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Introduction

There is increasing evidence supporting a role for interindividual 
epigenetic variation in the etiology of a variety of common non-
malignant diseases and phenotypes in humans.1-6 Such variation 
was originally studied with a view to explaining the non-genetic 
etiological component, but more recent large-scale analyses 
that integrate epigenetic and genetic variation show that a sig-
nificant proportion of these genetic variants most likely exert 
their effects via modulation of epigenetic states.7,8 Consequently, 
a variety of epigenome-wide association studies (EWASs) for a 
variety of human diseases and phenotypes have been published 
in recent years,9-20 and many more are underway (e.g., www. 
roadmapepigenomics.org/participants).

Although EWAS and GWAS designs may appear ostensibly 
similar, the dynamic nature of epigenomic landscapes poses 
challenges for designing a successful EWAS that are not encoun-
tered in GWASs.1-5 Key issues include, (1) type of cohort since 
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a standard ‘unrelated cases vs. controls’ design cannot establish 
causality, (2) which epigenomic mark to profile, although DNA 
methylation is by far the most studied mark in EWASs due to 
the practical difficulties of studying chromatin state and non-
coding RNA in large numbers of live individuals, (3) the num-
ber of individuals required for adequate statistical power in an 
EWAS since the extent of interindividual epigenetic variation 
in human populations is poorly understood, (4) platform to use 
since a balance has to be struck between cost-effectiveness and 
genome coverage and (5) the tissue to assay since epigenetic land-
scapes are tissue-specific and genomic context-dependent. This 
problem is further compounded by the fact that in most cases 
the target tissue for non-blood disease/phenotypes are not read-
ily available from significant numbers of live human individuals 
(a few large-scale adipose tissue and muscle biopsy collections 
notwithstanding, such as those profiled in refs. 21 and 22). 
Therefore, surrogate tissues are used in most EWASs, with blood 
being the strongly preferred option. But what is the evidence that 
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contain significant amounts of leukocyte contamination. To 
further ensure that the buccal cells used in our study were not 
contaminated with blood sub-types, we used the Illumina 450K 
array to generate additional DNA methylomic data for buccal 
cells and a variety of other blood and non-blood cell types from 
adults: CD4+ T-cells, CD14+ monocytes, CD34+ hematopoietic 
stem cells, mature spermatozoa, full term placenta, and pancreas 
(Methods and Table S3). The Illumina 450K array contains  
> 450,000 CpG sites associated with nearly all annotated 
human promoters, CpG islands, imprinted regions and a vari-
ety of other regions including gene bodies, enhancers and 
non-CG sites.23 We then called tissue-specific differentially 
methylated regions (tDMRs) between all blood subtypes vs. 
all non-blood cell types, but excluding buccal cells at this stage 
(Methods). This identified 12 different tDMRs that were 
highly specific for blood subtypes (Fig. 1B). We then looked 
at the buccal Illumina450K profiles and found that in all 
cases, methylation levels at these tDMRs were highly concor-
dant with the non-blood cell types only, suggesting very little, 
if any, contamination of the buccal cells with blood cell types  
(Fig. 1B).

Comparative analysis of BS-seq-based blood and buccal 
DNA methylomes. To directly compare the buccal and blood 
methylomes, an ~20×-fold coverage blood BS-Seq data set was 

blood is the most suitable tissue for non-blood based diseases/ 
phenotypes compared with buccal cells, the other easily acces-
sible tissue? To assess the potential of buccal cells for use in 
EWASs, here we report a comprehensive analysis of a buc-
cal cell methylome using whole-genome bisulfite sequencing. 
Our data suggest that for EWASs of non-blood based diseases/ 
phenotypes, buccal will be a significantly more informative sur-
rogate tissue.

Results

Generation of a human buccal cell DNA methylome. To cre-
ate a human buccal methylome, we BS-seq profiled buccal DNA 
samples from 14 different individuals of European ancestry (age 
range of 20–79 y.o.) (Table S1). Bisulfite conversion rates were 
> 95% for all BS-seq libraries (Table S2). The final data set for 
each individual corresponded to ~4× coverage so we pooled the 
14 different data sets to increase depth (~60×) and reduce the 
effects of individual variation. Composite plots of a variety of 
genomic features revealed the expected profiles e.g., CpG islands 
were significantly hypomethylated, gene-bodies methylated, 
and known imprinted regions partially methylated (Fig. 1A). 
It is important to note that we profiled buccal epithelial cells 
specifically, obtained by sterile brushes, and not saliva that can 

Figure 1. (A) Canonical methylation pro�les calculated for BS-Seq data of blood and buccal for CpG Islands (extracted from UCSC Genome Browser), 

Gene Body (from transcription start position to end position) and Promoter (2 kbp upstream of the transcription start position). The methylation 

fraction (number of cytosines recorded/number of reads for that position) for each CpG contained within the genomic feature was calculated and the 

distribution of methylation was calculated. The discrete nature of the blood pro�le is due to the reduced coverage. (B) Several examples of regions 

on the 450K that are speci�cally hypomethylated or hypermethylated in blood compared with placenta, pancreas, sperm or buccal. Plotted is the 

methylation fraction (β value) for each probe contained on the array within this region. (C) A contour plot of the F measure for validation of the BS-Seq 

tDMRs using Illumina 450K data for di�erent methylation and region size cut-o�s. Pink represents a high F measure and hence good validation while 

blue represent a low F measure. (D) An example of a validated tDMR where each point represents the methylation fraction of the BS-Seq data for each 

CpG in this region for blood (red) and buccal (black). The called tDMR is highlighted as a transparent blue rectangle. Also plotted are the 450K probes 

for this region for blood (red square) and buccal (black square) which show good agreement with the BS-Seq data.
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Buccal cells are significantly hypomethylated relative to 
blood. Using the above strategy, we called 33,998 autosomal 
buccal vs. blood tDMRs (sex chromosomes were not included). 
Strikingly, 29,418 were hypomethylated in buccal and only 
4,580 hypomethylated in blood (Fig. 2A). It may be possible that 
this skew is due to the mixed cell nature of whole blood. That 
is, the various blood subsets could all harbor different subset-
specific low methylated regions, but in a mixed cell population 
such as whole blood, these appear as regions of intermediate to 
high methylation. However, an analysis of the Illumina450K 
we generated (described above) revealed buccals to be signifi-
cantly hypomethylated relative to whole blood and a variety of 
sorted blood sub-types: CD14+, CD4+ and CD34+ (Fig. 3). The 
Illumina 450K analysis also proves that the significant hypo-
methylation observed in buccals is not due to a difference in fold 
coverage between the buccal and blood BS-seq methylomes. An 
example of a buccal-specific hypomethylated region is shown in  
Figure 2B.

We then wanted to obtain additional evidence that the sig-
nificant hypomethylation in buccal is both real and likely to be 
biologically relevant. We therefore considered the human whole-
genome DNase-seq profiles generated as part of the recently 
released ENCODE data.25 DNaseI sites are a strong predictor 
of regulatory activity and are often observed at low methylated 
regions.25 Although buccal and whole blood per se weren’t pro-
filed as part of ENCODE, a variety of other epithelial and blood 
subsets were subjected to DNase-seq. Indeed, the ENCODE 

obtained from24 and processed in the same manner as the buccal 
BS-seq data. Blood vs. buccal tDMRs were called using a “win-
dowless” approach that allows for region sizes to be automati-
cally determined (Methods). The Cochran-Mantel-Haenszel 
test was used to initially define tDMRs at a genome-wide  
p < 0.05. To further filter the tDMRs, we only selected regions 
that were > 200 bp in size and with > 50% methylation differ-
ence. To select these cut-offs we first called differences between 
buccal vs. blood using Illumina 450K data (described above). 
For a filtered list of tDMRs based on any methylation difference 
and region size cut-off we could then calculate a true positive 
i.e., how many of the 450K tDMRs did we capture with our 
filtered BS-Seq tDMRs, and false positive rate i.e., how many 
of the filtered BS-Seq tDMRs were not called as 450K tDMRs. 
Figure 1C is a surface plot of the harmonic mean (F measure) of 
this true positive and false positive rate for varying cut-offs. An 
example of a region that is validated by Illumina 450K data is 
shown in Figure 1D. The combination of > 200 bp in size and 
> 50% methylation difference yielded a low false positive rate 
(10%), meaning that we have high confidence of the validity of 
the original BS-seq tDMRs. Using this filter does however lead 
to a low true positive rate meaning that we are very likely missing 
many true tDMRs. Therefore we also performed various analyses 
using 50 bp minimum size and a 30% methylation difference 
i.e., the highest harmonic mean of true positive and false positive  
(Table S4). The main results of the paper are similar using either 
set of tDMRs (data not shown).

Figure 2. (A) The methylation di�erence between blood and buccal for the BS-Seq tDMRs which were �ltered for methylation di�erences > 50%. A 

large proportion are less methylated in buccal (Blood-Buccal > 0). (B) An example of a buccal speci�c hypomethylated region on the Illumina 450K 

when compared with Blood, CD14, CD4, CD34+ and CD34-. (C) A buccal hypomethylated tDMR which overlaps with epithelial DNaseI hotspots but 

does not overlap with any blood DNaseI hotspots. The top panel shows the methylation fraction for blood (red) and buccal (black) as measured by 

BS-Seq, with the called tDMR highlighted using a blue rectangle. The bottom panel shows regions of DNaseI hotspots for various di�erent cell types 

as downloaded from ENCODE. Those cell types that are associated with blood have been highlighted in red while those associated with epithelial cells 

are highlighted in black.
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1,717, blood-specific hotspots. Of the epithelial hotspots, 1,283 
overlapped with buccal-hypomethylated tDMRs compared 
with only 14 that overlapped blood-hypomethylated tDMRs 
(Permutation test; Fold Change = 10.3, p < 2.2e-16). Similarly, 
of the blood-specific DNaseI hotspots, 55 overlapped with blood- 
hypomethylated tDMRs compared with only 12 that overlapped 
with buccal-hypomethylated tDMRs (Permutation test; Fold 
Change = 35.5, p < 2.2e-16). Overall, these analyses demon-
strate that buccal cells contain significantly more hypomethyl-
ated regions relative to blood, and these sites are likely to be 
active regulatory elements as suggested by the comparative anal-
ysis with DNase-seq data.

Most buccal vs. blood tDMRs overlap non-canonical reg-
ulatory elements. We next sought to elucidate key genomic 
properties of these tDMRs. Given the strong correlation with 
DNaseI sites, it was not surprising to observe that over 50% of 
the BS-seq tDMRs overlap sites of putative regulatory activity 
as defined by the RegFeature track in the ENSEMBL database, 
and a variety of histone modification combinations typically 
associated with “active” states (Fig. 4A). Gene bodies were also 
strongly represented, consistent with the emerging idea that 
gene-body DNA methylation is far more dynamic than previ-
ously appreciated and a feature of eukaryotic DNA methyla-
tion systems that is even more evolutionarily conserved than 
methylation dynamics at mammalian genomic elements such as 
CpG islands.26-28 Analysis of spatial proximity of the buccal vs. 
blood tDMRs to annotated CpG Islands showed that 26,787 
of the tDMRs are > 10 kb away, and only 7% are within 2 kb 
(Fig. 4B). Consistent with this observation we found the vast 
majority of buccal vs. blood tDMRs to be CpG poor (CpG

o/e
  

< 0.3, Fig. 4C).

project reported significantly more DNaseI hotspots in epi-
thelial cells compared with all blood subsets (Mann-Whitney 
U test, p = 0.0025, Table 1). Furthermore, we found that 
epithelial hotspots were enriched at buccal-hypomethylated 
tDMRs (Fig. 2C). Next, since ENCODE did not profile buc-
cal or whole blood, we identified DNaseI hotspots common to 
all epithelial cells, and separately DNaseI hotspots common to 
all blood subsets, the rationale being that these sites are very 
likely to also exist in buccal and whole blood respectively. In 
total, we found 17,635 epithelial-specific DNaseI hotspots and 

Figure 3. For each cell type (CD14+, CD4+ and CD34+) we called di�erences between each one and the buccal 450K and calculated the number of re-

gions that were hypomethylated in buccal (right Venn diagram) and those that were hypomethylated in each of the cell type (left Venn diagram). The 

Buccal cells consistently contained more hypomethylated regions than that of the other cell types.

Table 1. Extracted from Table S125 showing the number of DNaseI 

hotspots of blood and epithelial cell types

Cell type Number of Hotspots Sample Type

Th1 154,717 Blood

CD20+ 176,008 Blood

CD34+ Mobilized 206,033 Blood

GM06990 194,407 Blood

GM12865 227,299 Blood

HAEpiC 294,231 Epithelial

HCPEpiC 304,490 Epithelial

HEEpiC 326,246 Epithelial

HRCEpiC 307,274 Epithelial

HPdlF 266,670 Epithelial

SAEC 291,390 Epithelial

HiPEpiC 331,341 Epithelial

Epithelial cell types have a much greater number of hotspots compared 

with blood, which is inline with the increased number of HMRs found. ©
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to identify active regulatory elements in a given tissue, and ask 
whether there is any correlation between such sites and previ-
ously identified GWAS hits.7,8 Indeed, there seems to be a sig-
nificant enrichment of GWAS hits near regulatory elements, 
suggesting that in many cases germline genetic variants may act 
via modulating the activity of linked regulatory elements. Given 
the generally accepted view that unmethylated regions are often 
associated with ‘active’ regulatory sites, we wondered if similar 
analyses can be performed using DNA methylation data since, 
for practical reasons, it will not be possible to interrogate chro-
matin state in many tissues. We performed spatial correlations of 
hypo-tDMRs with statistically significant SNPs from published 
GWASs (Methods) by adapting the Genomic Association Tester 
(GAT) method available from www.cgat.org/~andreas/docu-
mentation/gat. GAT works by calculating the expected overlap 
of genomic regions based on a sampling algorithm. The actual 
overlap can then be contrasted with the expected overlap and an 
empirical p-value is calculated. Blood hypo-tDMRs were found 
to be strongly associated with a variety of autoimmune diseases/
phenotypes e.g., celiac disease and Graves disease (Table 2 lists 
the top 5 associations). Buccal hypo-tDMRs were associated 
with diseases/phenotypes strongly linked with, importantly, epi-
thelial and not just buccal function, such as bladder cancer and 
Immunoglobulin A that is produced by epithelial cells.

We next investigated the developmental dynamics of the buc-
cal vs. blood tDMRs. We obtained raw BS-seq data for human 
sperm and ES cells from published studies,29,30 and processed 
the data sets in line with the buccal and blood BS-seq data 
(Methods). An integrated analysis of all four different BS-seq 
data sets revealed that the vast majority of either buccal- or 
blood-specific hypo-methylated regions are methylated in both 
sperm and ES cells (Mann-Whitney U test, p = 0.029) (Fig. 4D). 
In other words, these tDMRs specifically lose methylation in 
the relevant developmental lineage, as opposed to starting from 
an unmethylated state and gaining methylation. The hyper- 
methylated state of the tDMRs in sperm is also consistent 
with their CpG-poor status, given the mutagenic effects 
of methylation and likely subsequent gradual loss of cyto-
sines over evolutionary time-scales. The developmental DNA 
methylation dynamics of the tDMRs we describe here stands 
in contrast to canonical CpG-rich regulatory elements that 
are predominantly unmethylated in germ cells and early  
development.30-32

Disease-associated SNPs are enriched near buccal vs. 
blood tDMRs. The integration of EWAS and GWAS data 
has the potential to delineate the functional consequence of 
genetic variation. A few recent studies have used functional 
genomic data e.g., histone modifications and DNaseI hotspots, 

Figure 4. (A) The breakdown of the overlap for tDMRs with various genomic annotations. Promoters were calculated as being 2 kbp upstream of the 

transcription position and Gene Body was de�ned as being from the transcription start position to the transcription end position. Histone marks were 

downloaded as BED �les and overlapped with tDMRs (see Supplemental Materials for full details of the data). (B) CpG Island locations were down-

loaded from UCSC Genome Browser and the overlap of tDMRs with these CpG Islands was calculated for increasing window sizes of inclusion. Only 

7% of tDMRs are within 2 kbp of a CpG Island. (C) The CpG
oe

 for BS-Seq tDMRs which either overlapped with 450K or RRBS-Seq(red) or not (black). In 

blue is the distribution for CpG Islands, which is signi�cantly greater than either of the tDMRs. Highlighted in yellow is the region plotted in Figure 2C 

of.38 (D) The methylation state in buccal cells vs. those of blood for the BS-Seq tDMRs. Those points in the top left of the diagram are regions which are 

hypomethylated in buccal and the points in the bottom right of the diagram are regions which are hypomethylated in blood. The points are colored 

either in yellow if the methylation state in sperm (top panel) or ES cells (bottom panel) are less than 30% methylated or in blue if the methylation state 

is > 70%.
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also allowed us to address another key issue of EWAS design, 
namely which platform is most suitable. In recent years, a vari-
ety of methylome profiling strategies have been published based 
on immunoprecipitation, restriction enzyme digestion, and/or 
bisulfite conversion (systematic comparisons of these various 
methods were reported in two recent papers33,34). Of these, two 
platforms in particular have proven to be popular for EWASs 
as they provide significant genome-scale coverage, single cyto-
sine resolution methylation levels, and low cost, (1) the Illumina 
450K array (and the earlier version—the Illumina27K array) and 
(2) Reduced Representation Bisulfite Sequencing (RRB-seq), in 
which restriction enzymes whose recognition sites contain a CG 
site are used to first restrict the DNA, and then the resulting 
fragments are sequenced.35 However, both platforms are gener-
ally biased toward either canonical genomic elements and/or 
CpG dense regions. An important question that arises from our 
analysis of buccal vs. blood tDMRs is what proportion is cap-
tured by RRBseq and/or Illumina450K arrays. A key point when 
doing this analysis is to ensure that a lack of overlap between 
BS-seq tDMRs and RRBseq and/or Illumina450K probes also 
means that the methylation dynamics are not being captured 
i.e., the RRBseq fragment/Illumina450K probes are not simply 
behaving as “surrogate” tDMRs. To classify an RRBseq frag-
ment or Illumina 450K probe as overlapping with the BS-Seq 
tDMRs, we allowed the probe to be up to 100 bp from either end 

The main rationale of our study is to characterize the human 
buccal methylome with view to assessing its potential for EWASs 
since buccal, and blood, will in many cases be used as surrogate 
tissues as the target tissue will be inaccessible from large numbers 
of individuals. Assuming that hypomethylated regions are sig-
nificantly stronger markers of regulatory activity compared with 
hypermethylated regions, we compared buccal and blood data to 
Reduced Representation Bisulfite Sequencing (RRB-seq) data of 
a variety of ‘non-accessible’ tissues such as brain and islets profiled 
by ENCODE.25 In all cases, hypomethylated sites in buccal cells 
better captured hypomethylated regions in other tissues (Table 3).  
To investigate this further we extracted all publicly available 
Illumina450K data from the GEO database (on November 14, 
2012), producing a data set of over 1,052 samples (after filtering, 
Methods) of various different tissue types and disease states. Using 
unsupervised clustering we found two distinct clusters that separate 
all blood samples (including various different blood subtypes) and 
all other samples including buccals, stem cells, transformed cells, 
brain, kidney, liver and even sperm (Fig. 5). This clustering was 
performed using all probes on the Illumina450K array and not just 
the buccal vs. blood tDMRs we define here. This further empha-
sizes the fact that, relative to blood, buccal methylation profiles are 
closer to all other non-blood cells considered in our analysis.

Most buccal vs. blood tDMRs are not captured by com-
monly used platforms for DNA methylomic analyses. Our data 

Table 2. The top 5 disease associated SNPs which overlap with the BS-Seq tDMRs which are either hypomethylated in blood or buccal

Tissue Type Dissease association P-value Fold enrichment

Blood Celiac disease 1.0e-3 3.7408

Blood Graves’ disease 2.0E-3 2.7687

Blood Inattentive symptoms 9.0E-3 2.5218

Blood Chronic lymphocytic leukemia 1.1e-2 2.4835

Blood Celiac disease and Rheumatoid arthritis 9.0e-3 2.4271

Buccal Bladder cancer 1.0e-3 2.4053

Buccal Eosinophilic esophagitis (pediatric) 1.0E-3 2.3798

Buccal Calcium levels 1.0e-3 2.2559

Buccal Immunoglobulin A 1.0e-3 2.2514

Buccal Mean corpuscular volume 1.7E-2 2.0393

Genomic Association Tester (GAT) was used to calculate a p-value and fold enrichment for each of the different disease associated SNPs.

Table 3. RRBS-Seq data of different inaccessible tissues was downloaded from ENCODE project and the average methylation state for each of the tis-

sues was calculated for data that overlapped with the BS-Seq tDMRs

Blood Buccal

Number of regions 

< 30% methylated 

in tissue

Number of regions 

covered by tissue 

RRBS-Seq

% Overlap 

between < 30% 

tissue and HMR

Number of regions 

< 30% methylated 

in tissue

Number of regions 

covered by tissue 

RRBS-Seq

% Overlap 

between < 30% 

tissue and HMR

Skeletal muscle 71 405 18 1173 3696 32

Islets 70 316 22 1082 2805 39

Brain 86 368 23 1078 3387 32

Liver 55 423 13 752 3783 20

We found that there was an increased amount of overlap between buccal hypomethylated tDMRs with regions that were < 30% methylated in the tis-

sues than compared with blood.
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RRB-seq with those tDMRs not captured by these platforms 
(Fig. 6E).

Discussion

The challenges associated with conducting a successful EWAS 
has been highlighted by several authors.1-5 One such challenge 
is the choice of tissue since in most cases the target tissue will 
not be accessible from significant numbers of live individuals. 
Consequently, surrogate tissues have to be used and blood has 
been the default option in the vast majority of cases, without 
any evidence to suggest that it is more informative than buc-
cal, the other easily accessible tissue type, for non-blood based 
diseases/phenotypes. Based on the data presented here, we pro-
pose that buccals may be more informative for EWASs of non-
blood cells. It is not in doubt that hypomethylated regions are 
strong markers of potential regulatory activity and variation at 
these sites, whether due to genetic or non-genetic influences, will 
have a bigger phenotypic impact. Furthermore, Feinberg and col-
leagues have provided evidence in several separate studies that 
tDMRs also show increased interindividual variability both in 
the context of disease and normal epigenetic variation.37 Finally, 
the correlation we find between GWAS hits and hypo-tDMRs, 
including the observation that buccal hypo-tDMRs are associ-
ated with diseases/phenotypes strongly linked with epithelial 
and not just buccal function, further emphasizes the relevance of 

of the tDMR (Fig. 6A). Thus we ensured that fragments/probes 
very close to the BS-seq tDMRs that capture similar methylation 
dynamics as the BS-seq tDMR were included despite not overlap-
ping exactly. We found, however, that when increasing this value, 
the validation rate fell (Fig. S1) suggesting that these probes were 
no longer sampling the true difference, and hence 100 bp was 
chosen to maintain a high validation rate. Figure 6B is an exam-
ple of such a tDMR for which the closest Illumina probes are  
> 1 kbp away from the edge of the tDMR and hence do not 
validate the tDMR.

Strikingly we found that collectively only ~25% of all BS- 
seq-based buccal vs. blood tDMRs are captured by these two 
platforms (Fig. 6C). More specifically, the Illumina 450K array 
contains ~20% of the regions compared with RRBS-Seq that 
profiles ~13%. We also calculated the overlap with enhanced ver-
sions of RRB-Seq, in which different combinations of enzymes 
and fragment distributions yields increased genomic cover-
age,28,36 but even this approach does not dramatically increase 
the percentage of buccal vs. blood tDMRs captured (Table 4). 
Further analysis comparing tDMRs captured by Illumina450K/
RRB-seq with those tDMRs not captured by these platforms 
showed that the latter tend to be significantly smaller in size 
(Mann-Whitney U test p < 2.2e-16, Fig. 6D). Interestingly, 
an analysis of transcription factor (TF) binding site sequences 
revealed that in some cases, there is differential enrichment of 
TF binding sites between tDMRs captured by Illumina450K/

Figure 5. An unsupervised hierarchical cluster dendogram of 1,052 di�erent Illumina 450K arrays. Due to the large size of the image the sample labels 

are not legible in the �gure but a large version is available to download in the Supplemental Materials (Fig. S2). We have highlighted in the �gure the 

location of blood cell types (red rectangle) and those of our buccal data (black rectangle). There are two main clusters, one of blood cell types and the 

other of all other tissue types including cell lines, somatic tissue and our buccal data. This suggests that blood cell types have a vastly di�erent meth-

ylation state than those of all others. The dendrogram was calculated using agglomerative hierarchical clustering with the euclidian distance as the 

metric and the Ward linkage criteria. The root of the dendrogram is at the top and the y-axis represents the euclidian distance between the clusters at 

each splitting point.
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Furthermore, in some instances only blood will be available as is 
the case for stored samples such as Guthrie cards.38 Therefore, if 
possible, profiling both blood and buccals will not be redundant 
but rather provide complementary information. However, in the 
case of an EWAS of a non-blood disease/phenotype, if a choice 
has to be made between the two surrogate tissues, then buccal 
may be more informative.

Finally, the fact that commonly used methylomic platforms 
capture a relatively small fraction of buccal vs. blood tDMRs 
has potential implications for drawing conclusions from ongoing 
EWASs, especially in the case of negative results. A question in any 
profiling experiment where the entire genome is not being assayed 
is how much variation is potentially being missed? We believe that 
both the Illumina450K and RRB-seq methods are, at this stage, 
powerful and cost-effective methods for performing EWASs, but 
it should be kept in mind that most variable regions may lie out-
side of the genomic regions covered by these more focused meth-
ods. Similarly, blood-based EWASs for a non-blood based disease/
phenotype are likely to benefit from the inclusion of buccals as the 
relevant variability may simply not be present in blood.

Materials and Methods

Samples. Buccal samples were from 14 different individuals of 
European ancestry (age range of 20–79 y.o.) (Table S1). All 
subjects gave informed consent and the study was approved by 

hypomethylated regions in human diseases. Although one could 
argue that the true value of buccals can only be known by actu-
ally using them in EWASs, decisions about which tissue to use 
need to be made at the outset. It is important to note that we are 
not suggesting that interindividual variation at normally methyl-
ated regions does not occur or is unimportant. But rather that the 
closer clustering of buccals with all other somatic tissues (using 
unsupervised clustering that utilizes all sites on the 450K array 
and not just hypomethylated sites) would suggest that buccals are 
more likely to display dynamics that are more representative of 
other tissues than blood.

Buccal cells cannot replace blood in a variety of instances e.g., 
for blood-based conditions of course, but also in cases when chro-
matin profiling needs to be done (although the vast majority of 
EWASs in the coming years will focus on DNA methylation). 

Figure 6. (A) Diagram showing the de�nition of boundaries for calculating overlap between Illumina 450k probes and our tDMRs. (B) BS-Seq data 

of blood (red) and buccal (black) for a tDMR region which is highlighted in blue. All Illumina 450K probes present in this region are plotted in black 

rectangles for buccal data and red rectangles for blood data. There is good agreement between the Illumina 450k data and BS-Seq and as the probes 

are 1 kbp from the tDMR found in the BS-Seq data they �nd no di�erence between blood and buccal. (C) Over 75% of the tDMRs are not covered by 

either 450K or RRBS-Seq suggesting that a large proportion of possible variation may be missed by 450K or RRBS-Seq. (D) The distribution of sizes in 

basepairs (bps) of BS-Seq tDMRs covered by 450K (red) and those not covered by 450K (black). (E) A histogram of the di�erent transcription factors 

that were enriched greater than 2-fold in either BS-Seq tDMRs which overlapped Illumina 450k (black) probes or those that did not (gray).

Table 4. A number of different RRBS-Seq methods have been proposed 

in which different combinations of enzymes and fragment distributions 

yields increased genomic coverage

Technique Overlap with tDMRs

RRBS-Seq 4291 (13%)

Enhanced RRBS-Seq 5475 (16%)

Nanty et al. 7430 (22%)

We have simulated the genomic coverage of each of these RRBS-Seq 

methods and calculated the possible overlap between the BS-Seq 

tDMRs.
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batch, allowing allowed us to investigate how similar different 
tissues were to each other in their methylation profiles.

Processing of publicly available RRB-seq data. A custom 
python script was used to download data from ENCODE and 
convert the format of the files. The sites which overlapped with 
each tDMR were identified and the average methylation across 
this region was calculated by summing up the methylation of 
each overlapping CpG and dividing by the total number of over-
lapping CpGs. We then defined regions as being hypomethylated 
in the RRB-seq data if the average methylation across the region 
was < 30%.

Transcription Factor motif analysis. Position Weight 
Matrices for vertebrate transcription factors were down-
loaded from JASPER. We used the BioStrings library (www. 
bioconductor.org/packages/2.10/bioc/html/Biostrings.html) to 
match PWMs to sequences of our tDMRs. tDMRs were split 
into two groups; those that overlapped 450K probes and those 
that did not. A background model of a zero order Markov Chain 
Model with equal probabilities for each nucleotide was used 
to calculate enrichments. Twenty was added to both the back-
ground and foreground counts to prevent over enrichment of a 
small number of hits and those transcription factors with greater 
than 2 fold enrichment in one of the two groups were reported.

Accession numbers. Sequencing and Illumina 450K data have 
been deposited into the NCBI Gene Expression Omnibus under 
accession GSE45529.
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Generation and analysis of BS-seq data. DNA from Buccal 
cells was extracted using the Gentra Puregene Buccal cell kit, 
(Oiagen). For each library, 50 ng of DNA was sonicated to 
median size of ~300 bp and libraries prepared according to the 
method described in the Supplemental section. Libraries were 
size selected and sequenced on an Illumina HiSeq2000 machine. 
BS-Seq data was mapped using BIFast with parameters –n 1 and 
–l 50 for blood, sperm, ES and buccal data (Lowe et al., sub-
mitted). BIFast is an efficient implementation of the BISMARK 
algorithim39 written on top of BOWTIE40 and is freely available 
from https://bitbucket.org/xboxrob/bifast. Clonal reads were fil-
tered where paired end mapping produced fragments at exactly 
the same location and one of the clonal fragments was chosen 
randomly. tDMRs were called using the windowless approach of 
BIFast. By looping through each of the chromosomes, we group 
CpGs that have the same directionality of methylation differ-
ence between the two tissue types. We then applied the Cochran-
Mantel-Haenszel test to calculate a p-value for each region and 
tDMRs were filtered for p-value < 0.01, an average methylation 
difference > 50% and a minimum size of 200 bp and stored as 
BED files. BEDTools was used to calculate the various different 
overlaps.

Generation and analysis of Illumina450K data. All array 
experimental procedures were performed according to the manu-
facturers instructions. Quantile normalization was performed on 
the intensity values of the red and green channels of type I and 
type II probes separately. Probes with a detection p-value < 0.01 
or those mapping to more than one location or to chromosome 
X or Y were removed from further analysis. Intensities were then 
combined into the standard β number as a measure of meth-
ylation. All subsequent analyses were performed using custom 
scripts in R (available on request from the authors).

Unsupervised clustering of Illumina450K data obtained 
from GEO. Custom scripts were used to download all data avail-
able on 14th November 2012. Samples which contained β val-
ues were used and each sample was checked to make sure that 
β values were > = 0 and < = 1. Those that passed this initial qc 
were used and probes were then filtered so that each sample had 
a recorded measurement leaving 196,817 probes. These probes 
were then used as input to the unsupervised clustering contained 
in R of the 1057 samples as well as our blood and buccal sam-
ples. The resulting clusters were driven by tissue type rather than 
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