
Büchi Store: An Open Repository of

Büchi Automata�

Yih-Kuen Tsay, Ming-Hsien Tsai, Jinn-Shu Chang, and Yi-Wen Chang

Department of Information Management, National Taiwan University, Taiwan

Abstract. We introduce the Büchi Store, an open repository of Büchi
automata for model-checking practice, research, and education. The repos-
itory contains Büchi automata and their complements for common spec-
ification patterns and numerous temporal formulae. These automata are
made as small as possible by various construction techniques, in view that
smaller automata are easier to understand and often help in speeding up
the model-checking process. The repository is open, allowing the user to
add new automata or smaller ones that are equivalent to some existing au-
tomaton. Such a collection of Büchi automata is also useful as a benchmark
for evaluating complementation or translation algorithms and as examples
for studying Büchi automata and temporal logic.

1 Introduction

Büchi automata [1] are finite automata operating on infinite words. They play a
fundamental role in the automata-theoretic approach to linear-time model check-
ing [20]. In the approach, model checking boils down to testing the emptiness
of an intersection automaton A∩B¬ϕ, where A is a Büchi automaton modeling
the system and B¬ϕ is another Büchi automaton representing all behaviors not
permitted by a temporal specification formula ϕ. In general, for a given system,
the smaller B¬ϕ is, the faster the model-checking process may be completed.

To apply the automata-theoretic approach, an algorithm for translating a tem-
poral formula into an equivalent Büchi automaton is essential. There has been a
long line of research on such translation algorithms, aiming to produce smaller
automata. According to our experiments, none of the proposed algorithms out-
performs the others for every temporal formula tested. The table below shows a
comparison of some of the algorithms for three selected cases.

Formula LTL2AUT[4] Couvreur[3] LTL2BA[5] LTL2Buchi[6] Spin[7]
state tran. state tran. state tran. state tran. state tran.

¬p W q 4 16 3 12 3 12 3 12 4 16
�(p → �q) 4 30 3 20 6 41 3 20 4 28
��p ∨ ��q 8 38 5 28 5 28 5 28 3 12

� This work was supported in part by National Science Council, Taiwan, under the
grant NSC97-2221-E-002-074-MY3.

P.A. Abdulla and K.R.M. Leino (Eds.): TACAS 2011, LNCS 6605, pp. 262–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Büchi Store: An Open Repository of Büchi Automata 263

Given that smaller automata usually expedite the model-checking process, it
is certainly desirable that one is always guaranteed to get the smallest possible
automaton for (the negation of) a specification formula. One way to provide
the guarantee is to try all algorithms or even manual construction and take
the best result. This simple-minded technique turns out to be feasible, as most
specifications use formulae of the same patterns and the tedious work of trying
all alternatives needs only be done once for a particular pattern instance.

To give the specification as a temporal formula sometimes may not be practical,
if not impossible (using quantification over propositions). When the specification
is given directly as an automaton, taking the complement of the specification au-
tomaton becomes necessary. Consequently, in parallel with the research on trans-
lation algorithms, there has also been substantial research on algorithms for Büchi
complementation. The aim again is to produce smaller automata.

Several Büchi complementation algorithms have been proposed that achieve
the lower bound of 2Ω(n log n) [11]. However, the performances of these “optimal”
algorithms differ from case to case, sometimes quite dramatically. The table
below shows a comparison of some of the complementation algorithms for four
selected Büchi automata (identified by equivalent temporal formulae). In the
literature, evaluations of these algorithms usually stop at a theoretical-analysis
level, partly due to the lack of or inaccessibility to actual implementations. This
may be remedied if a suitable set of benchmark cases becomes available and
subsequent evaluations are conducted using the same benchmark.

Formula Safra[13] Piterman[12] Rank-Based[9,14] Slice-Based[8]
state tran. state tran. state tran. state tran.

�(p → �(q ∧ �r)) 76 662 90 777 96 917 219 2836
��(−�p → q) 35 188 13 62 13 72 24 119
�(p → p U (q U r)) 17 192 8 76 7 54 7 49
p U q ∨ p U r 5 34 5 34 8 23 3 12

The Büchi Store was thus motivated and implemented as a website, accessible
at http://buchi.im.ntu.edu.tw. One advantage for the Store to be on the
Web is that the user always gets the most recent collection of automata. Another
advantage is that it is easily made open for the user to contribute better (smaller)
automata. The initial collection contains over six hundred Büchi automata. In
the following sections we describe its implementation and main features, suggest
three use cases, and then conclude by highlighting directions for improvement.

2 Implementation and Main Features

The basic client-server interactions in accessing the Büchi Store are realized by
customizing the CodeIgniter [2], which is an open-source Web application frame-
work. To perform automata and temporal formulae-related operations, such as
equivalence checking and formula to automaton translation, the Store relies on
the GOAL tool [19] and its recent extensions. One particularly important (and
highly nontrivial) task is the classification of temporal formulae that identify

264 Y.-K. Tsay et al.

the Büchi automata in the Store into the Temporal Hierarchy of Manna and
Pnueli [10]. To carry out the task automatically, we implemented the classifica-
tion algorithm described in the same paper, which is based on characterization
of a Streett automaton equivalent to the temporal formula being classified.

The main features of the current Büchi Store include:

– Search: Every automaton in the Store is identified by a temporal formula
(in a variant of QPTL [15,16], which is expressively equivalent to Büchi au-
tomata). The user may find the automata that accept a particular language
by posing a query with an equivalent temporal formula. Propositions are au-
tomatically renamed to increase matches (semantic matching between whole
formulae is not attempted due to its high cost). This is like asking for a trans-
lation from the temporal formula into an equivalent Büchi automaton. A big
difference is that the answer automata, if any, are the best among the re-
sults obtained from a large number of translation algorithms, enhanced with
various optimization techniques such as simplification by simulation [17] or
even manually optimized (and machine-checked for correctness).

– Browse: The user may browse the entire collection of Büchi automata by
having the collection sorted according to temporal formula length, number
of states, class in the Temporal Hierarchy, or class in the Spec Patterns [18].
While classification in the Temporal Hierarchy has been automated, the
classification for the last sorting option has not. Rather, the Store relies on
the user to provide suggestions, based on which a final classification could
be made. This may be useful for educational purposes.

– Upload: The user may upload a Büchi automaton for a particular temporal
formula. The automaton is checked for correctness, i.e., if it is indeed equiv-
alent to the accompanying temporal formula. If it is correct and smaller
than the automata for the formula in the Store, the repository is updated
accordingly, keeping only the three smallest automata.

3 Use Cases

We describe three cases that we expect to represent typical usages of the Store.

– Linear-time model checking: The user may shop in the Store for the
automata that are equivalent (with probable propositions renaming) to the
negations of the temporal formulae which he wants to verify. The automata
may be downloaded in the Promela format, for model checking using Spin.

– Benchmark cases for evaluating complementation algorithms: Ev-
ery Büchi automaton in the initial collection has a complement, which is
reasonably well optimized. A subset of the collection could serve as a set
of benchmark cases for evaluating Büchi complementation algorithms. This
use case can certainly be adapted for evaluating translation algorithms.

– Classification of temporal formulae: The look of a temporal formula
may not tell immediately to which class it belongs in the Temporal Hierarchy.
It should be educational to practice on the cases that do not involve the

Büchi Store: An Open Repository of Büchi Automata 265

complication of going through Streett automata. For example, �(p → �q)
is a recurrence formula because it is equivalent to ��(¬p B q) (where B
means “back-to”, the past version of wait-for or weak until).

Concluding Remarks. To further improve the Store, first of all, we as the de-
velopers will continue to expand the collection, besides hoping for the user to
do the same. Explanatory descriptions other than temporal formulae should be
helpful additions for searching and understanding. Automatic classification of
temporal formulae into the various specification patterns should also be useful.

References

1. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Int’l
Congress on Logic, Methodology and Philosophy of Science, pp. 1–11 (1962)

2. CodeIgniter, http://codeigniter.com/
3. Couvreur, J.M.: On-the-fly verification of linear temporal logic. In: Woodcock,

J.C.P., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999)

4. Daniele, M., Giunchiglia, F., Vardi, M.Y.: Improved automata generation for linear
temporal logic. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633,
pp. 249–260. Springer, Heidelberg (1999)

5. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

6. Giannakopoulou, D., Lerda, F.: From states to transitions: Improving translation
of LTL formulae to Büchi automata. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE
2002. LNCS, vol. 2529, pp. 308–326. Springer, Heidelberg (2002)

7. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

8. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 724–735. Springer, Heidelberg (2008)

9. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Transactions on Computational Logic 2(3), 408–429 (2001)

10. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–408.
ACM, New York (1990)

11. Michel, M.: Complementation is more difficult with automata on infinite words.
In: CNET, Paris (1988)

12. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. In: LICS, pp. 255–264. IEEE, Los Alamitos (2006)

13. Safra, S.: On the complexity of ω-automta. In: FOCS, pp. 319–327. IEEE, Los
Alamitos (1988)

14. Schewe, S.: Büchi complementation made tight. In: STACS, pp. 661–672 (2009)
15. Sistla, A.P.: Theoretical Issues in the Design and Verification of Distributed Sys-

tems. PhD thesis, Harvard (1983)

http://codeigniter.com/

266 Y.-K. Tsay et al.

16. Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for Büchi
automata with applications to temporal logic. TCS 49, 217–237 (1987)

17. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-
son, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 248–263. Springer,
Heidelberg (2000)

18. The Spec Patterns repository, http://patterns.projects.cis.ksu.edu/
19. Tsay, Y.-K., Chen, Y.-F., Tsai, M.-H., Chan, W.-C., Luo, C.-J.: GOAL extended:

Towards a research tool for omega automata and temporal logic. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 346–350. Springer,
Heidelberg (2008)

20. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. IEEE, Los Alamitos (1986)

http://patterns.projects.cis.ksu.edu/

	Büchi Store: An Open Repository of Büchi Automata
	Introduction
	Implementation and Main Features
	Use Cases
	References

