\
& \mathrm{C}_{\mathrm{t}}=\mathrm{C}^{*} /[(1-\pi) \mathrm{b}] \quad \text { with probability }(I-\pi) \tag{14}\\
& 0<\pi<1, \quad C *>0 \text {. }
\end{align*}
$$

The bubble bursts with probability $1-T$, and has an expected duration of $(1-T)^{-1}$. While the bubble floats it grows at rate $(b \pi)^{-1}=(1+r) / \pi>1+x$: investors receive an extraordinary return to compensate them for the capital loss that would have occurred had the bubble burst. Whether or not the bubble bursts can depend on fundamentals (e.g., $\pi=1 / 2$, with the bubble bursting tif there is bad mows about budget deficits). Alternatively, whether the bubbie bursts or not can depend on extraneous "sunspots." It is possible to have a composite bubble, consisting of a linear combination of bubbles like (14), with each (14) bubble having its own π and $C *$. Also, π can vary over time (West (1987)).

Rational bubbles therefore seem consistent with the recent (1987) pattern of extraordinary stock price increases followed by a dramatic collapse. Retionai bubbles also seem a potential rationalization of excess volatility tests. Even
if the bubble is uncorrelated with fundamentals, stock prices move more than the model. (4) predicts; if this correlation is positive, so that the market overreacts to news about fundamentals (Shiller (1984), DeBondt and Thaler (1985)), excessive stock price movements are even easier to rationalize. Moreover, this can be done with small or even no variations in ex-ante returns The rational bubble explanation was one that I favored in West (1987) and in the initial version of West (1988) (which, in fact, was initially titled "Speculative Bubbles and Stock Price Volatility"). I no longer find this interpretation particularly appealing. I will explain this by first reviewing the theoretical literature on bubbles, and then discussing some empirical results.

One imediate theoretical restriction on rational bubbles is that they cannot be negative. If $C_{t}<0$ and the stock price is lower than its fundamental, the possibility of an extraordinary capital gain when the bubble bursts must be compensated for by a potential capital loss if the bubble continues to float downward: Since stock prices must be nonnegative, there will be, for any bubble process, a low enough stock price that precludes any further capital loss. Since such a stock price is inconsistent with bubble, so, too, is any higher stock price than can lead to such a low stock price. By a backwards recursion, there cannot be a negative bubble on a stock, because any such bubble leads to an infeasible price with nonzero probability.

Are positive bubbles similarly inconsistent with rationality? In models where agents have infinite horizons, the answer appears to be yes (Tirole (1982)). ${ }^{8}$ Any agent who sells a stock at a price higher than its fundamental can exit the market, leaving negative present value for whomever buys it. Bubbles are ruled out when agents have infinfte horizons even if traders have
differential information and if short sales are prohibited (Tirole (1982)).

Positive bubbles ere not, however, ruled out in models with finite horizon egents. Tirole (1985) studies this in a nonstochastic, perfect foresight, overlapping generations model. Each generation will be willing to pay more than fundamental value for an asset, provided the succeeding generation is similariy willing. It is necessary that the bubble not inflate the stock price so fast that stock market wealth ends up exceeding GMP (to take an extrean example). Othermise, a backwards recursion wlll rule out bubsies. In Tirole's (1985) model, this means that the reta of growth of the economy must be greater ther the return on the stock. In such a case, the stendy state pet capita bubble may be positive.

While I an not aware of a stochastic version of Tirole's model, intuition suggeste (to me, at least) that such a generalization can be accomplished. Some unpleasant issues would, however, have to be handied. Dibe and Grossman (1987) note that if there ever is a bubble, it would have to be present frow the first day of trading: $E\left(C_{t} \mid T_{t-1}\right)=(1+r) C_{t-1}$ and C_{t} nonnegative means thet if $0_{t-1}=0$, then $C_{t}=0$ wth probability one. Merton (1985) notes that there must be ane mechanism to linit mangerial issues of new stock.

More fundanentaly, one must ask how reasonable fig Tirolets necessery condition that the mean growth rete of the econowy be greater than the meen return on the stock price (assuming, again, that this is a recessary condition in a stochastic version of Tiroles model).' The mean annual real ex-post return on S and P date $1871-1986$ is about 8 percent; the mean growth rete of real GNP in about 3 percent. 10 In the case of bursting bubbie such as in (14), moreover, the relevant comparison is probably between one plus the growth rate and ($1+r$)/T $>1+r$ rether than $1+5$: one presumably must insure zero probability that the stock price exceecs the value of nationel output. While taxes and so forth muddy the
issue, the excess of the mean ex post return on aggregate stock price indices over the mean growth rate of the U.S. economy does not suggest that Tirole's. necessary condition will apply. See Abel et al. (1986).

Is the seeming excess volatility of stock prices nonetheless strongly suggestive of rational bubbles? There are several reasons why the answer seems to me to be no. First, Flood ani Hodrick (1986) argue that at least certain stock market tests, including Mankiw et al. (1985), implicitly allow bubbles under the null. ${ }^{11}$ Some tests for finite maturity bonds also find some evidence excess volatility (e.g., Singleton (1980)), which, if true, cannot be due to bubbles: there cannot be a bubble on the final date when the bond batares, and therefore by a backwards recursion there cannot be a bubble at any earliez date. One would like to have a common explanation for the excess volatility that seens to be found in these various tests applied to varlous assets, Second, as discussed in West (1987), while my tests are perfectly capable of findiag something that looks roughly like a bubble, they are probably not able to discriminate between a bubble and "noise". that is almost but not quite a bubble: $E\left(C_{t} \mid I_{t-1}\right)=\phi C_{t-1}, \phi=($ say $) .99$ instead of $\phi=(1+r) \approx 1.08$. Thiraz bubbles suggest that stock prices should grow at a rapid rate. If dividends grow more slowly than the rate of return (an assumption implicitly made when $E\left(E b^{j} D_{t+\frac{1}{\prime}} t^{\prime}\right.$) was assumed to be well defined in (13)), the dividend/price ratio should fall and capital gains should take an increasingly large share of ex-post returns. But for the S and P data, 1871-1986, this does not seem to be the case. The mean ex-post return in the first half of the sample, 1872-1928, is 8.6 percent, with a mean dividend price ratio of .053; In the second half of the sample the figures are 8.3 percent and .051 .12

In sum, theory for rational bubbles is still at a preliminary stage. But
the theory so far developed siggests conditions for bubbles that are too stringenc to make bubbles particularly attractive: the growth rate of the economy must be greater than the return on the stock; any asset with a bubble must have alwas had a positive bubble; factors other than bubbles must explair any excess volatility on finjtely lived assets, and perhaps some of the excess volatility on stock prices as well. Tr addtion, the evidence for applosive bubbles in West (1987) is at best suggestive and consistent as well with deviations frow fundamentals being borkerinne stationary.

IV. Yariatlons in expectad returns

A natural candidate to explain any excess price volatility is movenents in expected returns. This was of course among the axplanations proposed in some of the first published coments on volatility tests (Tong (1981)), and has been argued more recently by wlood et al. (1985). indeed, the model (4), and therefore the variance bounds thet follow from it, require onty the terminat condition (3) and a constant expected return. So if, in population, there is excess volatility, and bubbles are ruled out, with deviacions from the constant expected returr stock price fundamental being transitory, it follows that mathematically expected returns are varying. See campbeli and Shilier (1987c) and plood et ai. (1986) for interpretations of wolatility tests as especially powerful tests of the null of constant expected returns.

A genexai form for a model with time varying expected returns is

$$
\begin{equation*}
P_{t}=E\left[\sum_{j=0}^{\infty}\left(\Pi_{i=0}^{j} \quad t+1 I_{t+i \neq 1}\right) D_{t+j} \mid I_{t}{ }^{j}\right. \tag{15}
\end{equation*}
$$

Where $t+j^{2} t+i+1$ is the one period return expected by the market in period $t+1$ (e.g., $t_{t+1} \equiv E\left[\left(P_{t+1}+D_{t}\right) / P_{t} \mid I_{t}\right]$). What sorts of movements in expected returns
must be occurring to explain the results in Table If
First of all, these movements apparently must be large Using a linetrized version of (15), but modelling expected retarns nonparametricaliy, Shiller (1981a) finds that annuat real expected raturns would have to have a standard deviation of wore than 4 percent. West (1988) and Poterbe and Sumners (1987); also using linearized models, but ellowing foz unit roots, conciude that even larger movements in expected zeturns aze necessary to rationalize stock priac movements. ${ }^{13}$ These authors seem to constier this a wider range than is typically considered reasonable.

Second, two volatility tests that allow fot time yaxying expected zeturns do not suggest that the excess volatility in Table if ariequately explaned by some standard intertemporal modeis. One study, Campell and Shller (igbtby, bsea a linearized version of (15) to compute (11) a alloutng for thzes different modets for expected returns: the return on short debt plus a constant; the consumption besea asset pricing model (Lacas (i978)), wht constant relative risk averskon, $U\left(C_{t}\right)=C_{t}^{-a} ;$ the return on short debt plus a term that deperds on the condintonat variances of stock returns. The taformethon set used to calculate equetion $(1 i)$ s var $\left[\left[\log \left(D_{t} / P_{t}\right)\right]_{H}\right\}$ consists of $\operatorname{lagged} \log \left(P_{t} / P_{t}\right) \quad \Delta \log \left(D_{t}\right)$ and 1 agged ex-post returns.

A second study, West (1988), uses (15) With expected teturns determined by the consumption based asset pricing model, with constant relative risk aversion and a coefficient of relative risk aversion less than two. This nodel implias a condition like (6), with P_{t} and D_{t} repleced by $\tilde{P}_{t} \equiv p_{t} C_{t}^{\text {ab }}$ and $\tilde{D}_{t} \equiv D_{t} C_{t}^{-t}$, and $H_{t} \equiv\left\{\tilde{D}_{t}, \tilde{\mathrm{D}}_{\mathrm{t}-1}, \cdots\right\}$.

The results of the two stucies are reported in Table III. Neither fincs that the assumed model of expected returns adequately rationalizes stock price
wovements. Campbell and Shiller (1987c) further find little theoretically plausible connection between stock prices and their measures of expected returns, and suggest (p35) that the surlier and less significant estimates of $V / V *$ are found in specifications that seem to plck up certain spurious correlations. It should be noted that both papers allow for unit roots, so that there is no obvious reason to believe that small sample bias explains the excess volatility. Now, one could argue about the accuracy of the linearizations used, or about the validity of the models of expected returns assumed in the parametric tests in Table Ill, or about how well official consumption data capture the utility flows really necessary to test the consumption based asset pricing model. There are meny nontrivial problems associated with the tests just described. But the evidence to date does not suggest that traditional models of return determination successfully explain the seeming excess volatility of stock prices, even in conjunction with small sample bias.
Y. Fads

The tentative conclusion that neither rational bubbles nor traditional models of return determination can explain stock price voiatility suggests that a nontraditional model for return determination might be required. In "fads" Interpretations of the volatility tests, noise trading by naive investors plays a Signiffcant role in stock price determination. Shiller (1984) and DeBondt and Theier (1985) argue that psychological and sociological evicence is consistent nith individuals followng "irationel" trading rules, overreacting to news Potentially, this both generates wide variations in expected returns and renders inadequate traditional models for return determination.

One simple way to think through the possible effects of fads is to add a
factor due to noise trading to the level or log of whet would be the fundamental price if expected returns were constant (Campbell and Kyle (1985), Poterba and Summers (1987), 0'Brien (1984), Shiller (1984)). . Equation (12) is a simple example of this (though to capture investor overreaction one might want the innovation in a to be positively correlated with the innovation in $\log \left(D_{t}\right)$). Recall that the equation (12) example, with parameters matched to the S and p estimates, does indeed generate wide swings fin expected returns, with a standard deviation of about 05 . Also, one could of course capture the 1987 rump and then collapse of stock prices by allowing a stationary version of the explosive bubble (14). For example, if $a_{t}=(1 / \pi) a_{t-i}+y_{t}$ wheprobabi1ity $\pi_{1} a_{t}=y_{t}$ With probability $(1-\pi), 0<\phi_{,}+<1, E\left(v_{t} \mid I_{t-1}\right)=0$, then $E\left(a_{t} \mid I_{t-1}\right)=\phi a_{t-1}$ and a_{t} is stationary. As in the Blanchard and Watson (1982) explosive bubble, investor overreaction is reflected if, sey, $f=1 / 2$ and the fad "bursts" if there is bach news about fundaraentals.

In one intarpretation, fads mean that even after risk adjustrants there are proficable opportunities, at least for smart investors with long enough horizons. This epparently is the conclusion of sona readers of Shiller (1931a) (e.g., Ackley (1983)).

Gnother interpretation thet while some fraction of trading is done by naive traders, another fraction of trading is done by sophisticated investors who insure that there are no extraordinary expected returns once tisk is properly accounted for (Campbell and kyle (1986), DeLong et al. (1987). This does not mean that stock prices are driveri to whatever level they would be in the absence of fads. Risk is created by natve investors, which sophisticated investors must take into account. Such risk might not, however; be captured by traditional models. See especially DeLong et al. (1987), which contains a highly stylized
model in which nondiversifiable risk created by noise trading causes the prices of two seemingly identical assets to diverge. ${ }^{14}$

There is of course much anecdotal evidence of fads, including the famous beauty contest pessage in Keynes (1964). More formal evidence consistent with stories of investor overreaction may be found in DeBondt and Thaler (1985, 1987) and Lehmann (1987). These papers find that abnormally high returns can be earned by following a contrarian strategy of buying stocks that recently have had relatively poor returns, shorting stocks that recently have performed well. ${ }^{15}$ See DeLong et al. (1987) and Camerer (1987) for additional examples.

At a more aggregative level, growing number of studies suggest that there is a significant stationary component to stock prices (Lo and McKinley (1987), Fama and French (1988), Poterba and Summers (1987)). This component (at in equation (12)) is associated with econometric predictability of stock returns, using variables such as lagged dividend-price ratios or earnings. The predictability is perticularly marked at long horizons, say, over two years (Campbell and Shiller (1987c), Fama and French (1987, 1988), Flood et al. (1986)).

Poterbs and Sumers (1987) and Shiller (1984) interpret this as evidence of siowly mean reverting fads. But the only unambiguous interpretation of evidence thet stock prices do not follow a random walk is that expected returns are time varying. Whether or not the studies just cited imply movements in expected returns that can best be explained by fads is debatable (Fame and French (1987)); one can trivially define a_{t} in equation (12) as simply the log of the ratio of the stock price (15), with returns determined by some standard model, to a constant expected return price. So evidence of a stationary component is at best suggestive of fads. This applies as well to Campbell and Kyle (1986), a fully
articulated empirical study that allows for fads. It estimates an explicit model of trading by sophisticated investors, when a residual noise process affects stock prices. It finds that the noise process accounts for over one fourth of stock price movements in the S and P data, 1871-1984, but does not present any evidence that this process results mainly from trading by naive investors.

Traditional present value models (e.g., those discussed in section IV) are well enough specified that ona can potentially argue that these models canot adequately explain stock price volatility. I do not belleve that the same can be said for fads models that have been developed so far. The quantitative evidence in favor of fads as an explanation of stock price volatility is largely indirect, in the form of negative verdicts on bubbles and on traditional models for returns.

More direct evidence on fads, and tests of restrictions lmplied by fads, may well be forthcoming shortiy. But at present there is little formal positive evidence to sway someone unsympethetic to fads modele.

Footnotes

1. See Gilles and LeRoy (1987b) for an excellent exposition.
2. As emphasized in section V below, other interpretations are possible. To prevent misunderstanding, I should note that I am not proposing to take (12) as a serious model of stock prices, or even as an adequate characterization of the s and P data: Tabie 4 a in Campbell and Shiller (1987b) indicates that the assumption that $\operatorname{llog}\left(D_{t}\right)$ and $\log \left(P_{t}\right)=\log \left(D_{t}\right)$ are independent is false. I am merely using (12) to get a quick idea of whether the LeRoy and Parke (1987) and Kleidon (1986b) tests have power against the alternative that there are siow moving divergences of stock prices from a constant expected return fundamental value.
3. Sketch of algebre: Let I_{t} consist of past ε_{t} and v_{t}. Since P_{t+1} / P_{t} and D_{t} / P_{t} are lognormal, and a_{t} and $\log \left(P_{t}\right)-\log \left(D_{t}\right)$ are independent, it is straightforward to show that $E\left[\left(P_{t+1}+D_{t}\right) / P_{t} \mid I_{t}\right]=\exp \left[\mu+(\phi-1) a_{t}+5\left(\sigma_{t}^{2}+\sigma_{v}^{2}\right)\right]+\exp \left[-\tau-a_{t}\right]$, The expected return is thus the sum of two lognormal random variables, and one cen grind through standard formulas to compute its variance.
4. My estimate of V / V^{*} is considerably higher than that of LeRoy and Parke (1987), even though data are quite similer. This is basically because the ieroy and Farke method of calculating var $\left(P_{t}^{* / D} D_{t}\right)$ is very sensitive to the estimated value of the following: (mean expected zeturn) ${ }^{-1} \times$ (mean value of D_{t+1} / D_{t}). They compute this to be .9548 , I get . 9427 . Were I to use the .9548 figure, V/V* would Eall from. 63 to . 38 , much closer to LeRoy and Parke's estimate of .29 . 5. My estimates of V / V^{*} are notably bigger than Kleidon's (1986b) for $n=5,10$. Two minor reasons are choice of discount rate (I use the inverse of the mean ex-post return, Kleidon tries various imposed values) and sample period. The major reason is that Kleidon calculates var $\left(P_{t+n} / P_{t}\right)$ and var $\left(P_{t+n}^{*} / P_{t}\right)$ by taking
the sum of squared deviations not around the respective sample coeans but, for both, around an estimate of $E\left(P_{t+n} / P_{t}\right)$. If I had mimicked his procedure the Table II value of V / V^{*} for $n=10$, for example would be 1.80 rather than 4.18 . Because the sample means of \bar{F}_{t+10} / P_{t} and P_{t+10} / P_{t} are rather different, Kleidon's technique sharply raises the estimate of $\operatorname{var}\left(P_{t}^{*}+10^{\prime} P_{t}\right)$ and thus sharply lowers the estimate of V / V^{*}. Aithough Kleidon's technique is appropxate under his nuli, it clearly results in substantial bias under the present altermative. 6. I should note that the Marsh and Merton (1986) dividend smoothing argument seems to me to be one of small sampla bias induced by inappropriate treatment of unit roots, as suggested above. Marsh and Hexton ($1985, \mathrm{p} 485$), however, seem to suggest that a desire of managers to smooth divicends by itself invalidates volatility comparisons. This is not correct. A key to the validity of the variance bounds methodology is a stable set of decision rules by market participants, and a sample large enough for the data to accurately reflect the functioning of those rules See Rleidon (1985,1986 b) . Note that if this key condition is not, any gtatistical inference on the foint dynamics of the dividend process, including that in Marsh and Merton (1987), is not valid. See Shilier (1981b) on the related issue of biases that fight result when market participants anticipate events thet never occurrad.
5. It should be emphesized that throughout the paper, the term "bubble" refers to the explosive process C_{4}. By contrast, many authors (e.g., Ackley (1983)) use bubbles to refer to any deviation from fundamentals induced by speculation. 8. But see Gilles and LeRoy (1987a), which apparently concludes that bubbles can in principle exist in such models.
6. See Abel et al. (1986) for a discussion of conditions that rule out bubbles in a stochastic environment.
7. I computed this using the figures for GNP in 1875-1985 in Gordon (1987), for GNP in 1986 in the October 1987 issue of the Federal Reserve Bank of St. Louis's

Nationad Economic Trengs.

11. The Mankiw et al. (1985) test is, however, likely to unreliable in the presence of bubbles, even though these are allowed under the null. Confidence intervals will be large: in the presence of bubbles, the variance of the Mankiou et ai. (1985) estimates is blowing up, for exactly the reasons the variance blows up in the presence of a logarithmic zandom walk (Merton (1985)).
12. As usual, there is also potentially a peso problem, where anticipations of a never-realized shift in the dividend process can look like bubble that grows and pops. See Flood and Hodrick (1987), Obstfeld and Rogoff (1986), and Smith (1987).
13. Unlike Shiller (19818), however, nelther West (1988) nor Poterbe and Summers (1987) give any evidence on the accuracy of their inearizations. West's (i988) in particular is unlikely to be very reasonable in the presence of unit roots, 14. It should be noted that in this interpretation of fads, many of the traditional tools of financial analysis are still applicable, with the presence of noise trading an additional constraint facing rational investors. It therefore seems extreme to conclude (Klefion (1986a), Merton (1985)) that we can aliow for fads only by ignoring much of our accumulated knowledge about financial markets. See Shiller (1986a).
14. Whether these seeming pricing anomelies reflect not idiosyncratic risk but mismeasured nondiversifiable risk is, however, unciear.

APPENDIX

This gives detailed sources for Tables I and II. Notation matches that in the cited paper.

Table : Lire (1): Blanchard and Watson (1982, p18) : V/V* = ratio of V_{c} to V_{c} max Line (2): Kleidon (1986b, p983), Tebie 2 , case (1i); p-value computed from "No. of Gross Violations" column. Line (3): Leroy and Porter (1981, p572), Table III, V/V* $=\gamma_{y}(0) / \sigma_{y}+(0)$; p-value is that associated with $f_{2}{ }^{\text {u }}$ Line (4): Shiller (1981a, 4 431), Teble $2, ~ V / v *=$ square of ratio of line (5) to line (6). Line (5): Shiller (1986b,p7), Table 1, case C; p-value computed from column (2). Line (6): Campbell and Shillex (1987a, p1078), Table 3, panel $B, V / V *=\operatorname{var}(S L) / \operatorname{var}\left(S L^{\prime}\right)$ and $\operatorname{var}(\xi) / \operatorname{var}\left(\xi^{\prime}\right)$, Late (7): Mankiw et al. (1985, ppo85,688), Tables I end II, V/Vk = ratio of E(E-P $)^{2}$ to $E\left(P+-P^{0}\right)^{2}$ Line $(8):$ West (1988), Tabie $I I_{x} V / V t=[1-(01 \times \operatorname{col}(8)))^{-1}$ for differenced specifications, with p-value in col. (7); Monte Carlo results are from Tables IIIA and IIIB. Lhe (9): Campbet and Shiller (i987b, p40),
 (10): Kleidon (1986b,p986); Table 3, V/Vt $=$ square of "Standard and Poor's Ratio" column; p-yalus computed from "Nuber of Simulation Violations> ${ }^{\prime \prime}$ column. Line (11): Leroy and Parke $(1987, p 22), V / V t=$ square of reported retio of standard deviations. Liage (12): Shillet (1983, p237).

Table dI: Line (1): Constant premium: Campbell and Shiller (1987b, p41); Table $5_{,} \mathrm{V} / \mathrm{V}^{*}=\left[0\left(5_{t}{ }^{\prime}\right) / \sigma\left(\delta_{t}\right)\right]^{-2}$, with p-value for H_{0} o o($\left.\delta_{t}^{\prime}\right) / a\left(\delta_{t}\right)=1$ Consumption and return voletility; $\left.V / V=\left[0\left(\sigma_{t}\right)^{7}\right) / \sigma\left(\sigma_{t}\right)\right]^{-2}$ with p value for $H_{O}: O\left(\delta_{t}^{\prime}\right) / \sigma\left(\delta_{t}\right)=1$; these figures are not reported in the paper but were given to me by John Campbell. Line (2): Hest(1988), Table IVA, V/Vt $=11$ (.01 \times percentage excess variab111ty) $)^{-1}$ for $a \leq 2$.

REFERENCES

Gardner Ackley, "Commodities and Capital: Prices and Quantities," American Economic Reyiew 73 (1983), 1-16.

Andrew Abel, N. Gregory Mankiw, Lawrence H. Summers and Richard J. Zeckhauser, "Assessing Dynamic Efficiency: Theory and Evidence," NBER Working Paper No. 2097, Dec. 1986.

01 yier J. Blanchard and Mark Watson, "Bubbles, Rational Expectations and Financial Markets," NBER Working Paper No. 945, 1982.

Colin Camerer, "Bubbles and Fads in Asset Prices: A Review of Theory and Evidence," manuscript, University of Pennsylvanie, 1987.

John Y. Campbell and Albert S. Kyle, "Saart Money, Noise Trading and Stock Price Behavior," wanuscript, Princeton University, Sept. 1986.

John Y. Campbell and Robert J. Shiller, "Cointegration and Tests of Present Value Models," Journal of Political Economy 95, (Oct. 19878), 1062-1088.
-..on, "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," manuscript, Princeton University, Oct. 1987b.
--..-. "Stock Prices, Earnings and Expected Dividends," manuscript, Princeton University, Dec. 1987 c .

Werner F. M. DeBondt and Richard Thaler "Does the Stock Market Overreact?" Jounal of Finance 40 (July 1985), 793-808.
--m-n-, "Further Evidence on Investor Overreaction and Stock Market Seasonality," Journal of Einance 42 (July 1987), 557-581.
J. Bradford DeLong, Andrei Schliefer, Lawrence H. Summers, and Robert J. Waldmenn, "The Economic Consequences of Noise Traders," manuscript, Harvard University, Sept. 1987.

Behzad T. Diba and Herschel I. Grossman, "On the Inception of Rational Bubbles," Qubrterly Jourral of Economics (August 1987), 697-700.

Robert F. Engle and C. 解. J. Granger, "Dynamic Model Specification with Equilibrium Constraints: Co-Integration and Error Correction," Econometrica (1987), 251-276.

Eugene F. Fama and Kenneth R, French, "Dividend Yields and Expected Stock Returns," manuscript, University of Chicago, Nov. 1987.
---n--s, "Permanent and Transitory Components of Stock Prices," Journed ef Politicel Econcmy (April 1988), forthcoming.

Marjorie Flavin, "Excess Volatility in the Financial Markets: A Reassessment of the Empirical Evidence," Journal of Polithcel Economy (1983), 929-956.

Robert P. Flood and Robert J. Hodrick, "Asset Price Volatility, Bubbles and

Process Switching," Joumal of Finance (September 1986), 831-842.
Robert P. Flood, Robert J. Hodrick and Paul Kaplan, "An Evaluation of Recent Evidence on Stock Market Bubbles," manuscript, Northwestern University, 1986.

Christian Gilles and Stephen F. Leroy, "Bubbles and Charges," manuscript, University of California at Santa Barbara, November 1987a.
.-..-., "The Variance Bounds Tests: A Critical Survey," manuscript, University of California at Santa Barbara, August i987b.

Robert J. Gordon; Mecroeconondss, Boston: Little, Brown and Company, 1987.
John M. Keynes; The Gererel Theory of Faployment, Interest and Money, (New York: Harcourt, Erace and World) 1964.

Allen W. Kleidon, "Bias in Small Sample Tests of Stock Price Rationality," Stanford University Graduate School of Business Research Paper 819R, Sept. 1985.
-...-., "Anomalies in Financial Economics: Blueprint for Change?", Journal of Business 59 (1986a): $5469-5499$
-.-.-. "Variance Bounds Tests and Stock Price Valuation Models, " Journat ef Politica1 Economy (1986b): 353-1001.

Bruce Lehmenn; "Feds, Martingales and Market Efficiency," nanuscript, Columbea University, May 1987.

Stephen F. Leroy and Richard Porter; "The Present Value Relatione Tests Based on Implied Variance Bounds," Econometrice LXIX (1981), 555-574.

Stephen F. Laroy and wllliam R. Parke, "Stock Price Volatility: A Test Based on the Geometric Random Walk, manuscript, Jniversity of California at Santa Barbara, August 1987.

Andrew W. Lo and A. Craig Mckinley, "Stock Market Prices Do Not Follow Random Walks: Evidence from a Simple Specification Test, manuscript, University of Pennsylvania, 1987.

John B. Long Jr., "Discussion," Journal of Einence (July 1981) , 304-307.
Robert E. Lucas Jr., "Asset Prices in an Exchange Economy" Econometrica Xhivy (1978), 1429-1445.
N. Gregory Mankiw, David Romer and Matthem D. Shapiro, "An Unbiased Reexamination of Stock Price Volatility," Joumalof Fingmce 40 (July 1985), 677-688.

Terry \&. Marsh and Robert C. Merton, "Dividend Variability and Variance Bounds Tests for the Rationality of Stock Market Prices," American Ecomome Reyien 76 (1986), 1429-1445.
--n---., "Dividend Behavior for the Aggregate Stock Market," Jourmal Qf

Business 60 (Jan. 1987), 1-40.
Joe Mattey and Richard Meese, "Empirical Assessment of Present Value Relations," Econometric Reviews 5 (1986), 171-234.

Robert C. Merton, "On the Current State of the Stock Market Rationality Hypothesis," Sloan School of Management Working Paper No. 1712-85, 1985.

James 0'Brien, "Speculative Bubbles and the Need for Stock Margin
Requirements," manuscript, Federal Reserve Board of Governors, November 1984.
Maurice Obstfeld and Kenneth Rogoff, "Ruling Out Divergent Speculative Bubbles," Jounnal of Monetary Economics 17 (May 1986), 349-362.

James M. Poterba and Lawrence H. Sumers, 1987, "Mean Reversion in Stock Prices: Evidence and Implications," NBER Working Paper No. 2343, August 1987.

Robert J. Shiller, "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?", American Economic Reviey LXXI (1981a), 421-436.
------, "The Use of Volatility Measures in Assessing Market Efficiency," Journal of Finence XXXV (1981b), 421-436.
…-... "Reply," American Economic Reyien (1983).
------ , "Stock Prices and Social Dynamics," Brookinge Papers on Economic Activity (1984) 457-98.
-.---, "Comments on Miller and Kleidon," Journel of Business 59 (1986a), S501-S505.
-...-. "The Probability of Gross Violations of a Present Value Variance Inequality," manuscript, Yale University, July 1986 b.

Kenneth J. Singleton, "Expectations of the Term Structure and Implied Veriance Bounds," Journel of Political Economy (Dec. 1980), 159-176.

Gregor ${ }^{H}$. Smith, "Apparent Bubbles and Misspecified Fundamentals," Queens University Institute for Economic Research Working Paper No. 692, 1987.

Lawrence H. Summers, "Does the Stock Market Retionelly Reflect Fundamental Values," Journal of Finance XLI (July 1986), 591-601.

Jean Tirole, "On the Possibility of Speculation Under Rational Expectations," Econometrica (Sept, 1982) 1163-1181.
----, "Asset Bubbles and Overlapping Generations," Econometrica LII (1986), 1071-1100.

Kenneth D. West, "Comment," Econometric Reviews 3 (1986), 273-278.
--..--, "A Specification Test for Speculative Bubbles," Querterly Journgi of Economics (August 1987), $553-580$.
-.-.-. "Dividend Innovations and Stock Price Volatility," forthooming, Econometrica, 1988.

Table I
Volatility Tests, Constant Expected Return

(1)	(2)	(3)	(4)	(5)
Auther	Sample	W/Y*	2-yglue	Hitit reos?

A. Asymptotically vaiid under stationarity:

(1)	Blanchard and Watson (1982)	annus1, 1871-1979	72	. 00	no
(2)	Sleidon (1986 b)	$T=100$	25	.05-. 50	logarithmic
(3)	Lercy and Porter (1981)	quarterdy, 1955-73	16-148	.01-. 50	no
(4)	Shiller (1981a)	$\begin{gathered} \text { snnuel, } 1871-1979 \\ 1928-1979 \end{gathered}$	31-176	n. 2.	no
(5)	Shiller (1986b)	$T=100$	25	.00-.01	logarithmic

E. Asymptotically valid with unit erithmetic roots:

(7)	Mankiw et al. (1985)	annual, 1871-1984	0-12	n.a.	arithmetic
(8)	West (1988)	$\begin{gathered} \text { annua 1, } 1871-1980, \\ 1929-1979 \end{gathered}$	5-10	. $00=.01$	arithmetic
		$T=100$	5	. 05	arithmetic
		$T=100$	5	. 05	logarithmic

C. Asymptotically valid with unit logarithmic roots:

(9)	$\begin{aligned} & \text { Campbel1 and Shilier } \\ & (1987 \mathrm{~b}) \end{aligned}$	$\begin{gathered} \text { annual, } 1871-1986 \\ 1926-1986 \end{gathered}$	2-1.4	00	logarithmic
(10)	Kleidon (1986b)	annusi, 1926-1975	0-1	50	logerithmic
(11)	Ieroy and Parke (1987)	annual, 1871-1983	0	S. ${ }^{\text {a }}$	logerithmic
(12)	Shiller (1983)	annuel, 1871-1979	2	.01	logarithmic

Notes:

1. A column (2) entry of "T=sample size" indicates a Monte Carlo study zather than an empinical point estimate.
 the nearest integer, See the text for how V / W is calculated for a given entry.
2. Entries in colum (4) were rounded as follows: . 00 means that the reported p-value is less than . 005; .01, between .005 and .01; .05, between . 01 and $.05 ; .10$, between . 05 and $.10 ; .50$, greater than . 10 .
```
                    Table II
                    Power Against Mean Reverting Fad
                        A. Leroy and Parke (1987)
        Estimate froms and ?
V/V
                                    63
n. Estimate OE y/V Erom
            S and P
                                    Monte Carlo Estimates
                                    Medigar Prob V/q*>I
            . 34
                                .40
                                .006
```



```
10 4. 18 : 1.90 . 920
The altarnative data generating process is (12), with: \(1=012,0,=1244, ~ \%=3.0,7=.83\), \(\sigma=1347\). One thousard sumpes were dasm to generate the Monter Carlo, estimetes in panel B. Aditicnal details are in the text.
```

Teble ITE
Volatillty Tests, Varying Expectad Return

	(1) Antbor	(2) Stand	$\begin{aligned} & (3) \\ & y / y \pm \end{aligned}$	$\begin{gathered} (4) \\ 2-y 2 \overline{2}+8 \end{gathered}$	(5) 上etura model
(1)	Campbell and Shillen	annual, 1389-1986. $1928 \cdot 1986$	2-8	. 00	constant pramina
			1-8	.00-. 50	consumption
			2-12	. $00-50$	returie volatility
(2)	Hest (1987b)	armual, 1889-1978	$5-30$	A.	consumptton

Notes:

1. Ses notes to Tabla I.
2. As axplained in the text, in colume (5), "constant promium" means expected stock returns heve a constant preminn over chat on short debt "consumption" means expected stock returns sre determined by the consumption based assat pricing wodel; "return volatility" peans expected stock returns have a premium over that on short debt, with the premium dependent on tha volatility of stock returns.
