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ABSTRACT

Peer-to-peer systems promise inexpensive scalability, adapt-
ability, and robustness. Thus, they are an attractive plat-
form for file sharing, distributed wikis, and search engines.
These applications often store weakly structured data, re-
quiring sophisticated search algorithms. To simplify the
search problem, most scalable algorithms introduce struc-
ture to the network. However, churn or violent disruption
may break this structure, compromising search guarantees.
This paper proposes a simple probabilistic search system,
BubbleStorm, built on random multigraphs. Our primary
contribution is a flexible and reliable strategy for performing
exhaustive search. BubbleStorm also exploits the hetero-
geneous bandwidth of peers. However, we sacrifice some of
this bandwidth for high parallelism and low latency. The
provided search guarantees are tunable, with success prob-
ability adjustable well into the realm of reliable systems.
For validation, we simulate a network with one million
low-end peers and show BubbleStorm handles up to 90%
simultaneous peer departure and 50% simultaneous crash.
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1. INTRODUCTION

A recent Internet trend is toward online communities cen-
tred around user-generated content. Examples include Wiki-
pedia, MySpace, and Flickr. So far, these communities
have been built using the client-server paradigm, requiring
a backing organization capable of providing hosting. The
costs involved are enormous, as evidenced by Wikipedia’s
recent funding drive [19]. Furthermore, the organization
might fail or provide service only under onerous conditions.
Economically unviable communities are simply never built.
The alternative, peer-to-peer based hosting, shifts the cost
(and responsibility) to the community served. However, this
presents several challenging technical problems.

Besides the usual challenges of scalability, adaptability,
and robustness, these applications require flexible query lan-
guages. Recent DHT-based solutions to keyword search [13,
20] build another layer on top of the underlying DHT. In ad-
dition to increasing bandwidth and latency, their customized
routing is specifically designed for a single query algorithm.
We believe that query algorithms will continue to evolve,
and that coupling them to the network is not a wise long-
term solution. Hence, our system’s goal is to allow an ap-
plication designer to implement his query evaluator for one
machine, with the assurance that queries could (in principle)
be evaluated against all documents. For key-value search,
DHTs remain the appropriate complementary solution.

In this paper, we present BubbleStorm, a system sepa-
rating query evaluation from network topology. It simpli-
fies the design of distributed query languages by providing
a network-level search strategy which does not compromise
scalability, adaptability, or robustness. Key features include:

Powerful Search: BubbleStorm performs an exhaustive
search, which probabilistically guarantees that the applica-
tion’s query evaluator runs on a computer containing the
sought data. Since query evaluation is performed by a com-
puter holding the document, the application developer is free
to use any powerful query evaluator (XPath, full text, rela-
tional, etc). This is in stark contrast to DHTs (e.g. [12]),
where the query evaluator is key-value lookup and search
algorithms are hand-crafted on top of this primitive.

Scalability: Our results show that BubbleStorm easily
handles networks built from one million 10kB/s nodes, ap-
proaching the scale of popular public peer-to-peer networks.

Fast Search: For a 100-byte query to reach the single
matching document in a million nodes, BubbleStorm needs
600 + 200ms and 115kB total network traffic, irrespective of
query language. Our simulated network has poor physical
locality; performance in a real deployment is likely better.



Heterogeneity: BubbleStorm exploits mixed bandwidth
distributions to considerably improve its performance. Un-
der reasonable assumptions, total query traffic drops by a
factor of 3.6 compared to a homogeneous network. In our
simulated application, this brings search traffic to parity
with periodic overlay maintenance traffic. Most existing
work on overlay-based search concentrates only on query
traffic, assuming periodic maintenance traffic is negligible.

Optimality: When powerful search is required (defined
above), BubbleStorm has optimal traffic. No system can ex-
haustively search with asymptotically less traffic (Section 3).

Load Balancing: With Zipf-distributed keyword pop-
ularity [3] or similar file-sharing workloads [9], structured
systems suffer from hot-spots. BubbleStorm avoids this
problem—keywords have no specific destination.

Robustness: Due to its unstructured and randomized
topology, BubbleStorm survives catastrophic failure. Even
during 90% simultaneous peer departure, queries continue to
complete successfully. If 50% of peers crash simultaneously,
the topology heals within one minute and successful search
function is restored within 15 seconds. Although queries do
fail during the 15 second crash recovery, the effect depends
heavily on the crashed percentage, see Section 5.4.

This paper evaluates BubbleStorm by simulating a one
million node network (Section 5). In our simplified appli-
cation, users can publish documents and execute searches
in any query language. We explain the intuition behind
BubbleStorm in Section 2 and then provide an overview
of BubbleStorm’s three protocols: randomized multigraph
maintenance (Section 2.1), epidemic sum calculation (Sec-
tion 2.2), and query/data replication (Section 2.3). Section 4
highlights BubbleStorm’s robustness by including torturous
evaluation scenarios and we compare against Gnutella and
a random walk system [7] in Section 6.

2. SYSTEM

To achieve exhaustive search, we must ensure that a query
could be evaluated on every datum. This implies that for
every (query, datum) pair, some node can perform the eval-
uation. In a DHT, where every query and datum is mapped
to a key, the node responsible for the matching key per-
forms the evaluation. However, BubbleStorm is designed
for more difficult queries which resist such simple binning.
The alternative taken by Gnutella is to replicate the query
onto many nodes, which then evaluate the query on all the
data they store. While this works, it does not scale; ex-
haustive search would require replicating the query onto ev-
ery node. Publish-Subscribe systems [6] typically operate in
the opposite manner, replicating the datum onto the nodes
(guided by the subscriptions). BubbleStorm takes a hybrid
approach: both queries and data are replicated.

Though BubbleStorm performs exhaustive search, it does
so probabilistically—it can fail. Let the replicas of a query
be red balls and the replicas of a document’s meta-data
green. Over n nodes, distribute r red balls and g green balls
uniformly at random. The chance that no node has both
a green and red ball is less than e~"9/". Notice that only
the product rg matters; one can increase g while decreasing
r and retain the same probabilistic bound. For example, if
rg = 4n, the chance of a query finding the only matching
document is greater than 1 — e™* ~ 0.9817. The optimal
trade-off between r and g is derived in Section 2.4.

Query bubble Data bubble

Figure 1: Large enough bubbles likely intersect

To exploit this, we must replicate a query to a set of inde-
pendently chosen nodes with given set size. Contacting all
nodes within A hops has low latency, but h cannot control
the number of nodes reached precisely. For this purpose, we
use a new communication primitive, called bubblecast. Its
execution imposes a subgraph or bubble on the network of
specified size—in the absence of cycles. When every query is
replicated within a query bubble, and every datum in a data
bubble, then the nodes receiving both are rendezvous nodes
which evaluate the query on that datum (Figure 1). What
remains is to ensure that explored nodes are independent
and bubbles are cycle-free.

Fortunately, random graphs have these properties. Every
edge leads to a new random sample. Within a small area,
there is almost surely at most one cycle [1]. Certainly, one
must prove that two bubblecasts over our particular ran-
dom graph intersect with probability 1 — e "9/". The full
derivation can be found in [18], but our focus in this paper
is validating performance and robustness by simulation.

2.1 Topology

Because BubbleStorm’s overlay is a random multigraph,
finding random nodes is as easy as exploring edges. Random
graphs are also resilient; even if a large proportion of nodes
crash, a giant component remains [8]. Our graph is not
regular, but assigns degree proportional to bandwidth. As
edges in BubbleStorm carry the same average traffic, this
choice spreads relative load evenly over a mixed bandwidth
network, facilitating the use of high bandwidth nodes.

Preserving fixed node degree requires that joins and leaves
only affect the degree of the executing node. From a high-
level point-of-view, our join algorithm interposes a peer in
the middle of a random existing connection. Thus the join-
ing peer acquires two neighbours, while leaving their degrees
unchanged. When leaving, the process is reversed and this
same pair of neighbour connections is spliced back together.
A node executes the join or leave algorithm multiple times
in parallel to reach the degree dictated by its bandwidth.

The initial node in a BubbleStorm network connects once
to itself, forming a circle of one edge. All subsequent joins
operate as explained, interposing the joining peer into this
circle multiple times. This circle makes our network a multi-
graph (self-loops and double-edges are allowed). We inter-
pose joining nodes on random edges so that all node permu-
tations on this circle are equally likely. As leaves never break
the circle, without crashes it is impossible for the network
to disconnect. While multi-edges and self-loops may seem
redundant, they greatly simplify system design and imple-
mentation and are rare and easily avoided by bubblecast.

To keep the network topology consistent, we require that
all join and leave operations are serializable. A conflict can
occur between (multiple) join or leave attempts on the same
edge. To prevent this, we use TCP for in-order delivery
and designate one peer on every connection as its master,
responsible for serializing these operations. The other peer
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is a slave, which must ask the master’s permission to leave.
When combined with careful link shutdown, in the absence
of crashes, messages are never lost.

To bootstrap, a node must know the address of an existing
peer. A persistent cache of previously seen peers can be used
for this purpose. Next, the node sends a SplitEdge message
on a random walk of length 3(1+logn) to select an edge uni-
formly at random [2,7]. Figure 2 illustrates the subsequent
error-free message exchange of the join algorithm.

Peers should strive to execute the leave algorithm, shown
in Figure 3. Although peer crashes almost surely do not dis-
connect the network, they will reduce the degree of neigh-
bours. For this reason, peers tolerate one neighbour less
than their desired degree. They join once if two neighbours
crash. BubbleStorm makes no attempt to heal edges broken
by crashes. System churn slowly eliminates them. The tail
of Figure 6(h) illustrates this steady reduction.

BubbleStorm is implemented as a super-node network.
Super-nodes (aka peers) are responsible for routing bubble-
cast traffic, measuring the network, and maintaining graph
structure. Nodes not powerful enough for these activities
become clients to a peer, issuing queries by proxy. In fact,
all nodes start as clients while joining the topology as a peer.

2.2 Measurement

BubbleStorm includes a protocol for measuring global sys-
tem state. It measures the number of query and datum
replicas needed to ensure that for each (query, datum) pair
there exists a rendezvous node. Section 2.4 computes this
replication factor from D; and D2 where

D, := Z deg(v)"

veV

The join algorithm makes random walks of length 3logn,
n = Dy, so we measure Do, D1, and D>. While measure-
ments converge to arbitrary precision, only ~5% is needed.

The measurement protocol piggy-backs on the periodic
keep-alive messages used by the overlay to detect crashed
neighbours. Keep-alive messages in BubbleStorm are sent
to all neighbours every five seconds and include an extra 24
bytes for the measurement algorithm.

Our algorithm is based on work by Kempe, Dobra, and
Gehrke [10]. They prove their algorithm converges to the
sum of a variable over all nodes in O(logn) message rounds.
Unfortunately, their algorithm requires a designated leader.
We extend their work by eliminating this requirement [17].
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Figure 3: [ leaves between master m and slave s

A useful analogy is measuring a lake’s volume. By let-
ting loose a school of fish into the lake, and assuming they
spread-out uniformly, one can measure the lake’s volume by
counting the fish in a cubic metre of water. Peers manage
lake regions, whose initial volumes are the variables to sum.
Each peer picks a random fish size and puts 1.0 fish into
its region (fish are infinitely divisible). When sending keep-
alives, peer v mixes its lake region with its neighbours and
itself; everyone gets deg(lw of the water and fish. Bigger
fish in a region consume all smaller fish. Thus the biggest
fish swims/diffuses throughout the lake until only it remains
and is uniformly distributed. After O(logn) rounds, every
peer’s ratio of water divided by fish equals the sum.

By using a random fish size, exactly one fish will remain,
without needing a leader to release it. However, once the
biggest fish has spread uniformly throughout the lake, the
protocol should update the measured values and restart.
Our solution includes a measurement counter that increases
whenever stability is reached. If a peer receives fish and wa-
ter with a future counter, it moves its counter forward to
match. When a peer has not seen the water /fish ratio differ
in any messages (within a 1% tolerance) for five keep-alives,
it increases the measurement counter itself. New peers do
not add fish or water until their counter is increased once.

2.3 Bubblecast

Bubblecast replicates queries and data onto peers in the
network. It hybridizes random walks with flooding, com-
bining the precisely controlled replication of random walks
with the low latency of flooding. Although bubblecast can
be used on any graph with good expansion, it works espe-
cially well on our random topology.

As input, bubblecast takes the item to replicate, the de-
sired number of replicas (weight), and s, the system split
factor. After decreasing the weight by one, bubblecast pro-
cesses the replica locally, e.g. storing the data or executing
the query. Since evaluation is local, the query algorithm
can be as sophisticated as desired. If the weight is not zero,
bubblecast distributes the remainder between s neighbours,
randomly chosen for forwarding (see Figure 4). Bubblecast
never forwards to the neighbour who sent it the message.

Like a random walk, bubblecast weight controls the ex-
act number of nodes contacted. Unlike a random walk, it
reaches an exponentially growing number of nodes per step.
While flooding is similar, it uses a hop counter and contacts
all neighbours. Therefore, flooding only controls the loga-
rithm of replication and is affected by the degree of nodes.



Figure 4: Bubblecast 17 replicas with s =2

Bubblecast forwards to s neighbours so that all edges will
carry the same average traffic. In a flooding system, con-
nections from high degree nodes carry more traffic because
those nodes receive more traffic. By fixing the split factor,
the Markov stationary distribution of traffic under load is
the same as for a random walk (all edges equally probable).
Although bubblecast messages travel further than in flood-
ing, reduced congestion makes each bubblecast hop faster.

For BubbleStorm searches to succeed, bubblecast must
create the required replicas reliably. Compared to random
walks, bubblecast handles packet loss better. When a packet
is lost, both approaches lose replicas equal to the packet’s
current weight. Due to exponential division of the initial
weight, wo, bubblecast packets have weight ~ log, wo on
average as opposed to %2 for random walks.

Another concern is that bubblecast might reach the same
node twice, reducing the replication. For our multigraph
topology, bubblecast is careful not to follow self-loops and
only forwards to a neighbour once (even if multiple con-
nections exist). Larger cycles can not be detected locally,
and do reduce bubblecast’s replication. However, random
graphs have mostly large cycles [1], so this is rare and has
little effect as simulation in Section 5.1 shows.

2.4 Bubble Size

Correctness in BubbleStorm depends on the number of
query and data replicas (gq,d). For a given (query, datum)
pair, BubbleStorm is successful if there exists a rendezvous
node receiving a replica of both. For independently and uni-
formly placed replicas, this fails to happen with probability
less than e~9%™. Assume for the moment this holds true.

The entire network computes the same values for ¢ and d,
so that all queries and data have the same replication factor.
These values depend on the required reliability, r, and the
query/data traffic balance, which an application designer es-
timates. Define the certainty factor as ¢ := /—In(1 —r),
a real-valued system parameter shown in Table 1. By this
definition, e =1 = — qd = ¢®n. While
we have determined the product gd, the ratio remains a free
variable. BubbleStorm exploits this freedom to balance bub-
ble sizes. Let R, and R4 be the rates, in bytes/second, at
which queries and data are injected into the system—Dbefore
replication. The total system traffic is then ¢R, + dR4 sub-
ject to gd = c*n. Minimizing traffic leads to balanced bub-

ble sizes of ¢ = ¢\/nR4/Rq and d = cy/nR,/R4. The ratio

R4/Ry4 is the traffic balance which the developer estimates.
The equation e %™ is a simplification. Query replicas
are not placed independently from data replicas, due to the
shared network topology. Furthermore, bubblecast does not
sample uniformly from the graph, but proportional to node
degree, like a random walk. This non-uniform sampling is
actually an advantage; a node with twice the degree receives

twice as many replicas of both queries and data. Therefore,

c 1 2 3 4
r=1-e" 63.21% 98.17% 99.99%  99.99999%

Table 1: Match probability as a function of ¢

it serves as a rendezvous for four times as many pairs. For
our network, when the match threshold, T, is defined as,

_ D
" Dy —2D4
and n is replaced by T in the definitions of ¢ and d,

q:= [c\/m-‘ , d:= [me

the corrected failure probability [18], is bounded by

—c2+(:3HT

P(match failure) < e , where H — 0 as n — oo

The technical error term HY is small enough to ignore when
node degree is o(y/n), a condition BubbleStorm enforces.
As the network size and degree distribution change, the
measurement protocol provides estimates on Dy and Dz, and
thus 7. From T, bubblecast computes ¢ and d. However, an
intuitive understanding of T" is hard. When the network is
homogeneous, T = n dedgef 5; the —2 reflects the interdepen-
dence of query and data replicas. The denominator includes
squared degrees (D2), which reduce T as the heterogeneity
increases. Smaller T' means less replicas needed per bubble.

2.5 Congestion Control

As BubbleStorm strives for robustness, it must not suc-
cumb to congestion overload. A congested peer has higher
latency when communicating with its neighbours. If this de-
lays SplitEdge routing or keep-alives, the timeouts guarding
against crashed peers might expire. The associated recovery
traffic increases congestion, leading to more delays.

Generally speaking, the bottleneck in BubbleStorm is the
uplink. Consider a peer receiving a bubblecast message. It
potentially forwards that message over several of its TCP
connections. Therefore, although each TCP connection sees
average traffic, that traffic is correlated in time on the up-
link wire. This effect amplifies the natural load burstiness.
For peers with more download than upload bandwidth, this
problem is even more pronounced. When uplink bandwidth
is managed, we have not seen peers with congested downlink,
so BubbleStorm’s congestion control manages transmission
only. We defer downlink congestion control to TCP.

Our congestion control strategy assigns priorities to all
messages. HFach message type has a priority measured in
uplink congestion seconds. A peer models its output queue
according to its bandwidth constraint. For example, if a
peer with a 10kB/s uplink has 20kB in its queue, its con-
gestion is 2 seconds. When the queue is empty, the conges-
tion is 0 seconds. Messages are sent when their priority is
larger than the link congestion. Topology maintenance and
keep-alive messages have highest priority and are always en-
queued. Bubblecast message priority depends on weight. A
bubblecast query packet with weight w has priority

log(w)
log(q)
When a bubblecast packet has too low a priority to be sent,
it is simply discarded. This policy prevents dropping bub-
blecast packets which must still be replicated to many nodes.

2+ 2 seconds




2.6 Replica Maintenance

After bubblecast has installed replicas, the system must
maintain the replication against churn and possibly update
the data’s value. Because the replicas are scattered through-
out the network, updating values in-place seems practically
impossible. However, installing new versions of the data is a
reasonable alternative; querying nodes can distinguish new
values from old ones based on a version number. Alterna-
tively, one could replicate patches to old values for applica-
tions with a version history, like a wiki. To delete out-dated
replicas, one can add to replicas a time-to-live, after which
they are deleted. Which approach (and parameters) to use
is application-specific and not covered here.

The second problem, maintaining the desired replication,
can be solved elegantly in BubbleStorm. Using churn statis-
tics derived from the measurement protocol, we are still eval-
uating several possible solutions for this topic.

3. ANALYSIS

Under Section 1’s match requirement, that a query is eval-
uated on every datum by some node, BubbleStorm is nearly
optimal. In this proof sketch, we consider A, the largest
percentage of bandwidth used on any node. When \ = 1,
at least one node is completely saturated. As an objective
function, minimizing A\ forces load balance in a heteroge-
neous distributed system. Only minimizing packet count
would ignore load balance and variable packet size. Define
B, and T, as the bandwidth and traffic at node v. Then,

T,
A= max 5=

To compute A for BubbleStorm, recall from Section 2.4
that the total bubblecast traffic is gRq + dRq4. In the steady
state, traffic is distributed equiprobably between links, so

node v sees d%iw of it. Recalling that deg(v) is proportional
to By, set b= %Ev)‘ Then, for BubbleStorm,
A — max deg(v)( R, + dRa) = 2¢ | D?RyRq
W DB, T T D\ Dy — 2Dy
RyRq R,Rq
2¢c 2 ~ 20 | =
\/Zvev(B% - QBvb) ZvGV BIQI

To compute the lower-bound on A, we require that every
query meet every datum on some node. A necessary condi-
tion for this is that every query byte must meet every datum
byte. After ¢ seconds, there are (Rqt)(Rat) byte pairs to be
matched. A node v downloads at most AB,t bytes in this
time. Nodes can only match as many byte pairs as the prod-
uct of query and data bytes they downloaded. This product
is maximized when the downloaded query and data bytes are
equal, so (AB,t/2)? are the most pairs node v can match.
Utilizing all nodes equally, the lower bound on A is

S OB/2)? 2 (R)(Rat) = 3> 2, LA
veV ZveV v

Therefore BubbleStorm is optimal to within the factor c.

4. SIMULATION

We opted to use a custom simulator with BubbleStorm.
As BubbleStorm is TCP-based, we knew that we would need

a light-weight approximation. Previous analytic work had
shown that upload and download queueing effects would be
important, so our simulator includes ingress and egress con-
gestion. We wanted to simulate BubbleStorm with 1 million
peers, approaching the size of real peer-to-peer networks.
This required very tight memory management to fit the rep-
lica databases, message queues, and event heap.

The simulated topology places every node at a position
on Earth, chosen uniformly at random, simulating a worst-
case scenario for latency. Each node has an upload and
download link bandwidth and end-point specific delay. The
total flight-time for a message includes:

e the queueing delay while the message waits in
line to be uploaded
the sender’s last-hop link delay
twice the time required by light to travel the arc-
length between the nodes on earth

e a normal random variable with 5 4+ 5ms
the receiver’s last-hop link delay
the queueing delay while the message waits in
line to be downloaded

e waiting for previous, out-of-order TCP segments

Our simulation of TCP is rather simple and disables the
Nagle algorithm. The main purpose of TCP in our system
is reliable in-order delivery. We simulate this and the usual
SYN, SYN+ACK, ACK sequence and tear-down via FINs.

Nodes are implemented in C++ with statically allocated
memory, except for their message buffers. They hook TCP
callbacks (onConnected, onRejected, onAccept, onReceive)
and interact with the system solely via sending messages and
connecting to addresses. The BubbleStorm ‘database’ is a
simple bit vector recording documents received. Simulations
took 20-50 hours per run on an Opteron 2.0GHz, consuming
from 7.6GB of RAM to 13GB for heterogeneous scenarios.

4.1 Configuration Parameters

We simulate a one million peer distributed wiki subjected
to different 8 minute failure scenarios. The simulator first
goes through a warm-up phase to reach the target size. After
the measurement protocol has stabilized (3 minutes), we
begin injecting bubblecast traffic. This marks the start of
the 8 minute test. One minute later, the simulated event
occurs, and the following 7 minutes record the effect.

To push the system close to its limits, we use very weak
peers. As reasonable bandwidth distribution causes nearly a
four-fold bubblecast traffic reduction (Section 5.5), we take
a homogeneous case as our control scenario. In this setup,
every peer has only 10kB/s upload capacity, 100kB/s down-
load capacity, and a 40ms local link delay. This corresponds
to an ADSL-1000 node with poor line quality. Every peer
has a degree of 10 and thus joins 5 times. We could certainly
simulate more powerful peers, but then the load and failure
scenarios would not stress the network.

Unless otherwise specified by the scenario, peers have a
pre-calculated lifetime taken from the exponential distribu-
tion with mean 60 minutes. At the end of their lifetime they
either crash or leave. A more accurate lifetime would be

1— ¢ st 1
ﬁ, where o« = E
which fits the session duration plot from [15]. However,
our exponential random variable chooses shorter lived nodes,
which is a good worst-case assumption. Using an exponen-

P(lifetime < t) =



Homogeneous | Heterogeneous

n Query | Data | Query | Data
10k 328 153 163 76
100k 1036 483 327 152
1M 3276 | 1527 950 443

Table 2: Number of replicas for ¢ = 2

tial lifetime has the marked advantage that we need not
worry about the lifetime distribution after reaching our tar-
get network size; exponential distributions are memory-less.

To quickly grow a BubbleStorm network to the desired
size, there is a phase before every test where no bubblecast
traffic is transmitted, but the network receives 10% of its size
in new peers every 10 seconds. The normal join algorithm
is used. Once the target one million peers have been added,
we switch to a Poisson arrival rate that balances the expo-
nential leave rate. As exponential random variables have no
memory and are symmetric in time, we assign every living
peer an age taken from the lifetime distribution. Thus the
age distribution is correct even though all peers are in re-
ality no older than a few minutes. Once the network has
correct age and lifetime distributions and size, we can inject
bubblecast traffic derived from peer uptime.

To simulate a wiki, we assume that article meta-data is
2kB and new articles are created every 30 user minutes.
Similarly, queries are 100 bytes (before headers) and are in-
jected on average every 5 user minutes. However, the actual
injection distribution follows the 80/20 rule. The first 20%
of a peer’s lifetime is used to inject 80% of its traffic; this
rule is applied recursively. The bubblecast split and cer-
tainty factors were set to s = 2 and ¢ = 2 for a success rate

of 1 — e~ ~ 98.2%. A real system would probably choose
¢ = 3 for 99.99% at a cost of 50% more traffic. However,
this failure rate is too small to measure via simulation with
any accuracy. The resulting bubble sizes (¢\/TRq/R, and
c\/TRy/Ry) for this wiki query/data traffic ratio are shown
in Table 2. The heterogeneous T is derived from Table 3, the
bandwidths used in the heterogeneous simulation scenario.

To measure bubblecast success, we colour some query and
article bubblecasts at 100Hz. Wherever a coloured arti-
cle bubblecast goes, it sets a bit in the peer’s bit vector
database. Twenty seconds after an article was coloured
green, a query for green is bubblecasted. Queries report
success if any of the replicated queries arrive on a green
peer. Only marked bubblecasts report latency and number
of peers contacted.

4.2 Scenarios

We investigate the performance of our system in a variety
of scenarios which demonstrate the efficiency and robustness
of the system. The scenarios represent both realistic oper-
ating conditions and failure scenarios which test robustness.
Every scenario is run 11 times for reliable comparison.

Pure Churn: This scenario provides a base line for com-
parison to other scenarios. Peers join with Poisson arrival
rate and leave the system with exponential departure rate.
The test starts with the population already at equilibrium.
We assume orderly departure, i.e., no peer crashes. Injected
load has 80/20 distribution.

Massive Leave: This is an extension of the Pure Churn
scenario. In addition to normal churn, a large number of
peers leave the network simultaneously after one minute.

Link type Pop | Upstream | Downstream | Last hop
ADSL-1000 | 60% 16kB/s 128kB/s 30ms
ADSL-2000 | 25% 32kB/s 256kB/s 20ms
1Mbit 10% 128kB/s 128kB/s 1lms
10Mbit 5% | 1.28MB/s 1.28MB/s 1ms

Table 3: Heterogeneous scenario bandwidths

These departures are again only normal leaves, not crashes.
We simulate 50% and 90% simultaneous departure in this
scenario. While these percentages are extremely high for
realistic scenarios, they clearly demonstrate the robustness
of our system. Furthermore, simultaneous leaves highlight
the atomic nature of master-slave link management.

Churn with Crashes: This is the most realistic homo-
geneous scenario we investigate. It is identical to the Pure
Churn scenario, with the exception that some peer depar-
tures are crashes, not following the leave protocol. We set
the ratio of crash departures to 10%.

Massive Crash: This scenario builds on Churn with
Crashes, but crashes a large percentage of peers simulta-
neously. We investigate cases where 5%, 10%, and 50% of
the peers die. This scenario shows how quickly BubbleStorm
is able to recover from catastrophic failure.

Heterogeneous Network: BubbleStorm is not a homo-
geneous peer-to-peer system. This scenario extends Churn
with Crashes to include peers with different network ca-
pabilities. Because BubbleStorm is a super-node network,
peers providing less than 16kB/s upstream bandwidth are
excluded. Modelled peers and their associated link parame-
ters are summarized in Table 3. In this scenario peer degree
is proportional to uplink bandwidth.

5. RESULTS

We measure BubbleStorm’s query behaviour, topological
integrity, and measurement accuracy. For bubblecast, the
simulator provides information on success probability and
the size of the imposed query/data subgraphs. The latency
of query and topology operations are measured, as are the
percentage of nodes with full or nearly full degree—this helps
measure peer assimilation rate. Measurement (Section 2.2)
convergence affects the success of BubbleStorm; knowing
when a new T is used helps to explain the sudden transitions
in search performance. Most key operations are affected by
congestion, so we also analyze the maximum and average
uplink backlog and traffic break-down.

In all plots, the x-axis shows the time since the begin-
ning of the simulation in minutes. For nearly all plots, the
y-axis represents an average of 11 independent runs. The
initial 27 minutes include the warm-up exponential network
growth and an additional three-minute delay to let the sys-
tem reach equilibrium. After one minute of bubblecasting,
we introduce the simulated anomaly at 28 minutes. The
contents and y-axis for the different plots are as follows:

Bubblecast: Shows how often queries find the single
matching datum and the percentage of unique peers reached.

Latencies: Shows the latencies of completing query and
data bubblecasts, joining and leaving the network, and the
time till a query first finds its match,

Measurements: Shows the maximum and minimum es-
timates on network size and standard deviation of all peer
measurements on a logarithmic scale. Because the protocol
switches rounds at different times, these plots cannot be av-
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Figure 5: Pure churn

eraged. If the plots are not qualitatively the same, the most
interesting plot is examined and the discrepancy explained.

Node degrees: Shows the percentage of nodes with a
given number of edges. Figure 6(h) also shows the fraction
of nodes executing the leave algorithm.

Congestion: Shows the maximum and average node up-
link congestion in seconds. A node with nothing in its up-
link queue has 0 seconds of congestion. The average includes
standard deviation error bars. The right-hand y-axis shows
the average amount of traffic seen by a node.

Traffic breakdown: Shows bubblecast, keep-alive, and
topology traffic measured in GB/s for the entire network.

5.1 Pure Churn

Pure Churn is unremarkable. Success rate hovers in the
expected 98% range. For the requested replication, approxi-
mately 99.9% of the replicas arrive on unique/distinct peers.
As there are no crashes and congestion is low, this 0.1% loss
is from cycles in the graph. Still, the reduction is small
enough to justify omission of a cycle-avoiding algorithm.

While searches take on average about 4.5 seconds to com-
plete (Figure 5(b)), surprisingly most successful matches
happen within 2 seconds. This is related to the ¢ factor;
we look further than needed for 50% confidence. As queries
and data are propagated further than necessary, they prob-
ably intersect in advance of complete bubble exploration.
This causes the fast search phenomenon. As average match
time is what the user sees, this is a very attractive prop-
erty. Keep in mind that nodes are uniformly distributed on
the earth and 80ms is added by the end-point links. Real
deployments would probably see even better latency.

Joins are routed via a random walk of length 3log(n) = 60
hops in a one million node network. Even though the join
delay is about 9 seconds, BubbleStorm is a super-node net-
work allowing new nodes to execute searches immediately.

The measurement protocol periodically converges in Fig-
ure 5(c). Each time the standard deviation drops to an
acceptable level, the measurement protocol begins a new
round, resulting in the sudden peaks. After the biggest
fish (from Section 2.2) has spread throughout the lake, the
standard deviation drops linearly in our graph. Thus it
is improving exponentially (the scale is logarithmic). The
minimum corresponds to the peer which had produced the
largest fish; it initially has an unnaturally high concentration
of fish. As the deviation drops exponentially, it is clear that
the maximum and minimum also converge quickly. Oddly
the maximum estimate converges especially fast, while the
minimum converges exponentially as expected.

5.2 Massive Leave

Peer exits should not decrease search success. Figures 6(a)
and 6(d) show an initial success rate of 98% as expected.
After the departure, both scenarios jump up to nearly 100%
success. This is because the measurement protocol (shown
for 90% leave in Figure 6(g)) does not provide a new network
measurement until 30:25. Prior to then, the bubble sizes are
still being calculated with a match threshold appropriate for
a much larger network. Thus, the bubbles are bigger than
required, resulting in an artificially higher ¢ value. Once the
measurement protocol calculates a new value, the success
returns to the expected range, except for the 90% leave case
which has only 96%, discussed at the end of this section.

The master-slave link protocol serializes operations. If a
master is leaving, its slave cannot leave until the master has
finished. This creates leave dependency chains in the net-
work. With only 50% of the network departing, the chains
are not long. A chain of length greater than two is only
25% likely, three is 12.5%, and so on. In contrast, with 90%
departure, chain lengths greater than five long are still 60%
likely. Therefore, the effect on leave times is far more ex-
treme in the 90% case (figures 6(b) and 6(e)). Nevertheless,
after four minutes even the extremely long chains in the 90%
scenario have been flushed—see Figure 6(h).

In both leave scenarios, the Poisson arrival rate remains
unchanged. As the exponential leave rate times the current
population no longer balances the arrival rate, the system
begins growing. The system would eventually re-stabilize at
one million nodes. Effectively, in the 50% case, the system
is coping with twice the previous relative arrival rate versus
ten times the relative arrival rate in the 90% case. While
the topology handles this growth rate and the measurement
protocol similarly converges, the 80/20 traffic is a problem.

When a peer joins, the simulator injects most of its data
and queries immediately. As the relative arrival rate is sig-
nificantly increased and the bubble sizes are artificially in-
flated, this leads to a traffic explosion. The 50% case is
not so extreme, and Figure 6(c) shows that the traffic un-
dergoes a brief increase that stops at 30:00 when the new
threshold value kicks in. This traffic causes an average con-
gestion bump from 40ms to 60ms. As congestion affects link
latency, this accounts for the slightly slower operation times
shown by Figure 6(b) during the event recovery.

The same effect is much more pronounced for the 90%
leave scenario. Significantly higher per-node traffic hits the
system, resulting in a bubblecast reachability drop (Fig-
ure 6(d)) to cope with congestion. Yet the success rate re-
mains undamaged (actually it improves) due to congestion
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Figure 6: Massive leave

control, which drops only low weight packets. Thus, over-
sized bubbles, reduced in size, still remain larger than re-
quired and successfully intersect. Once a new measurement
kicks in, reachability shoots back up as congestion clears.

Not all is roses, however. The transient congestion is much
higher—a full 650ms average! This increases the latency on
all operations, but SplitEdge must be routed for ~ 50 hops.
The average congestion results in the 30s SplitEdge timeout
firing. This in turn leads to broken edges when SplitEdge is
retransmitted and causes two splits where only one can be
satisfied. Therefore, 30 seconds after the congestion peak,
Figure 6(h) shows a rapid increase in degree 9 nodes due to
broken edges. However, our system is designed to cope with
broken edges and this presents only an aesthetic problem.

Another artifact of simulating the 90% scenario is that the
subsequent success is 2% below what it should be. The net-
work is growing by approximately 21% every 90 seconds, due
to the unchanged Poisson arrival rate. Although this after-
effect is unrealistic, it is interesting. As the measurement
protocol takes 90 seconds to resolve new threshold values,
on average the network size is underestimated by 10%. This
reduces ¢, so that 1 — ¢~ (099% ~ 0.96 which accounts for the
missing 2%. Normally, a network would not be expanding
this quickly, but if this is important for a reliable applica-
tion, increasing traffic by 10% (and thus increasing c¢) would
retain the desired probability during this growth.

5.3 Churn with Crashes

Churn with Crashes is similar to the Pure Churn sce-
nario, except that 10% of the peer departures are crashes
not following the leave protocol. The only difference be-
tween Churn with Crashes (Figure 7) and Pure Churn (Fig-
ure 5) is a 0.4% drop in unique peers reached. However,
search success is not appreciably affected, confirming that
occasional peer crashes do not hurt the system.

5.4 Massive Crash

A simultaneous crash killing a large fraction of the net-
work is most interesting (failure of an intercontinental line or
a large Internet provider). Crashed peers cannot be detected
without a timeout. Until the timeout expires, these peers act
as bubblecast black holes, absorbing all packets, including
weight > 1, causing massive correlated failure. Yet, amaz-
ingly, not only does BubbleStorm’s topology recover within
a minute from a 50% crash, but in-progress searches also
continue to succeed during the 5% and 10% crash timeout
window. Even for a 50% crash event, within 15 seconds the
system has achieved higher success than before the crash.

To make sense of these results, we need to look at what
a crash does. The dead peers act as open wounds, bleed-
ing bubblecast packets out until the crash is detected and
the wound closed. If there are enough such cuts, nearly all
the bubblecast traffic bleeds out as shown for the 50% crash
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traffic break-down in Figure 8(f). However, once the leaks
are detected and the neighbour connections closed, bubble-
cast packets immediately stop being lost. Bubblecast does
not need any particular degree sequence to work, so once
the packet loss ceases, it operates as usual, but with too
large a bubble size. This is why the success is immediately
restored, but the congestion increases slightly (not shown).
This inherent and automatic stabilization in BubbleStorm
is the pillar of the system’s robustness.
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The topology can quickly recover its previous degree se-
quence because the congestion just fell due to bled out bub-
blecast messages. The corresponding latency drop in Fig-
ure 9(a) occurs at the critical moment when topology resto-
ration begins. As the join operation is atomic and only com-
mits to a joining neighbour on slave connection verification,
no bubblecast traffic is lost during recovery. Therefore, only
bubblecasts that were actually inflight during the 15 second
window before crash detection suffer any effect from even
the 50% crash. The spike in join latency comes from Split-



Join
Aticle complete
Query complete -

Leave
Query match

Latency (s)
w

Probability/Fraction reached

0.95

Bubblecast

Ping mess
Topology s

Total traffic (GB/s)

Unique peers
Success

0
27:00 29:00 31:00 33:00 35:00 27:00 29:00
Time (mm:ss)

(a) Latencies

Time (mm:ss)

(b) Bubblecast

31:00 33:00 35:00 27:00 29:00 31:00 33:00 35:00

Time (mm:ss)

(c¢) Traffic breakdown

Figure 10: Heterogeneous network

Edges that bled out through unhealed cut links. At 29:00,
a minute after the crash, the network degree sequence in
Figure 9(c) has mostly healed, just in time to deal with the
resurgence of bubblecast traffic. As soon as a new measure-
ment stabilizes, the network is back to business as usual.

Random graphs like BubbleStorm’s retain a giant compo-
nent plus a small number of isolated components after large
crash events [8]. For the run plotted in Figure 9(b) there
were three pairs of nodes that were partitioned from the
network. All the other nodes rejoin the network, but these
stay isolated and report their local minimum.

Finally, let’s examine the success probability. Depending
on the proportion of bubblecast traffic bled out, we can de-
termine the effect. At 50% crash, effectively all the traffic in
Figure 8(f) is bled out and all inflight queries in Figure 8(c)
fail. Shortly thereafter, the large query bubbles easily find
matches. Twenty seconds later, the simulator looks for the
articles created during the crash event, so the success drops
again, but this is only an echo of the crash event which
already healed. At 10% failure, about half the traffic in
Figure 8(e) bleeds out. This results in a reduction of ¢ by

factor 2. Thus, 1 — e~(¢/2® ~ 0.63 bounds the success of
Figure 8(b) during the crash timeout window. Finally, for
5% crash, only 33% went missing from Figure 8(d), and so

1— e (2/9” ~ 0.83 bounds Figure 8(a). Thus, a system
which wants no degradation during a 5% crash would need
to increase it’s regular traffic by 50% to cancel the 33% loss.

5.5 Heterogeneous Network

The heterogeneous network scenario is the most realistic.
BubbleStorm exploits heterogeneity to improve its perfor-
mance, so we expect better results than Churn with Crashes.

Figure 10(c) shows a marked increase in keep-alive traf-
fic. Peers take degree proportional to uplink bandwidth and
ADSL-1000 peers have degree 10. Each connection requires
68 bytes (with TCP/IP headers) of keep-alive traffic every
5 seconds. As the network still contains a million peers, the
higher average degree increases traffic.

The next difference is the bubblecast traffic reduction.
BubbleStorm benefits from heterogeneity due to the match
threshold equation. As the heterogeneity goes up, the match
threshold goes down. For the homogeneous one million peer
scenarios, T' = 1.25M. However, in this scenario T =
106.5k, reducing the bubble sizes by about 3.4 fold. Fig-
ure 10(c) contrasted with 8(d) clearly demonstrates this.

High bandwidth peers in BubbleStorm do not reach their
target degree immediately; this would be disruptive to the
network. Instead, their degree increases linearly through
time. Due to exponential warm-up growth, most nodes in

the system joined recently (although they believe they are
older). Thus, high bandwidth nodes must still reach their
degree when the simulation starts, so topology traffic in Fig-
ure 10(c) is high. As the degree increases, the match thresh-
old, T, decreases; BubbleStorm uses the heterogeneity. This
can also be seen in the steadily decreasing bubblecast traf-
fic. Since measurements of T' lag behind the actual value,
bubbles are slightly larger than necessary, resulting in an
initially higher than expected success (Figure 10(b)).

Higher degree peers process more traffic. In fact, ADSL-
1000 users in this scenario only need to process 288B/s,
whereas the larger 10MB/s peers carry 23kB/s. When sum-
med across all peers, this equals the 1.7GB/s traffic plotted.

Powerful peers have very positive effects on latency. They
have lower link latency themselves and as they have most
edges, most traffic crosses them. The combined effect yields
successful search match times of 600 = 200ms even though
peers are uniformly distributed across the planet.

6. COMPARISON

An apples to apples comparison of BubbleStorm to other
systems is difficult. Structured approaches implement spe-
cific query algorithms and their performance depends on
completely different parameters than unstructured systems.
Unstructured systems like Gia [4] do not solve exhaustive
search. Two systems solving nearly the same problem are
Gnutella and the random walks of Ferreira et al [7].

Gnutella might be called the great grandfather of all un-
structured systems, and it shows its age. We take it only
as a base line for comparison. Gnutella searches by flood-
ing queries with a hop counter and does not replicate data.
With a large enough hop counter, it can search exhaustively.

The random walk system follows similar intuition to Bub-
bleStorm. It replicates both queries and data to c¢\/n nodes
in a (possibly) unstructured network. As the title suggests,
random walks are used for replication, but these walks have
biased probability to eliminate the effects of heterogeneity.

In our simulator, all systems must find the single matching
document. We evaluate them on network sizes ranging from
102 to 10° peers, with system parameters from Section 4.1
and the heterogeneous bandwidth distribution from Table 3.
All systems exclude clients; peers are run as super-nodes.

Our implementation of Gnutella uses a min degree of four.
When joining, it is allowed to ask the simulator for running
nodes chosen uniformly at random, improving its expansion
when compared to real clients. It also asks the simulator
for the network size, in order to compute a hop count of
log (5 4_1y 1, which reaches nearly all nodes. Our implemen-
tation of Gnutella has no Ping/Pong or QueryHit traffic.
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The random walk system omits a specific protocol, topol-
ogy, and method for computing n. For fair comparison, we
give it BubbleStorm’s overlay and measurement protocol.

To evaluate the systems, we compare traffic, latency, and
success averaged over 11 runs. As the x-axis is logarithmic
in network size, the y-axis for latency and traffic are also
logarithmic. The traffic plot includes the total bandwidth
available to the systems, which grows linearly. BubbleStorm
and the random walk system share topology, so topology
traffic is split from the bubblecast and random walk traffic.

Gnutella’s total traffic is known to grow as ©(n?). Thus,
the logarithmic Figure 11(a) shows Gnutella with slope 2.
Up to 10* nodes, Gnutella has good success and latency, but
its bandwidth is quickly approaching the system limit. At
10° nodes, it requires more bandwidth than is available and
saturates many peer connections. However, Gnutella does
not fully exploit the available bandwidth; it uses only 35%.
Without a split factor, flooding has poor load balancing. As
the links are not utilized uniformly, congestion causes packet
loss in advance of system saturation. This loss impacts suc-
cess, which falls to 44%, and latency. Search completion
takes 80s, although matches are found in 9.6s. Of minor
note, the TTL is rounded down for 100 nodes, but up for
other sizes, accounting for the lower success at this size.

The problem with the random walk system is that the
walks are too long. A walk’s latency (Figure 11(b)) grows
linearly with its length, £ = cy/n. At 10° nodes, queries
take 190s to complete and 66s to succeed compared to Bub-
bleStorm’s 1.4s and 0.6s. While the overlay only loses pack-
ets when nodes crash, the forwarding success, p, is 99.95%,
for the simulated parameters. Once packet loss is included,

random walks only reach II_ZZ nodes. In a 10° node net-
work, this means 37% of replicas are never created, causing
the success rate to fall as the network grows. Success is also
lower, because random walks often step backwards, decreas-
ing hops without creating a replica. Finally, as the random
walks are biased to avoid heterogeneity and don’t balance
query/data replication, traffic is higher than for bubblecast.
Of the three systems, BubbleStorm is the most efficient,
responsive, and reliable. Figure 11(a) shows that up to
10° nodes, the keep-alive traffic (constant per node) plus
join/leave traffic (logarithmic, but smaller) dominates bub-
blecast traffic. Thanks to the split factor, link congestion is
averted and latency is logarithmic in size. Up to the limits
of our simulator, success seems stable as the network grows.
Certainly, bubblecast traffic will eventually exceed the total
uplink capacity, but it appears that much room remains.

7. RELATED WORK

The advent of DHT systems enabled efficient key-value
peer-to-peer search. Yet, this mechanism alone is insufficient
for many real-world problems. More sophisticated queries
must be implemented atop DHTs, tailored to a specific task.
Keyword search, in particular, has been studied extensively.

It has been shown that traditional inverted-indexes are
not feasible for large scale keyword search [11]. Reynolds
and Vahdat [13] use Bloom Filters to reduce the size of
transferred lists while recursively intersecting the matching
document set. Although being fairly bandwidth-efficient,
the approach increases the latency experienced by the user.
The Proof search system [20] reduces bandwidth further by
applying pre-computed PageRank scores and content sum-
maries to the index entries. The distributed computation of
PageRank [14] adds additional cost to index maintenance.

Furthermore, Reynolds [13] and Yang [20] acknowledge
that Zipf-distributed keyword popularity causes load bal-
ance problems in DHTs. This is an inherent issue for key-
value indexes. Due to our completely different approach,
keyword hotspots are avoided by BubbleStorm.

Gia [4] is an unstructured system combining biased ran-
dom walks with one-hop data replication. While it delivers
promising simulation results, it is not designed to return all
matches in the system. Its topology uses several heuristics
to put most nodes within short reach of high capacity nodes.

Sarshar et al [16] enable exhaustive search on a Gnutella
topology with sub-linear complexity. They combine ran-
dom walk data replication with a two-phase query scheme.
Queries are installed along a random walk and then flooded
with a probabilistic algorithm based on bond percolation.
Traffic cost and success rate are analyzed. However, the only
heterogeneity permitted corresponds to power-law graphs
and introduces nodes of unrealistic degrees beyond +/n.

While most related approaches use random walks for ren-
dezvous, we argue that random walks have high latency and
are unreliable. Random walks do not exploit the natural
parallelism of a distributed system; their latency is propor-
tional to their length. Worse, any message lost in the walk
stops its action completely. In contrast, bubblecasting offers
latency logarithmic in bubble size and loss only slightly re-
duce that size, which does not usually make the search fail.
While BubbleStorm does use random walks for join, these
walks are short, time-insensitive, and resubmittable.

BubbleStorm has a join algorithm similar to that used in
SWAN [2]. However, Bourassa et al are solving multicast,
not exhaustive search. Cooper et al [5] proved that repeated
application of their join and leave algorithms converges to



a random regular graph in the usual sense. Compared to
SWAN our joins and leaves are serializable, we don’t need
to repair crashed links, and we allow heterogeneous degree.

Yang et al [21] compared the performance of three differ-
ent P2P keyword search systems: a Bloom Filter DHT-based
system, flooding with super nodes, and random walks with-
out data replication. The DHT performed best in terms of
latency, but had worst publishing cost. Random walks were
the opposite, also failing to provide full recall of matches.
Their tests evaluated networks with 1000 peers and searches
with two keywords on average. Our simulations feature net-
works 1000 times larger and 100 byte queries (more than two
keywords). Documents in their scenario appear to be twice
the size of our replicated meta-data. We conjecture that
under the same conditions, BubbleStorm would outperform
all three systems’ search latency and compete with the DHT
on bandwidth, especially in heterogeneous networks.

8. CONCLUSION

In this paper, we presented BubbleStorm, a probabilis-
tic platform for exhaustive search based on random multi-
graphs. It is robust even under extreme conditions with poor
resources. Our simulated network consisted of one million
10kB/s nodes. We subjected this network to simultaneous
90% node departure and 50% simultaneous crash failure.
Yet, BubbleStorm survives because: a) unstructured net-
works do not have invariants to restore and can thus resume
normal operation immediately after detecting crashes, and
b) the system is self-stabilizing; when many nodes depart,
search success improves immediately, no action required.

In addition, heterogeneity benefits BubbleStorm, leading
to search latency of 600 + 200ms—under the worst-case as-
sumption of nodes distributed uniformly across the planet.
This stems partly from parallelism, but mostly from trad-
ing bandwidth for latency. In contrast, most previous work
takes the opposite approach, even though bandwidth is al-
ways improving and latency is approaching its physical limit.
Nevertheless, when required to support all query languages,
BubbleStorm’s bandwidth utilization per node is asymptot-
ically minimal (Section 3). It needs only 115kB to exhaus-
tively search one million nodes with a 100B query.

We believe BubbleStorm is ideal for complex searches over
static or versioned data. For example, file sharing systems
could use it for searching file meta-data and wikis for full-
text search. By leaving the query language to the applica-
tion designer, we anticipate that more uses will be found.
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